

УТВЕРЖДЕН КД.ЭЛХТ-ВКГВ-М.01-02-ЛУ

Версия документа: 1.1 30.07.2025

ПАСПОРТ

Генератор вакуума VVG-EA-02-16

КД.ЭЛХТ-ВКГВ-М.01-02-04 ПС

1. Меры безопасности

Перед установкой и использованием генераторов вакуума VALMA серии VVG (далее - генератор вакуума, генератор, вакуумный насос, насос, изделие) необходимо внимательно ознакомиться с настоящим паспортом и всеми предупреждениями.

ВНИМАТЕЛЬНО осмотрите изделие для выявления возможных повреждений корпуса и других элементов, возникших при его транспортировке. Изделия с поврежденными элементами не допускаются к эксплуатации.

УДОСТОВЕРЬТЕСЬ, что параметры рабочего и удаляемого газа, а также окружающей среды соответствуют параметрам, указанным в настояшем паспорте.

ЗАПРЕЩАЕТСЯ вскрывать, модифицировать или ремонтировать изделие самостоятельно. Самовольная модификация и ремонт изделия могут привести к нарушению функциональности, поломкам оборудования, поражению персонала.

ЗАПРЕЩАЕТСЯ эксплуатация изделия в легковоспламеняющихся, взрывоопасных средах.

ЗАПРЕШАЕТСЯ использование изделия в контакте с воспламеняющимися, окисляющими*, горючими, взрывчатыми, токсичными и высокотоксичными газами, жидкостями и парами, а также с мало-, умеренно-, высоко- и чрезвычайно опасными веществами.

* – кроме воздуха, с содержанием кислорода, соответствуюшим естественному составу атмосферного воздуха

Монтаж, демонтаж, подключение, техническое обслуживание и эксплуатация изделия должны осуществляться квалифицированными сотрудниками с соблюдением требований данного паспорта и других правил/стандартов/регламентов, принятых к исполнению на предприятии.

2. Комплектность

Генератор вакуума VVG-EA-02-16	1 шт.
Глушитель выхлопа VEM-DF-02-G38	1 шт.
Паспорт	1 шт.

3. Назначение изделия

Генератор вакуума VALMA серии VVG предназначен для создания технического вакуума в небольших закрытых объемах путем откачки из них заполняющего воздуха.

4. Устройство и принцип работы

Генератор вакуума VALMA серии VVG представляет из себя газоструйный вакуумный насос, откачивающее действие которого основано на захвате удаляемого газа струей рабочего газа.

Состав генератора вакуума показан на рисунке 1: в корпусе 1 находятся сопло 2 и диффузор 3. Подача рабочего газа осуществляется в порт Р, расположенный в левой части генератора вакуума перед соплом 2. Проходя через сопло, рабочий газ разгоняется. На выходе из сопла поток рабочего газа захватывает поток удаляемого газа из порта U, расположенного в нижней части генератора. Потоки рабочего газа и удаляемого газа смешиваются в диффузоре 3 и выходят через порт R, расположенный в правой части генератора вакуума. Таким образом, за счет потока рабочего газа, подаваемого в порт Р осуществляется откачка удаляемого газа из порта U. Когда порт U генератора вакуума подключен к замкнутому пространству, давление в объеме этого пространстве, за счет удаления заполняющего газа, опускается ниже атмосферного. Таким образом, в замкнутом пространстве, подключенном к порту U создается (генерируется) вакуум.

Дополнительно в корпусе генератора вакуума имеется порт для установки вакууметра (соединен с портом U). В состоянии поставки на этот порт установлена заглушка.

Выходя из порта R. смесь рабочего и удаляемого газа попадает в глушитель выхлопа VALMA VEM-DF-02-G38. Глушитель выхлопа представляет из себя алюминиевую трубку со звукопоглощающим материалом из войлока.

Состав глушителя выхлопа показан на рисунке 1. Внутри корпуса 4 расположен блок звукопоглощающего материала 5. Благодаря втулкам 6 и 7, закрепленным на корпусе, звукопоглощающий материал надежно зафиксирован внутри корпуса. Втулка 6 имеет резьбу, с помощью которой глушитель выхлопа закрепляется на выходном порту R генератора вакуума.

Основной поток газа, поступающего на вход глушителя беспрепятственно проходит сквозь него. Однако, после прохождения втулки 6 небольшое количество газа поступает в звукопоглощающий материал. Это позволяет уменьшить звук выхлопа отработавшего газа, проходящего через глушитель.

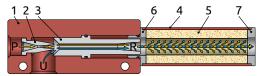


Рисунок 1 – Состав генератора вакуума

5. Код заказа (модельный ряд)

Генератор вакуума (Valma Vacuum Generator) **VVG** Конструктивное исполнение

EΑ

02

Типоразмер

В соответствии с рисунком 6

Диаметр основного сопла 1,6 MM

В соответствии с рисунком 1

Технические характеристики

Значение параметра				
Воздух*				
Воздух*				
От 1.0 до 10.0 бар (от 0.1 до 1.0 МПа)				
6.0 бар (0.6 МПа)				
До 220 норм.л/мин				
От 0 до -0.95 бар (от 0 до -95 кПа)				
-0.85 бар (-85 кПа)				
До 160 норм.л/мин				
Переходный режим Установившийся реж (во время откачки воздуха) (макс. уровень вакуу				
не более 94 дБА не более 90 дБА				
не более 78 дБА не более 68 дБА				
От -20 до +80 °C				
10 лет				
Материалы основных деталей генератора				
Алюминиевый сплав				
Алюминиевый сплав				
Алюминиевый сплав				
NBR				
	Воздух* Воздух* От 1.0 до 10.0 бар (от 0.1 до 1 6.0 бар (0.6 МПа) До 220 норм.л/мин От 0 до -0.95 бар (от 0 до -95) -0.85 бар (-85 кПа) До 160 норм.л/мин Переходный режим (во время откачки воздуха) не более 94 дБА не более 78 дБА От -20 до +80 °C 10 лет лей генератора Алюминиевый сплав Алюминиевый сплав			

^{* –} Для корректной работы генератора вакуума не требуется специальная очистка рабочего и откачиваемого газа. Однако, в этих газах не должно содержаться крупных твердых частиц или капель жидкостей, способных вызвать засорение генератора вакуума.

Зависимость максимального уровня вакуума от давления рабочего газа на входе в изделие показана на рисунке 2.

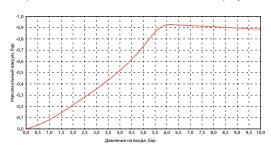


Рисунок 2 – Максимальный уровень вакуума

Зависимость потребления рабочего газа генератором вакуума в зависимости от давления на входе показана на рисунке 3.

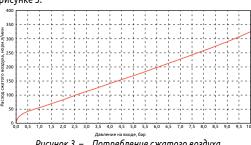


Рисунок 3 – Потребление сжатого воздуха

Зависимость расхода удаляемого газа от уровня вакуума для различного давления на входе в генератор вакуума показана на рисунке 4.

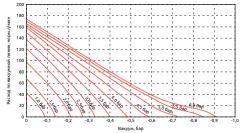


Рисунок 4 – Расход удаляемого газа

Удельное время откачки удаляемого газа из замкнутого объема при разном давлении на входе в генератор вакуума показано на рисунке 5.

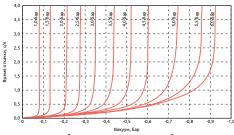


Рисунок 5 – Удельное время откачки удаляемого газа

На рисунках 2...5 показаны результаты испытаний типового образца. Эти данные приводятся для справки. Изготовитель не гарантирует точного соответствия серийных изделий приведенным зависимостям.

7. Габаритные размеры

Габаритные размеры генератора вакуума VVG-EA-02-16 с глушителем выхлопа VEM-DF-02-G38 показаны на рисунке 6.

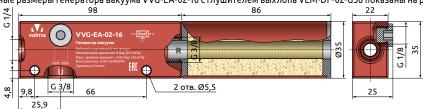


Рисунок 6 – Габаритные размеры VVG-EA-02-16

8. Установка

Правила монтажа

- Осмотрите генератор вакуума для выявления возможных повреждений корпуса и других элементов, возникших при его транспортировке. Изделия с поврежденными элементами к монтажу и эксплуатации не допускаются.
- Перед монтажом генератора вакуума на место постоянной эксплуатации убедитесь в его работоспособности.
- Место монтажа должно быть выбрано таким образом, чтобы расположенное рядом оборудование и трубопроводы к которым подключен генератор вакуума не оказывали на него механических воздействий, способных привезти к деформации или разрушению изделия.
- Генератор вакуума должен быть надежно закреплен.
- Газ из порта R должен свободно выходить из генератора вакуума. При наличии помех для выходного потока газа эффективность генератора вакуума снижается.
- При нормальной работе генератора вакуума газ из порта R выходит с большой скоростью, что приводит к акустическому шуму. Для уменьшения шума рекомендуется использовать глушитель выхлопа VEM-DF-02-G38.
- При подключении к генератору вакуума линий рабочего и удаляемого газа давление в этих линиях не должно отличаться от атмосферного.
- Резьбовые соединения должны быть уплотнены. Рекомендуется использовать фитинги для пневматических систем с торцевым уплотнением. В случае использования дополнительных уплотнительных материалов они должны наноситься только на те части соединения, которые имеют наружную резьбу.
- Момент затяжки резьбовых соединений не должен превышать следующие значения.

Размер резьбы	Момент затяжки, Н∙м	Размер резьбы	Момент затяжки, Н∙м
G 1/8"	3	G 3/8"	10
G 1/4"	6	G 1/2"	15

9. Демонтаж

- 1) Убедитесь, что демонтаж генератора вакуума не приведет к нарушению работы или повреждению другого оборудования и не создаст опасности для персонала.
- Сбросьте избыточное давление рабочего газа.
- Убедитесь в отсутствии вакуума в трубопроводе порта U генератора вакуума.
- Отключите генератор вакуума от трубопроводов и иного оборудования, подключенных к его портам.
- Демонтируйте генератор вакуума.

10. Эксплуатация

Эксплуатация генератора вакуума допускается только при соблюдении правил эксплуатации, монтажа, демонтажа и других правил/стандартов/регламентов принятых к исполнению на предприятии.

Эксплуатация генератора вакуума допускается только при соблюдении параметров, указанных в технических

Перед началом эксплуатации следует убедиться в отсутствии видимых механических повреждений. При обнаружении внешних механических повреждений необходимо обратиться к квалифицированным сотрудникам для определения возможности эксплуатации генератора вакуума с такими повреждениями. В случае возникновения сомнений в возможности эксплуатации генератора вакуума следует обратиться в Сервисный центр, к изготовителю или его официальному представителю.

11. Техническое обслуживание

Периодичность проведения технического обслуживания определяет организация, эксплуатирующая генератор вакуума. Периодичность проведения технического обслуживания должна быть не реже одного раза в полгода.

Техническое обслуживание следует проводить при отсутствии избыточного и вакуумного давления в трубопроводах рабочего и удаляемого газа.

Техническое обслуживание включает в себя следующие операции:

- осмотр генератора вакуума;
- очистка внешних поверхностей от пыли, грязи и посторонних предметов;
- проверка качества крепления генератора вакуума;
- проверка качества крепления внешних трубопроводов к генератору вакуума.

Осмотр генератора входит в техническое обслуживание, однако он может быть выполнен независимо от технического обслуживания. Периодичность проведения осмотра определяет организация, эксплуатирующая изделие. В ходе осмотра необходимо убедиться в:

- отсутствии видимых механических повреждений генератора вакуума;
- отсутствии видимых внешних утечек рабочего и удаляемого газа в окружающую среду.

Недостатки, обнаруженные при техническом обслуживании или осмотре генератора вакуума следует немедленно устранить. При невозможности устранения обнаруженных недостатков рекомендуется заменить генератор вакуума на новый и обратиться в Сервисный центр для выявления возможностей ремонта неисправного изделия (см. раздел 18).

12. Возможные неисправности и способы их устранения

Генератор вакуума не имеет подвижных и изнашиваемых частей. Нарушение нормальной работы генератора вакуума возможно при нарушении условий эксплуатации, а так же в случае механического, химического или иного повреждения деталей изделия. При обнаружении нарушений в работе генератора вакуума обратите внимание на следующие особенности.

- 1) Максимальный уровень вакуума, обеспечиваемый изделием зависит от давления рабочего газа на входе в генератор вакуума и от расхода удаляемого газа.
- Для получения максимального уровня вакуума (-85 кПа) необходимо обеспечить номинальное давление рабочего газа на входе в генератор вакуума. В ситуациях когда рабочий газ подводится к порту Р генератора тонкой и/или длинной трубкой давление на входе в трубку может сильно отличаться от давления на входе в генератор вакуума. Если изделие не обеспечивает требуемого уровня вакуума, убедитесь что давления рабочего газа на входе в генератор вакуума (порт Р) не менее номинального.
- Максимальный уровень вакуума (-85 кПа) достижим только при около нулевом расходе удаляемого газа-При наличии утечек вакуума (поступлении воздуха в область, соединенную с портом U генератора вакуума) максимальный уровень вакуума в -85 кПа может оказаться недостижимым. Зависимость максимального уровня вакуума от расхода удаляемого газа показана на рисунке 4.
- Для достижения максимального уровня вакуума требуется время на откачку удаляемого газа из объема, подключенного к порту U генератора вакуума. Удельное время откачки удаляемого газа (секунд на каждый литр объема), требуемое для достижения того или иного уровня вакуума показано на рисунке 5.

13. Маркировка и пломбирование

Маркировка нанесена на корпус генератора вакуума и содержит следующую информацию:

наименование и обозначение изделия;

- название рабочего и удаляемого газа;
- номинальное давление рабочего газа;
- максимальный уровень вакуума;
- товарный знак;
- заводской номер;
- наименование изготовителя;
- страна-изготовитель;
- единый знак обращения на рынке государств-членов Таможенного союза.

Месяц и год изготовления указаны в настоящем паспорте. Пломбирование изделия не осуществляется.

14. Упаковка

Изделие упаковано в тару из гофрированного картона.

Транспортирование и хранение

Транспортирование изделия в потребительской упаковке завода-изготовителя допускается производить любым видом транспорта с обеспечением защиты от пыли, дождя и снега. При этом должны соблюдаться условия хранения изделия.

Генераторы вакуума должны храниться в упакованном виде в закрытых помещениях при температуре от минус 20 до плюс 60 °C и относительной влажности воздуха не более 80% без образования конденсата. Генераторы вакуума должны храниться не более 10 лет.

Не допускается хранение изделия в помещениях содержащих агрессивные газы и другие вредные вещества (кислоты, щелочи).

16. Утилизация

После окончания срока службы изделие подлежит демонтажу и утилизации. Порядок утилизации определяет организация, эксплуатирующая изделие. При утилизации рекомендуется учитывать требования действующего законодательства в области обращения с отходами данного вида.

17. Свидетельство о приемке

Генератор вакуума изготовлен и принят в соответствии с техническими условиями КД.ЭЛХТ-ВКГВ-М.01-02-02 ТУ и признан годным для эксплуатации.

18. Гарантийные обязательства

Гарантийный срок эксплуатации – 12 месяцев с даты реализации.*

Изготовитель гарантирует соответствие изделия техническим характеристикам при соблюдении потребителем правил обращения с генератором (условий транспортирования, хранения, установки, эксплуатации и технического обслуживания), изложенных в настоящем паспорте.

В случае выхода изделия из строя в течение гарантийного срока при соблюдении потребителем правил транспортировки, хранения, установки, эксплуатации и технического обслуживания, изготовитель обязуется осуществить его

бесплатный ремонт или замену. Для этого необходимо доставить генератор в Сервисный центр, расположенный по адресу: г. Краснодар, ул. им. Митрофана Седина, д. 145/1 или в любой другой пункт приема – региональный офис официального представителя. Актуальные адреса пунктов приема доступны на сайте: kipservis.ru/contacts.htm

Гарантийные обязательства прекращаются в случае наличия следов вскрытия и манипуляций с внутренними компонентами изделия, наличия химических или механических повреждений, посторонних предметов, веществ или влаги внутри корпуса.

* – соответствует дате отгрузочного документа (УПД) / кассового чека.

19. Подтверждение соответствия

Генератор вакуума соответствуют требованиям Технического регламента Таможенного союза ТР ТС 010/2011 «О безопасности машин и оборудования», что обеспечивает его безопасность для жизни, здоровья потребителя. окружающей среды и предотвращение причинения вреда имуществу потребителя (при

соблюдении правил обращения с генератором, изложенных в настоящем паспорте).

Декларация о соответствии (ДС): EAЭC N RU Д-RU.PA06.B.01423/25 от 22.07.2025

20. Изготовитель

000 «ЭЛХАРТ»

350000, Россия, Краснодарский край, Адрес:

г. Краснодар, ул. им. Митрофана Седина, д. 145/1,

помещение 11

8 (800) 775-46-82 (многоканальный) Тел.:

Эл. почта: info@elhart.ru Сайт:

21. Официальный представитель

ООО «КИП-Сервис»

350000, Россия, Краснодарский край, Адрес:

г. Краснодар, ул. им. Митрофана Седина, д. 145/1

8 (861) 255-97-54 (многоканальный) Тел.:

Сайт: kipservis.ru

Эл. почта: order@kipservis.ru