

Delta Vector Control Drive C2000 Series User Manual

Smarter. Greener. Together.

www.deltaww.com

Thank you for choosing this Delta Motor Drive.

This Instruction Manual provides instructions for advanced use of the C2000 series. Incorrect handling might cause an unexpected fault. Before using the inverter, always read this Instruction Manual to use the equipment to its optimum.

Safety Instructions

Do not attempt to install, operate, maintain or inspect the inverter until you have read through this Instruction Manual and appended documents carefully and can use the equipment correctly. Do not use the inverter until you have a full knowledge of the equipment, safety information and instructions.

Installation, operation, maintenance and inspection must be performed by qualified personnel. Here, qualified personnel means personnel who meets all the conditions below.

- A person who took a proper engineering training.
- A person who can access operating manuals for the protective devices (e.g. light curtain) connected to the safety control system. A person who has read and familiarized himself/ herself with the manuals.

In this Instruction Manual, the safety instruction levels are classified into "DANGER" and "CAUTION".

DANGER:

Assumes that incorrect handling may cause hazardous conditions, resulting in death or severe injury.

CAUTION:

Assumes that incorrect handling may cause hazardous conditions, resulting in medium or slight injury, or may cause physical damage only.

Note that even the CAUTION level may lead to a serious consequence according to conditions. Please follow strictly the instructions of both levels because they are important to personnel safety.

General Safety Information and Precautions

In this manual special warnings that are important for the proper and safe use of the products are clearly identified as follows:

DANGER:

- AC input power must be disconnected before any wiring to the is made.
- Even if the power has been turned off, a charge may still remain in the DC-link capacitors with hazardous voltages before the POWER LED is OFF. Please do not touch the internal circuit and components.
- There are highly sensitive MOS components on the printed circuit boards. These components are especially sensitive to static electricity. Please do not touch these components or the circuit boards before taking anti-static measures. Never reassemble internal components or wiring.
- Ground the using the ground terminal. The grounding method must comply with the laws of the country where the is to be installed.
- DO NOT install the in a place subjected to high temperature, direct sunlight and inflammables.

CAUTION:

- Never connect the output terminals U/T1, V/T2 and W/T3 directly to the AC mains circuit power supply.
- Only qualified persons are allowed to install, wire and maintain the s.
- Even if the 3-phase AC motor is stop, a charge may still remain in the main circuit terminals of the with hazardous voltages.
- If the is stored in no charge condition for more than 3 months, the ambient temperature should not be higher than 30 °C. Storage longer than one year is not recommended, it could result in the degradation of the electrolytic capacitors.
- Pay attention to the following when transporting and installing this package (including wooden crate, wood stave and carton box):
 - If you need to sterilize, deform the wooden crate or carton box, please do not use steamed smoking sterilization or you will damage the VFD.
 - Please use other ways to sterilize or deform.
 - You may use high temperature to sterilize or deform. Leave the packaging materials in an environment of over 56 °C for 30 minutes.
 - It is strictly forbidden to use steamed smoking sterilization. The warranty does not covered VFD damaged by steamed smoking sterilization.

NOTE

DELTA reserves the right to make technical changes of this manual at any time without special notification. The current version of this manual is available on the website <u>http://www.delta.com.tw/industrialautomation</u> for download.

Symbols Used in the Manual

Use of instructions

Instructions concerning important information are marked separately and are displayed as follows:

NOTE Text of instruction

Use of numbering in the figures

Numbering within the figures is displayed by white numbers within black circles and is explained in a table following it using the same number, e.g.:

0084

Use of handling instructions

Handling instructions are steps that must be carried out in their exact sequence during startup, operation, maintenance and similar operations.

They are numbered consecutively (black numbers in white circles):

- 1) Text.
- Text.
- ③ Text.

Use of footnotes in tables

Instructions in tables are explained in footnotes underneath the tables (in superscript). There is a footnote character at the appropriate position in the table (in superscript).

If there are several footnotes for one table then these are numbered consecutively underneath the table (black numbers in white circle, in superscript):

- 1 Text.
- ⁽²⁾ Text.
- ³ Text.

Contents

1	Introduction
1.1	Receiving and inspection
1.2	Nameplate information1-1
1.3	Model name1-2
1.4	Serial number
1.5	RFI jumper1-3
1.6	Dimensions
2	Unpacking
2.1	Unpacking
3	Installation
3 3.1	Installation Minimum mounting clearance and installation
3.1	Minimum mounting clearance and installation
3.1 4	Minimum mounting clearance and installation .3-1 Wiring
3.1 4 4.1	Minimum mounting clearance and installation .3-1 Wiring

6	Control Terminals		
6.1	Specific	ations of control terminal6-4	
6.2	Analog input terminals (AVI, ACI, AUI, ACM)		
6.3	Remove	e the terminal block	
7	Optiona	al Accessories	
7.1	All brake	e resistors and brake units used in AC motor drives	
7.2	Non-fus	e circuit breaker	
7.3	Fuse sp	ecification chart	
7.4	AC/DC 1 7.4.1 7.4.2 7.4.3	reactor .7-7 AC input/output reactor .7-7 DC reactor .7-8 THD .7-9	
7.5	Zero ph	ase reactors	
7.6	EMI filte	r	
7.7	Digital k 7.7.1 7.7.2 7.7.3	eypad	
7.8	Panel m	ounting (MKC-KPPK)	
7.9	Conduit	box kit	
7.10	Fan kit .		
7.11	Flange r	mounting kit	
7.12	7.12.1 7.12.2 7.12.3	6485 communication interface IFD6530	
	7.12.4 7.12.5	Driver installation. 7-61 LED display. 7-62	

8	Option	Cards	
8.1	Remova	al of the front cover	
8.2	Screw speciations for option card terminals		
8.3	EMC-D	42A	
8.4	EMC-D	611A	
8.5	EMC-R	6AA	
8.6	EMC-B	PS01	
8.7		G01L/EMC-PG02L	
0.7	8.7.1	Terminal description	
	8.7.2	Wiring diagram	
8.8	_	G010/EMC-PG020	
	8.8.1	Terminal description	
	8.8.2	Wiring diagram	
8.9	EMC-P	G01U/EMC-PG02U	
	8.9.1	Terminal description8-17	
	8.9.2	Wiring diagram	
8.10	EMC-P	G01R	
	8.10.1	Terminal description	
	8.10.2	Wiring diagram	
8.11	CMC-M	IOD01	
	8.11.1	Features	
	8.11.2	Product file	
	8.11.3	Specifications	
	8.11.4	Install CMC-MOD01 to VFD-C20008-23	
	8.11.5	Communication parameters for VFD-C2000 connected to Ethernet 8-24	
	8.11.6	Disconnecting CMC-MOD01 from VFD-C20008-24	
	8.11.7	Basic registers8-25	
	8.11.8	LED indicator & troubleshooting8-26	
8.12	CMC-P	D01	
	8.12.1	Features	
	8.12.2	Product profile	
	8.12.3	Specifications	
	8.12.4	Installation	
	8.12.5	LED indicator & troubleshooting8-29	

8.13	CMC-D	N01
	8.13.1	Functions
	8.13.2	Product profile
	8.13.3	Specifications
	8.13.4	LED indicator & troubleshooting
8.14	CMC-E	IP01
	8.14.1	Features
	8.14.2	Product profile
	8.14.3	Specifications
	8.14.4	Installation
	8.14.5	Connecting CMC-EIP01 to VFD-C20008-36
	8.14.6	Communication parameters for VFD-C2000 connected to Ethernet8-37
	8.14.7	Disconnecting CMC-EIP01 from VFD-C2000
	8.14.8	LED indicator & troubleshooting
8.15	EMC-C	OP01
	8.15.1	RJ-45 pin definition
	8.15.2	Specifications
	8.15.3	CANopen communication cable
	8.15.4	CANopen dimensions

9 Specifications

9.1	230 V series) -1
9.2	460 V series) -3
9.3	General specifications	<i>}-</i> 5
9.4	Environment for operation, storage and transportation	<i>}-</i> 6
9.5	Specification for operation temperature and protection level) -7
9.6	Derating of ambient temperature and altitude	<u>}-8</u>

10 Digital Keypad

10.1	Descriptions of digital keypad10-1		
10.2	Function of digital keypad KPC-CC0110-		
10.3	10.3.1 10.3.2	or installation instruction	
10.4	Digital I	keypad KPC-CC01 fault codes and descriptions	

11	Summary of Parameter Settings
----	-------------------------------

11.1	Drive parameters
11.2	Basic parameters
11.3	Digital input/output parameters11-9
11.4	Analog input/output parameters11-15
11.5	Multi-step speed parameters
11.6	Motor parameters
11.7	Protection parameters
11.8	Special parameters
11.9	High-function PID parameters
11.10	Communication parameters
11.11	Speed feedback control parameters
11.12	Advanced parameters

12 Description of Parameter Settings

12.1	Drive parameters
12.2	Group 1: Basic parameters
12.3	Digital input/output parameter
12.4	Analog input/output parameter
12.5	Multi-step speed parameters
12.6	Motor parameters
12.7	Protection parameters
12.8	Special parameters
12.9	High-function PID parameters
12.10	Communication parameters .12-184 12.10.1 Code description .12-185 12.10.2 Data format .12-186 12.10.3 Communication protocol .12-187 12.10.4 Address list .12-194 12.10.5 Exception response. .12-197
12.11	PID control
12.12	Advanced parameters

Contents	
----------	--

13	Warning	Codes
----	---------	-------

14 Fault Codes and Descriptions

15 CANopen Overview

15.1	CANope	en overview
	15.1.1	CANopen protocol15-2
	15.1.2	CANopen communication protocol
15.2	Wiring fo	or CANopen
15.3	CANope	en communication interface description
	15.3.1	CANopen control mode selection
	15.3.2	DS402 standard control mode15-8
	15.3.3	By using Delta standard (Old definition, only support speed mode)15-15
	15.3.4	By using Delta standard (New definition)
	15.3.5	DI/DO AI AO are controlled via CANopen
15.4	CANope	en® supporting index
	15.4.1	C2000 index
	15.4.2	C2000 control index
15.5	CANope	en® fault code
15.6	CANope	en LED function

16 PLC Function Applications

16.1	PLC sur	nmary
	16.1.1	Introduction
	16.1.2	WPLSoft ladder diagram editing tool
16.2	Notes b	efore PLC use
16.3	Turn on	
	16.3.1	Connect to PC
	16.3.2	I/O device explanation16-6
	16.3.3	Installation of WPLSoft16-6
	16.3.4	Program writing16-7
	16.3.5	Program download16-14
	16.3.6	Program monitoring16-14

16.4	Basic principles of PLC ladder diagrams	15
	16.4.1 Schematic diagram of PLC ladder diagram program scanning 16-	15
	16.4.2 Introduction to ladder diagrams	15
	16.4.3 Using switches and sensors	18
	16.4.4 Overview of PLC ladder diagram editing	19
	16.4.5 Commonly-used basic program design examples	23
16.5	Various PLC device functions16-2	28
	16.5.1 Introduction to device functions	29
	16.5.2 Introduction to special relay functions (special M)	34
	16.5.3 Introduction to special register functions (special D)	36
	16.5.4 PLC Communication addresses for MODBUS® communication 16-4	43
16.6	Introduction to the command window	44
	16.6.1 Overview of basic commands	44
	16.6.2 Detailed explanation of basic commands	46
	16.6.3 Overview of application commands	61
	16.6.4 Detailed explanation of applications commands	65
16.7	Error display and handling16-13	35
16.8	CANopen® Master control applications	36
16.9	Explanation of various PLC mode controls	
	(speed, torque, homing, and position)16-14	49
16.10	Internal communications main node control	56
16.11	Count function using MI816-16	60
	16.11.1 High-speed count function	60
	16.11.2 Frequency calculation function	61
16.12	MODBUS [®] remote IO control applications (MODRW)	62
16.13	Calendar functions	70
17	How to select the right AC motor drive	
17.1	Capacity formulas	'-2
	17.1.1 When one AC motor drive operates one motor	
	17.1.2 When one AC motor drive operates more than one motor	
17.2	General precaution	′_Δ
11.2		-

Contents

18	Suggestions and Error Corrections for Standard AC Motor Drives
18.1	Maintenance and Inspections
18.2	Greasy dirt problem
18.3	Fiber dust problem
18.4	Erosion problem
18.5	Industrial dust problem
18.6	Wiring and installation problem
18.7	Multi-function input/output terminals problem

19 EMC Standard Installation Guide

19.1	Introduc	tion
	19.1.1	What is EMC?
	19.1.2	EMC for AC motor drive19-1
19.2	How to	prevent EMI
	19.2.1	Types of EMI: Common-mode and differential-mode noise19-2
	19.2.2	How does EMI transmit? (Noise transmission path)
19.3	Solutior	to EMI: grounding
	19.3.1	Protective grounding & functional grounding
	19.3.2	Ground loops
	19.3.3	Earthing systems
19.4	Solutior	n to EMI: shielding
	19.4.1	What is shielding?19-11
	19.4.2	How to reduce EMI by shielding?
19.5	Solutior	n to EMI: filter
	19.5.1	Filter
	19.5.2	Harmonic interference

20	Safety	Torque off Function						
20.1	The driv	ve safety function failure rate	.1					
20.2	Safety torque off terminal function description2							
20.3	Wiring o 20.3.1 20.3.2 20.3.3	liagram .20- Internal STO circuit .20- Factory wiring of the terminals STO1, STO2, SCM1 and SCM2 .20- The control loop wiring diagram: .20-	.3 .3					
20.4	Parame	ter	-5					
20.5	Operation 20.5.1 20.5.2 20.5.3 20.5.4 20.5.5 20.5.6	ng sequence description .20- Normal operation status .20- STO · Pr. 06-44 = 0 · Pr. 02-35 = 0. .20- STO · Pr. 06-44 = 0 · Pr. 02-35 = 1. .20- STO · Pr. 06-44 = 1. .20- STL1 .20- STL2 .20-	-6 -6 -7 -7					
20.6	New err	or code for STO function20-	.9					

1 Introduction

1.1 Receiving and inspection

After receiving the, please check for the following:

- Please inspect the unit after unpacking to assure it was not damaged during shipment. Make sure that the part number printed on the package corresponds with the part number indicated on the nameplate.
- ② Make sure that the voltage for the wiring lie within the range as indicated on the nameplate. Please install the according to this manual.
- ③ Before applying the power, please make sure that all the devices, including power, motor, control board and digital keypad, are connected correctly.
- ④ When wiring the, please make sure that the wiring of input terminals "R/L1, S/L2, T/L3" and output terminals "U/T1, V/T2, W/T3" are correct to prevent drive damage.
- (5) When power is applied, select the language and set parameter groups via the digital keypad (KPC-CC01). When executes trial run, please begin with a low speed and then gradually increases the speed untill the desired speed is reached.

1.2 Nameplate information

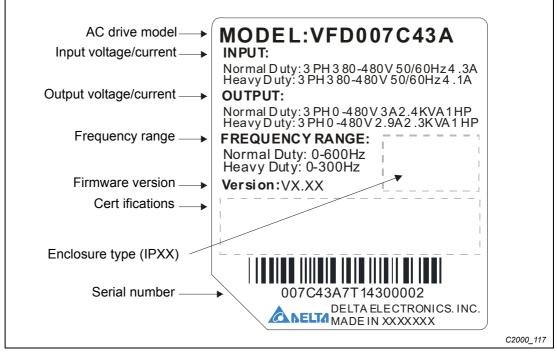


Fig. 1-1: Description of the nameplate

1.3 Model name

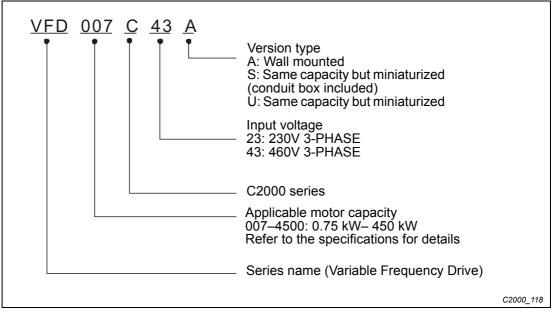


Fig. 1-2: Description of the model name

1.4 Serial number

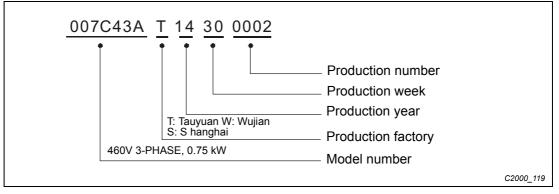


Fig. 1-3: Description of the serial number

1.5 RFI jumper

The frequency inverter can cause electromagnetic interference, which is emitted to the power line. An internal EMC filter is used to suppress the interference (Radio Frequency Interference) on the power line. Use the RFI jumper to enable/disable the EMC filter.

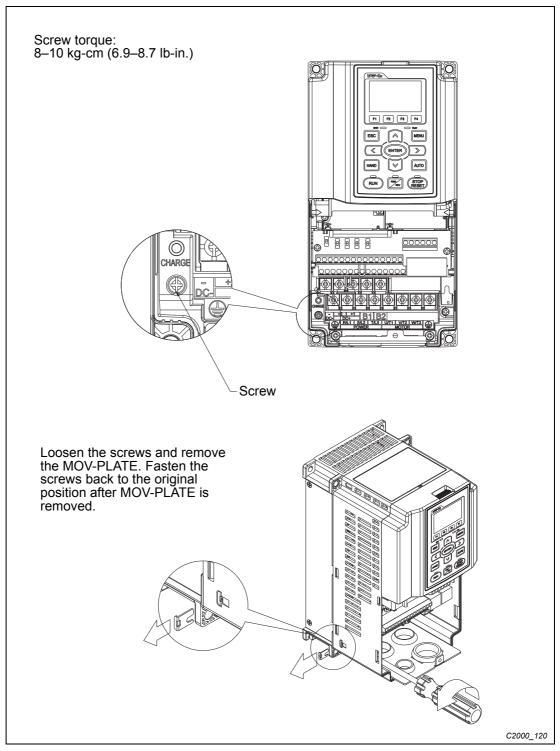


Fig. 1-4: Removal of the RFI jumper (frame size A-C)

Frame D–H

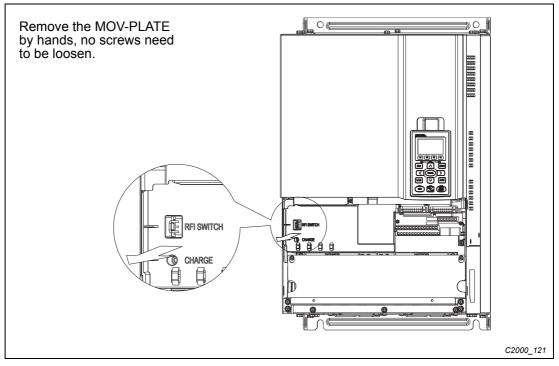


Fig. 1-5: Removal of the RFI jumper (frame size D-H)

Isolating main power from ground

When the power distribution system of the is a floating ground system (IT) or an asymmetric ground system (TN), the RFI jumper must be cut off. Cutting off the short-circuit cable cuts off the internal RFI capacitor (filter capacitor) between the system's frame and the central circuits to avoid damaging the central circuits and (according to IEC 61800-3) reduce the ground leakage current.

Important points regarding ground connection:

- To ensure the safety of personnel, proper operation, and to reduce electromagnetic radiation, the must be properly grounded during installation.
- The diameter of the cables must meet the size specified by safety regulations.
- The shielded cable must be connected to the ground of the to meet safety regulations.
- The shielded cable can only be used as the ground for equipment when the aforementioned points are met.
- When installing multiple sets of frequency inverters, do not connect the grounds in series. The correct grounding is shown in Fig. 1-6.
- **NOTE** The EU Directives must be observed for Grounding/Earthing (Low Voltage Directive).

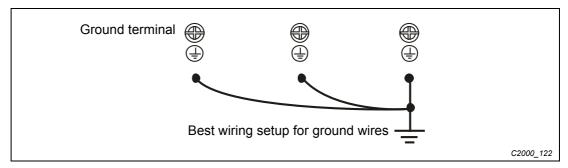


Fig. 1-6: Grounding multiple sets of frequency inverters.

Pay particular attention to the following points:

- After turning on the main power, do not cut the RFI jumper while the power is on.
- Make sure the main power is turned off before cutting the RFI jumper.
- Cutting the RFI jumper will also cut off the conductivity of the capacitor. Gap discharge may occur once the transient voltage exceeds 1000 V.

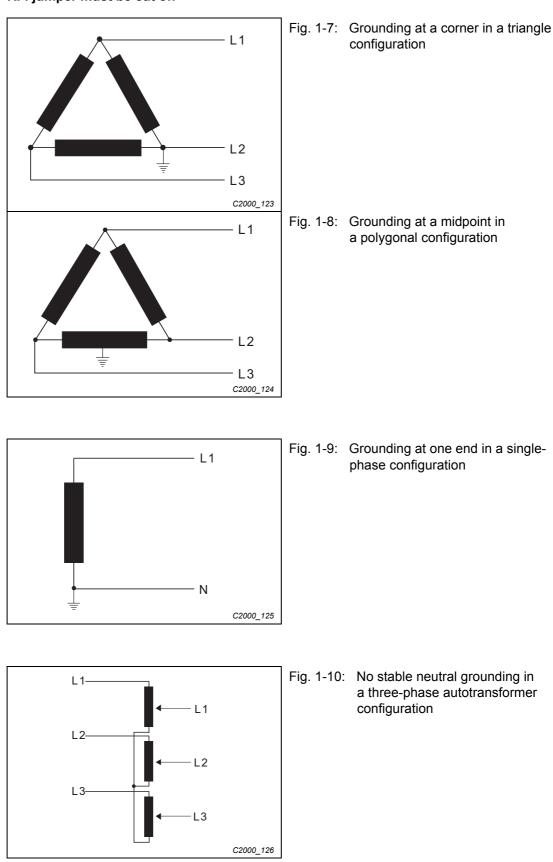
If the RFI jumper is cut, there will no longer be reliable electrical isolation. In other words, all controlled input and outputs can only be seen as low-voltage terminals with basic electrical isolation. Also, when the internal RFI capacitor is cut off, the will no longer be electromagnetic compatible.

- The RFI jumper may not be cut off if the main power is a grounded power system.
- The RFI jumper may not be cut off while conducting high voltage tests. When conducting a high voltage test to the entire facility, the main power and the motor must be disconnected if leakage current is too high.

Floating ground system (IT systems)

A floating ground system is also called IT system, ungrounded system, or high impedance/resistance (greater than 30 Ω) grounding system.

- Disconnect the ground cable from the internal EMC filter.
- In situations where EMC is required, check whether there is excess electromagnetic radiation affecting nearby low-voltage circuits. In some situations, the adapter and cable naturally provide enough suppression. If in doubt, install an extra electrostatic shielded cable on the power supply side between the main circuit and the control terminals to increase security.
- Do not install an external RFI/EMC filter, the EMC filter will pass through a filter capacitor, thus connecting power input to ground. This is very dangerous and can easily damage the.


Asymmetric ground system (Corner grounded TN systems)

CAUTION:

Do not remove the RFI jumper while the input terminal of the carries power. In the following four situations, the RFI jumper must be cut off. This is to prevent the system from grounding through the RFI capacitor, damaging the .

In the following situations the RFI jumper must be removed. This is to prevent the system from grounding through the RFI capacitor and damaging the frequency inverter.

RFI jumper must be cut off

RFI short-circuit can be used

Internal grounding through RFI capacitor, which reduces electromagnetic radiation. In a situation with higher requirements for electromagnetic compatibility, and using a symmetrical grounding power system, an EMC filter can be installed. As a reference, the diagram in Fig. 1-11 is a symmetrical grounding power system.

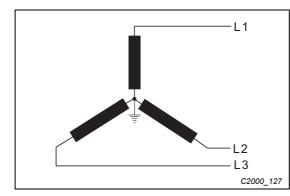


Fig. 1-11: Symmetrical grounding power system (star configuration)

1.6 Dimensions

Frame A

VFD007C23A, VFD007C43A/E, VFD015C23A, VFD015C43A/E, VFD022C23A, VFD022C43A/E, VFD037C23A, VFD037C43A/E, VFD040C43A/E, VFD055C43A/E

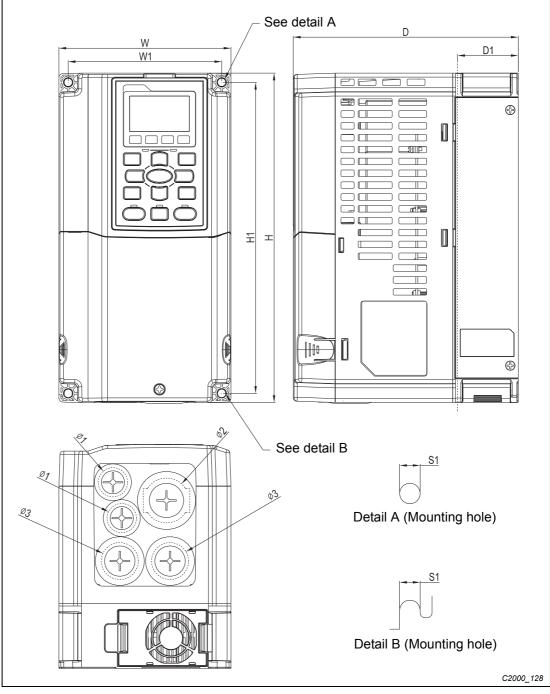
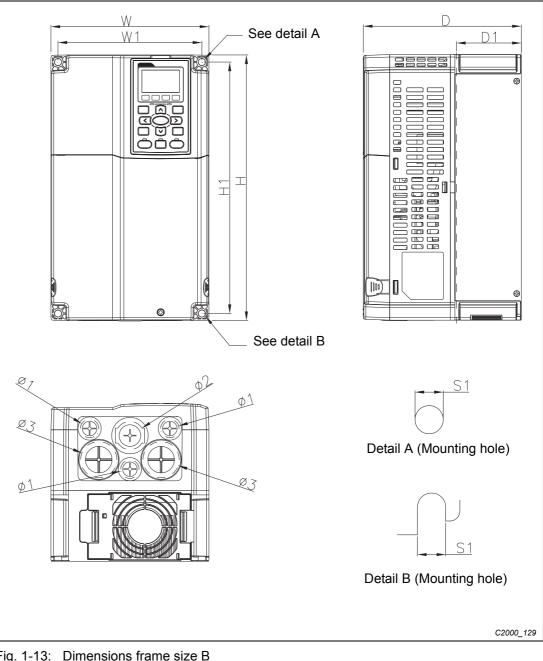


Fig. 1-12: Dimensions frame size A


Unit: mm [inch]

Fra- me	w	н	D	W1	H1	D1*	S1	Ф1	Ф2	Ф3
А	130.0 [5.12]	250.0 [9.84]	170.0 [6.69]	116.0 [4.57]	236.0 [9.29]	45.8 [1.80]	6.2 [0.24]	22.2 [0.87]	34.0 [1.34]	28.0 [1.10]
* Flange m	nounting									

Frame B

VFD055C23A, VFD075C23A, VFD075C43A/E, VFD110C23A, VFD110C43A/E, VFD150C43A/E

Fia. 1-13:	Dimensions	frame	size	В
1 19. 1 10.	Dimonolonio	namo	0120	-

Unit: r	mm [[inch]
---------	------	--------

Fra- me	w	н	D	W1	H1	D1*	S1	Ф1	Ф2	Ф3
В	190.0 [7.48]	320.0 [12.60]	190.0 [7.48]	173.0 [6.81]	303.0 [11.93]	77.9 [3.07]	8.5 [0.33]	22.2 [0.87]	34.0 [1.34]	43.8 [1.72]
* Flange mounting										

Frame C

VFD150C23A, VFD185C23A, VFD185C43A/E, VFD220C23A, VFD220C43A/E, VFD300C43A/E

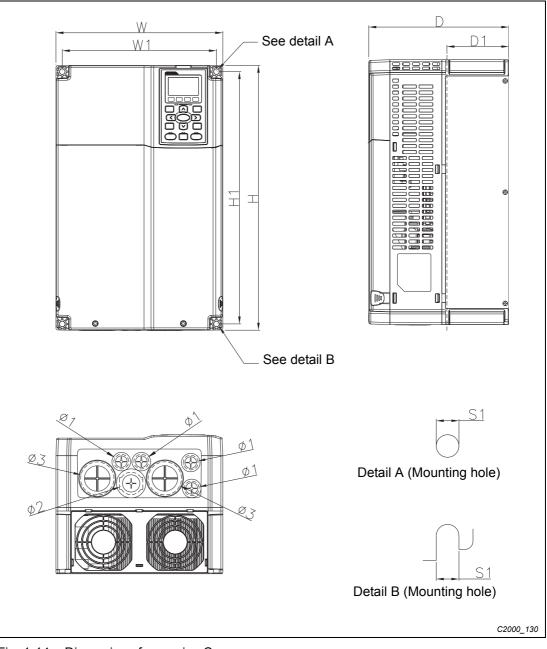


Fig. 1-14: Dimensions frame size C

Unit:	mm	[inch]
-------	----	--------

Fra- me	w	н	D	W1	H1	D1*	S1	Ф1	Ф2	Ф3
С	250.0 [9.84]	400.0 [15.75]	210.0 [8.27]	231.0 [9.09]	381.0 [15.00]	92.9 [3.66]	8.5 [0.33]	22.2 [0.87]	34.0 [1.34]	50.0 [1.97]
* Flange mounting										

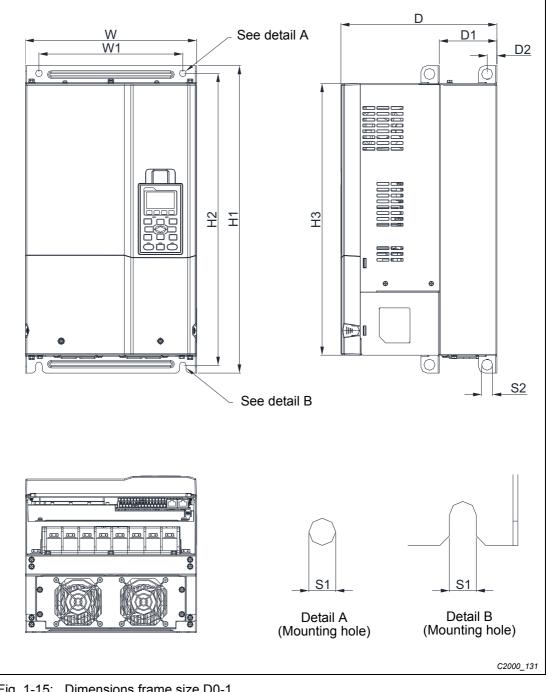
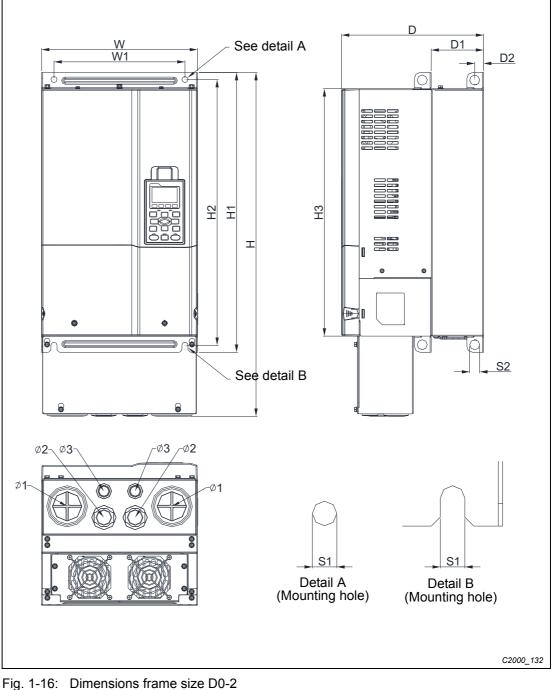
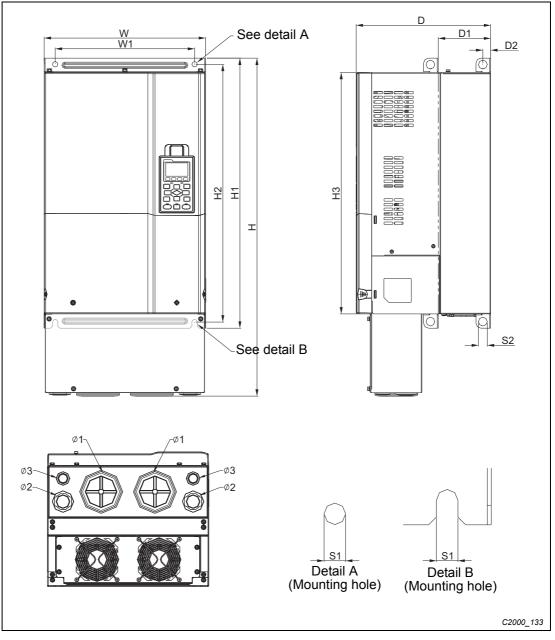



Fig. 1-15: Dimensions frame size D0-1

									Unit	mm [inch]
Fra- me	w	H1	D	W1	H2	H3	D1*	D2	S1	S2
D0-1	280.0 [11.02]	500.0 [19.69]	255.0 [10.04]	235.0 [9.25]	475.0 [18.70]	442.0 [17.40]	94.2 [3.71]	16.0 [0.63]	11.0 [0.43]	18.0 [0.71]
Flange mounting										

C2000 series


D0-2: VFD370C43U, VFD450C43U

5	-	-	 	 -	-	

													Unit: m	m [inch]
Fra- me	w	н	D	W1	H1	H2	H3	D1*	D2	S1	S2	Φ1	Ф2	Ф3
D0-2	280.0 [11.02]	614.4 [24.19]	255.0 [10.04]	235.0 [9.25]	500.0 [19.69]	475.0 [18.70]	442.0 [17.40]	94.2 [3.71]	16.0 [0.63]	11.0 [0.43]	18.0 [0.71]	62.7 [2.47]	34.0 [1.34]	22.0 [0.87]
* Flange	Flange mounting													

D1: VFD300C23A, VFD370C23A, VFD550C43A, VFD750C43A

Fig. 1-17: Dimensions frame size D1

Unit: mm [inch]

Fra- me	w	н	D	W1	H1	H2	H3	D1*	D2	S1	S2	Ф1	Ф2	Φ3
D1	330.0 [12.99]	_	275.0 [10.83]	285.0 [11.22]	550.0 [21.65]	525.0 [20.67]	492.0 [19.37]	107.2 [4.22]	16.0 [0.63]	11.0 [0.43]	18.0 [0.71]	—	-	-
* Flange mounting														

D2: VFD300C23E, VFD370C23E, VFD550C43E, VFD750C43E

Fig. 1-18: Dimensions frame size D2

Unit:	mm	[inch]

Fra- me	w	н	D	W1	H1	H2	H3	D1*	D2	S1	S2	Ф1	Ф2	Ф3
D2	330.0 [12.99]	688.3 [27.10]	275.0 [10.83]	285.0 [11.22]	550.0 [21.65]	525.0 [20.67	492.0 [19.37]	107.2 [4.22]	16.0 [0.63]	11.0 [0.43]	18.0 [0.71]	76.2 [3.00]	34.0 [1.34]	22.0 [0.87]
* Flange	* Flange mounting													

Frame E

E1: VFD450C23A, VFD550C23A, VFD750C23A, VFD900C43A, VFD1100C43A

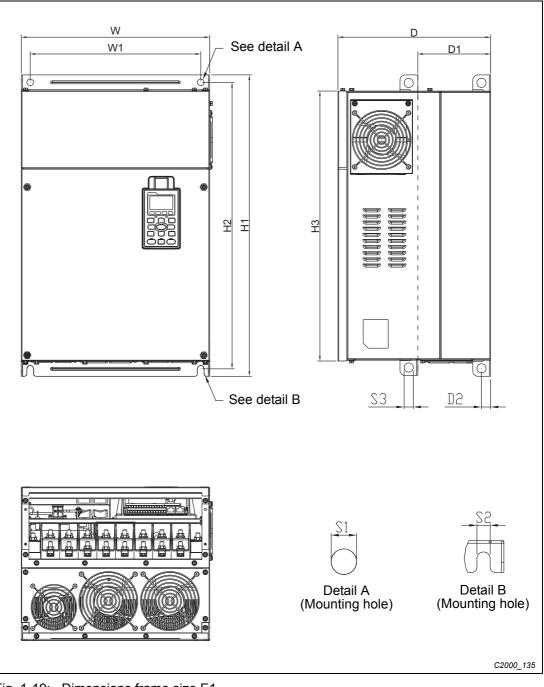


Fig. 1-19: Dimensions frame size E1

	⁼ ra- me	w	н	D	W1	H1	H2	Н3	D1*	D2	S1, S2	S3	Ф1	Ф2	Φ3
	E1	370.0 [14.57]	_	300.0 [11.81]	335.0 [13.19]	589 [23.19]	560.0 [22.05]	528.0 [20.80]	143.0 [5.63]	18.0 [0.71]	13.0 [0.51]	18.0 [0.71]	—	-	_
* F	* Flange mounting														

Frame E

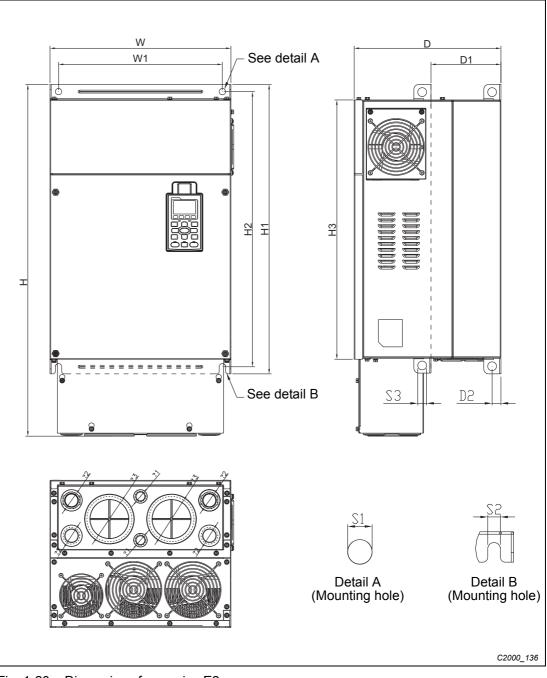
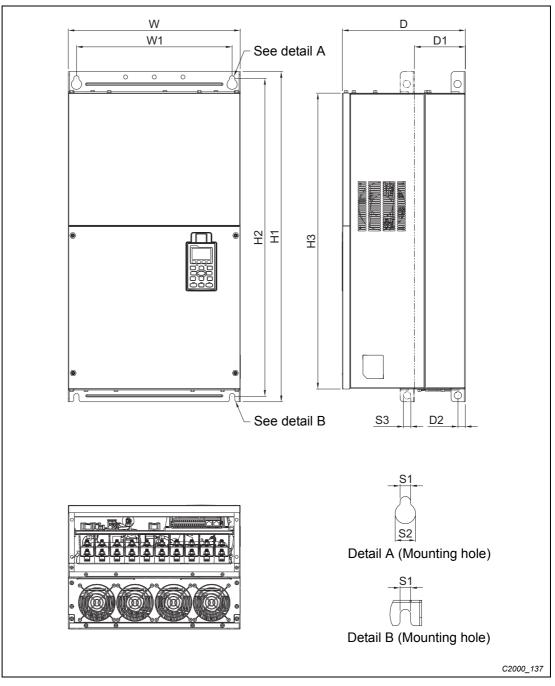
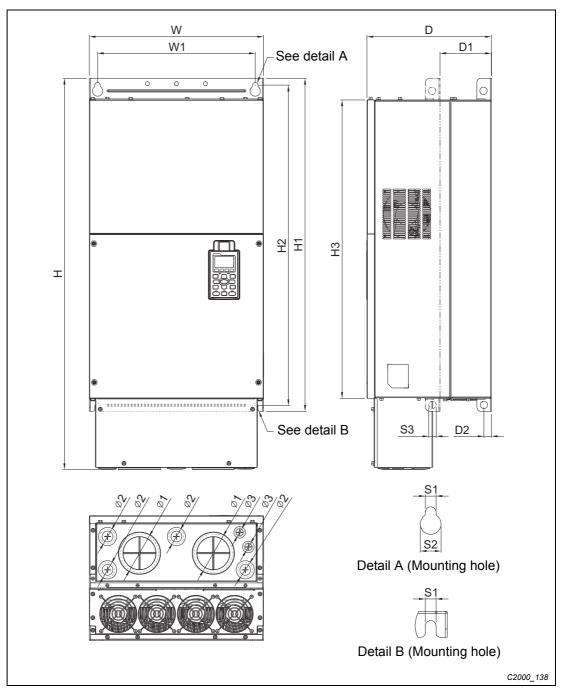



Fig. 1-20: Dimensions frame size E2

													Unit: m	m [inch]
Fra- me	w	н	D	W1	H1	H2	Н3	D1*	D2	S1, S2	S3	Ф1	Ф2	Ф3
E2	370.0 [14.57]	715.8 [28.18]	300.0 [11.81]	335.0 [13.19]	589 [23.19]	560.0 [22.05]	528.0 [20.80]	143.0 [5.63]	18.0 [0.71]	13.0 [0.51]	18.0 [0.71]	22.0 [0.87]	34.0 [1.34]	92.0 [3.62]
* Flange	Flange mounting													

Frame F



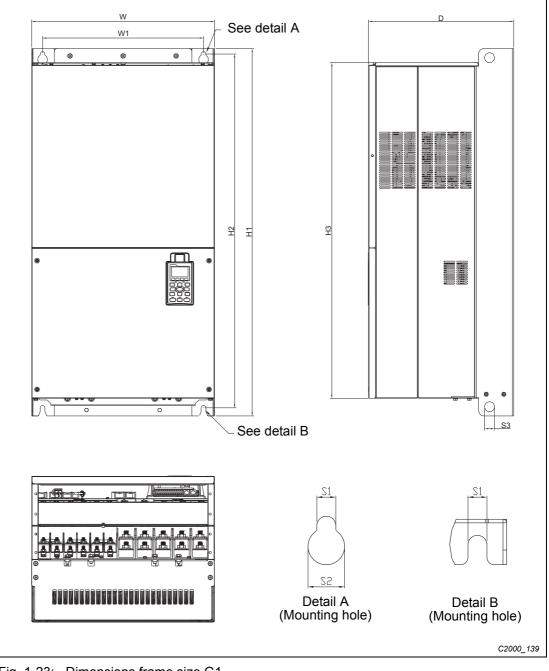
F1: VFD900C23A, VFD1320C43A, VFD1600C43A

Fig. 1-21: Dimensions frame size F1

											Unit: r	nm [inch]
Fra- me	w	н	D	W1	H1	H2	H3	D1*	D2	S1	S2	S3
F1	420.0 [16.54]	_	300.0 [11.81]	380.0 [14.96]	800.0 [31.50]	770.0 [30.32]	717.0 [28.23]	124.0 [4.88]	18.0 [0.71]	13.0 [0.51]	25.0 [0.98]	18.0 [0.71]
* Flange	mounting											

Frame F

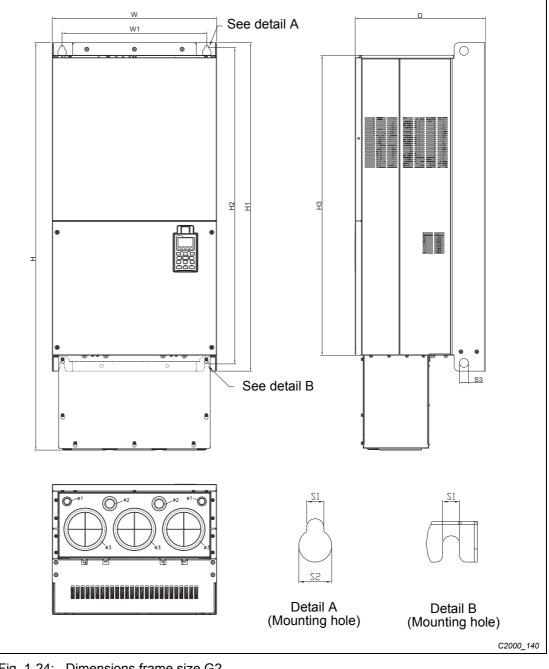
F2: VFD900C23E, VFD1320C43E, VFD1600C43E


Fig. 1-22: Dimensions frame size F2

											Unit: r	nm [inch]
Fra- me	w	н	D	W1	H1	H2	Н3	D1*	D2	S1	S2	S3
F2	420.0 [16.54]	940.0 [37.00]	300.0 [11.81]	380.0 [14.96]	800.0 [31.50]	770.0 [30.32]	717.0 [28.23]	124.0 [4.88]	18.0 [0.71]	13.0 [0.51]	25.0 [0.98]	18.0 [0.71]
Fra- me	Φ1	Ф2	Φ3									
F2	92.0 [3.62]	35.0 [1.38]	22.0 [0.87]									
* Flange	mounting	9										

Frame G

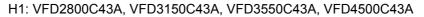
G1: VFD1850C43A, VFD2200C43A

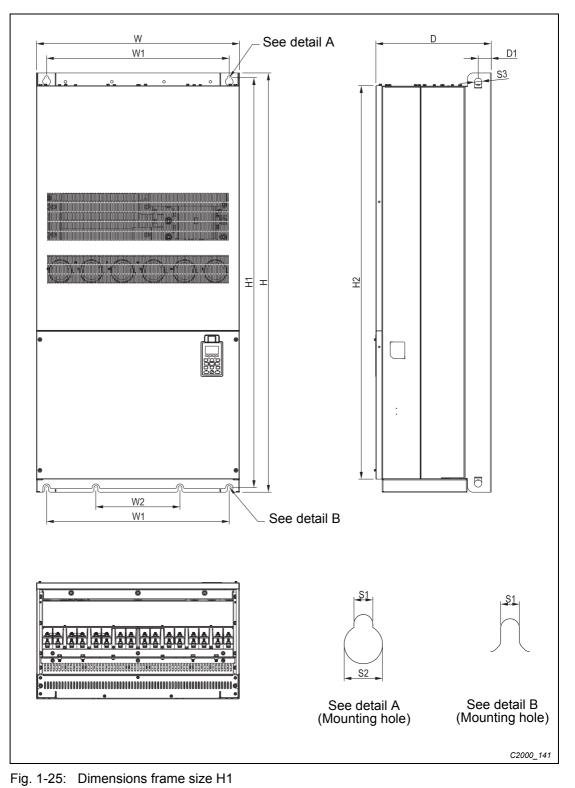


												Unit: m	ım [inch]
Fra- me	w	н	D	W1	H1	H2	Н3	S1	S2	S3	Φ1	Ф2	Ф3
G1	500.0 [19.69]	—	397.0 [15.63]	440.0 [217.32]	1000.0 [39.37]	963.0 [37.91]	913.6 [35.97]	13.0 [0.51]	26.5 [1.04]	27.0 [1.06]	_	_	_

Frame G

G2: VFD1850C43E, VFD2200C43E





												Unit: m	ım [inch]
Fra- me	w	н	D	W1	H1	H2	H3	S1	S2	S3	Φ1	Ф2	Ф3
G2	500.0 [19.69]	1240.2 [48.83]	397.0 [15.63]	440.0 [217.32]	1000.0 [39.37]	963.0 [37.91]	913.6 [35.97]	13.0 [0.51]	26.5 [1.04]	27.0 [1.06]	22.0 [0.87]	34.0 [1.34]	117.5 [4.63]

Frame H

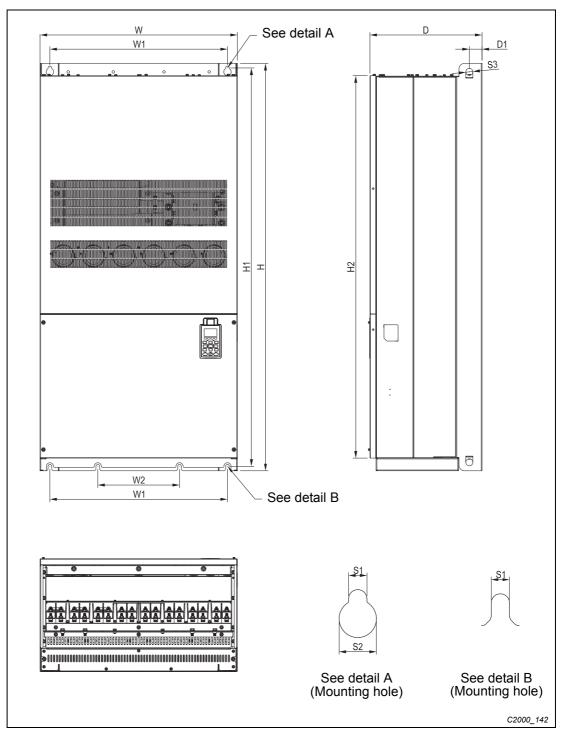
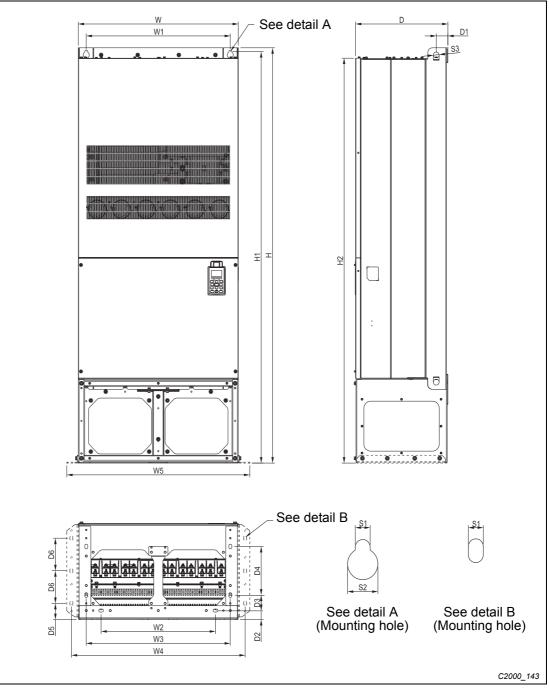
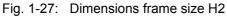


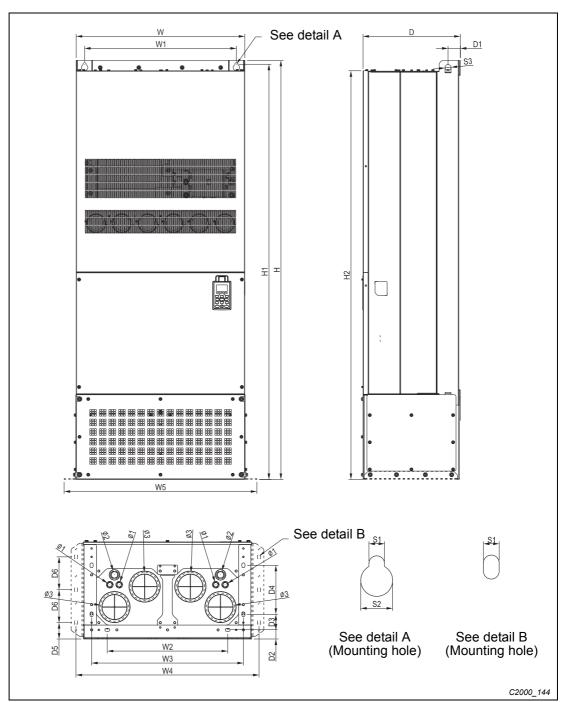
Fig. 1-26: Dimensions frame size H1


Unit: mm [inch]


Fra- me	w	н	D	W1	W2	W3	W4	W5	W6	H1	H2	H3	H4
H1	700.0 [27.56]	1435.0 [56.5]	398.0 [15.67]	630.0 [24.8]	290.0 [11.42]	—	—	—	—	1403.0 [55.24]	1346.6 [53.02]	-	—
Fra- me	H5	D1	D2	D3	D4	D5	D6	S1	S2	S3	Ф1	Ф2	Ф3
H1	_	45.0 [1.77]	_	_	_	_	_	13.0 [0.51]	26.5 [1.04]	25.0 [0.98]	_	_	_

Frame H

H2: VFD2800C43E-1, VFD3150C43E-1, VFD3550C43E-1



												Unit: m	im [inch]
Fra- me	w	н	D	W1	W2	W3	W4	W5	W6	H1	H2	H3	H4
H2	700.0 [27.56]	1745.0 [68.70]	404.0 [15.91]	630.0 [24.8]	500.0 [19.69]	630.0 [24.8]	760.0 [29.92]	800.0 [31.5]	—	1729.0 [68.07]	1701.6 [66.99]	-	-
Fra- me	H5	D1	D2	D3	D4	D5	D6	S1	S2	S3	Ф1	Ф2	Ф3
H2	_	51.0 [2.01]	38.0 [1.50]	65.0 [2.56]	204.0 [8.03]	68.0 [2.68]	137.0 [5.39]	13.0 [0.51]	26.5 [1.04]	25.0 [0.98]	_	_	_

Unit: mm [inch]

Frame H

H3: VFD2800C43E, VFD3150C43E, VFD3550C43E

Fig. 1-28: Dimensions frame size H3

Unit: mm [inch]

													-
Fra- me	w	н	D	W1	W2	W3	W4	W5	W6	H1	H2	Н3	H4
H3	700.0 [27.56]	1745.0 [68.70]	404.0 [15.91]	630.0 [24.8]	500.0 [19.69]	630.0 [24.8]	760.0 [29.92]	800.0 [31.5]	_	1729.0 [68.07]	1701.6 [66.99]	_	_
Fra- me	H5	D1	D2	D3	D4	D5	D6	S1	S2	S3	Φ1	Ф2	Ф3
H3	_	51.0 [2.01]	38.0 [1.50]	65.0 [2.56]	204.0 [8.03]	68.0 [2.68]	137.0 [5.39]	13.0 [0.51]	26.5 [1.04]	25.0 [0.98]	22.0 [0.87]	34.0 [1.34]	117.5 [4.63]

Digital keypad

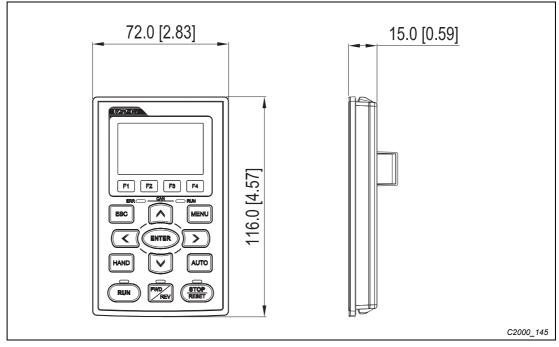
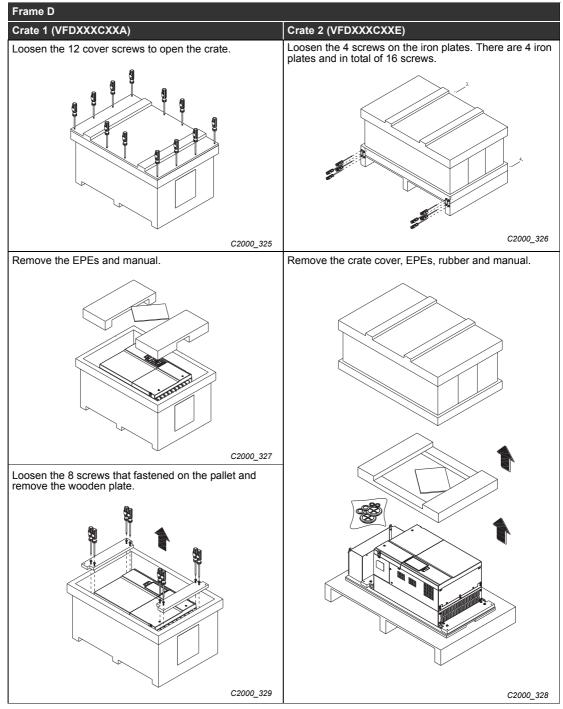
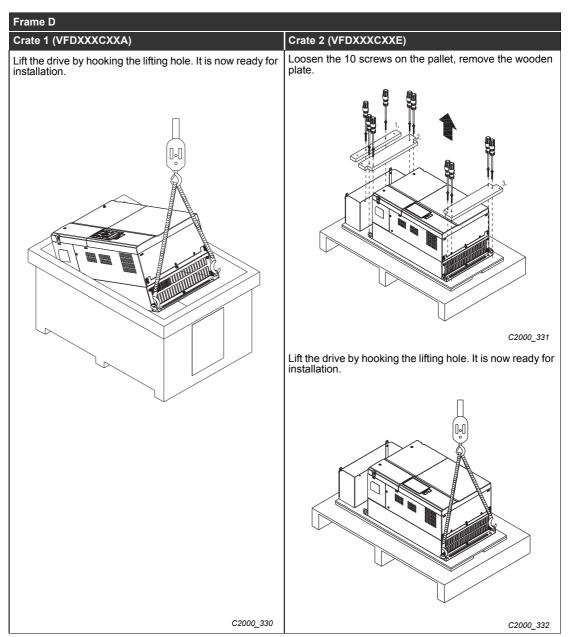


Fig. 1-29: Digital keypad KPC-CC01



2 Unpacking

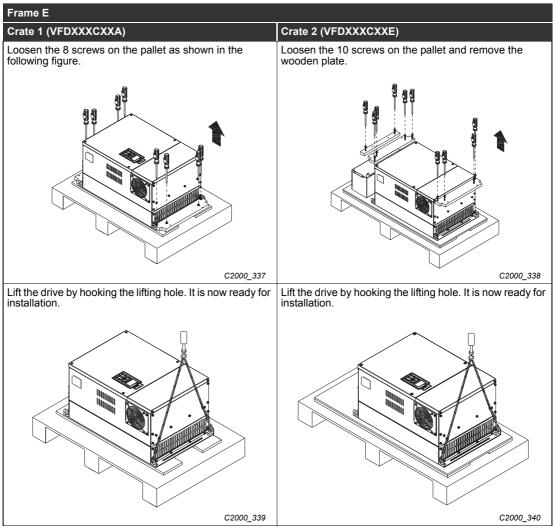

The should be kept in the shipping carton or crate before installation. In order to retain the warranty coverage, the should be stored properly when it is not to be used for an extended period of time.

2.1 Unpacking

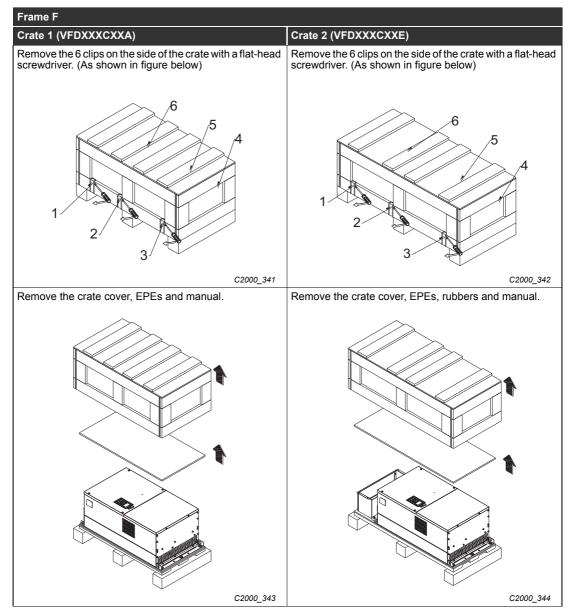
The is packed in the crate. Follows the following step for unpack.



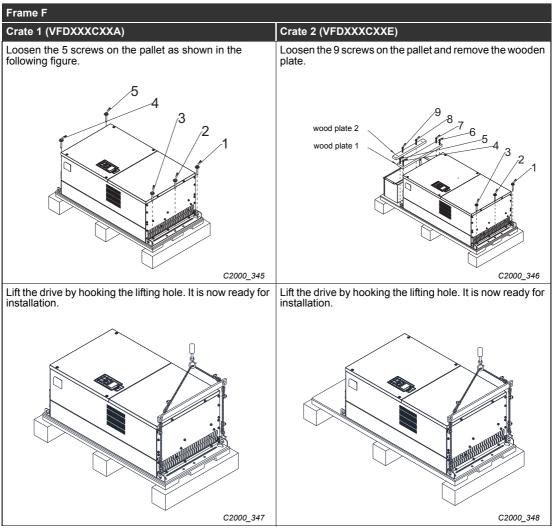
Tab. 2-1: Unpacking inverters of frame size D



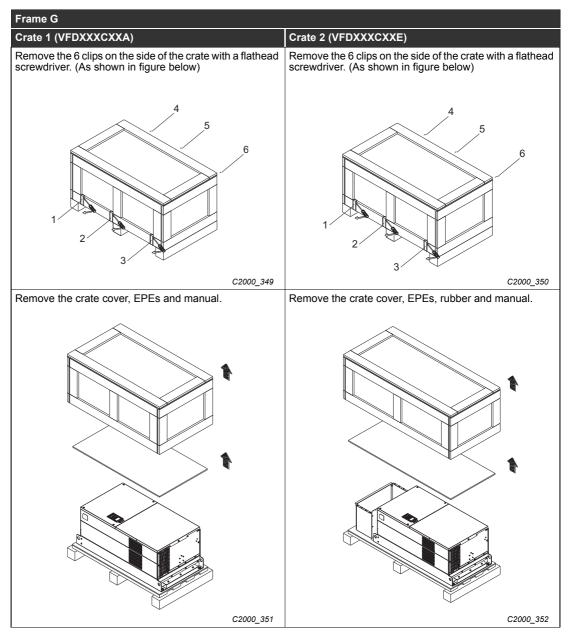
Tab. 2-2: Unpacking inverters of frame size D



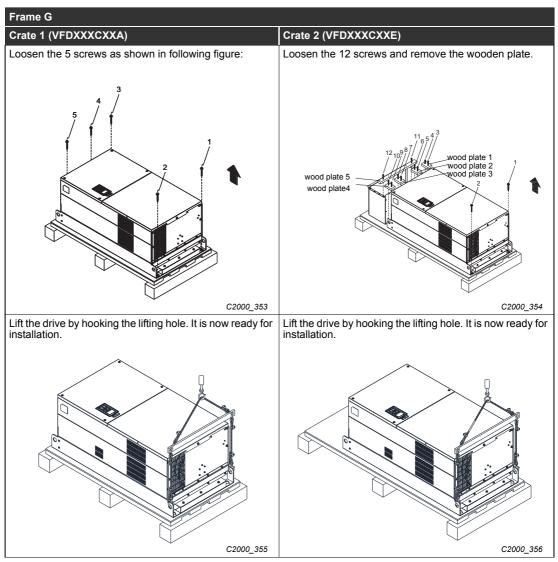
Tab. 2-3: Unpacking inverters of frame size E



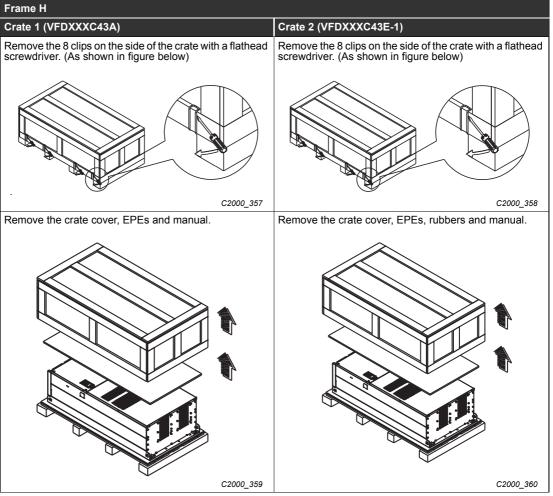
Tab. 2-4: Unpacking inverters of frame size E



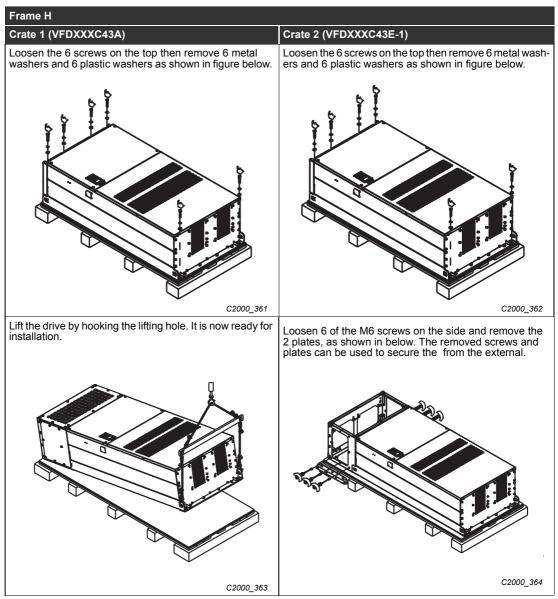
Tab. 2-5: Unpacking inverters of frame size F



Tab. 2-6: Unpacking inverters of frame size F

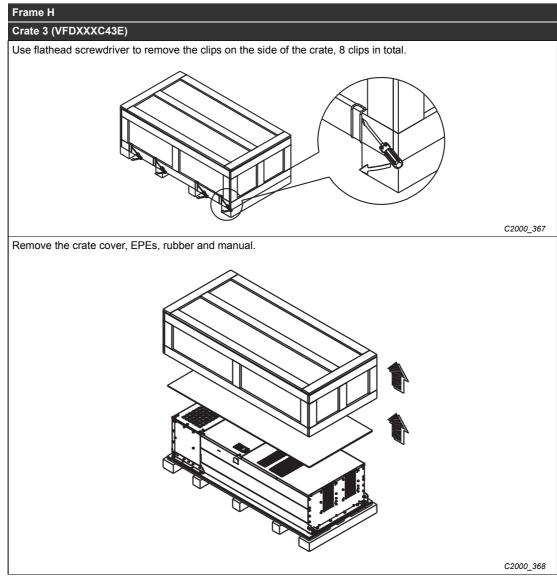


Tab. 2-7: Unpacking inverters of frame size G

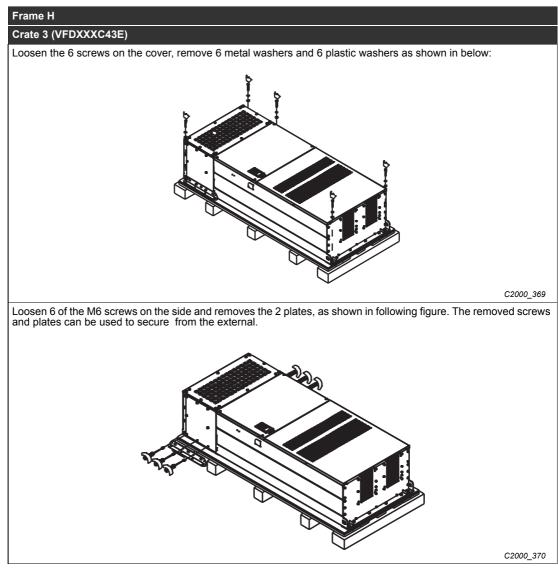


Tab. 2-8: Unpacking inverters of frame size G

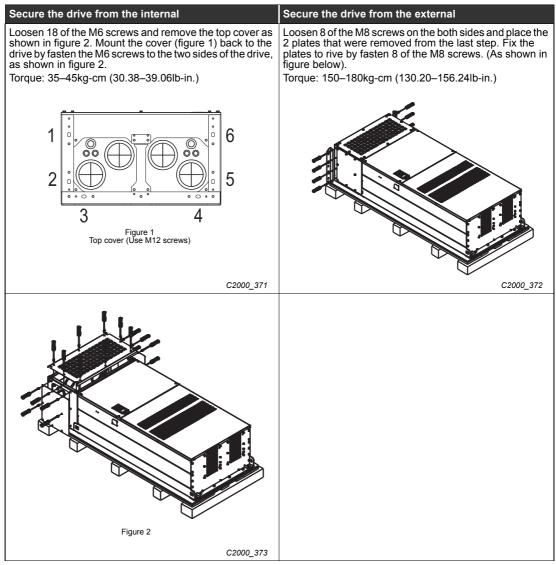
Tab. 2-9: Unpacking inverters of frame size H



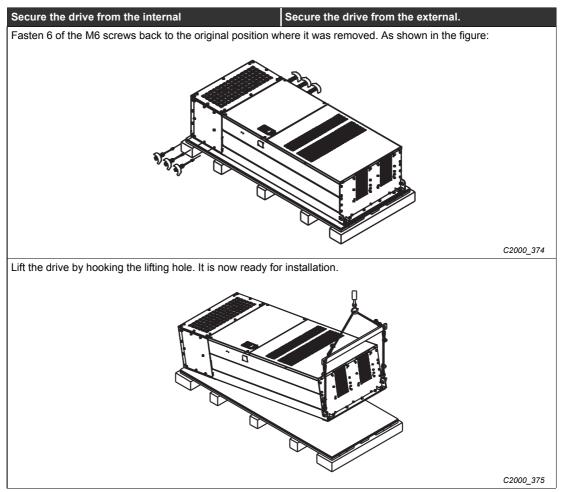
Tab. 2-10: Unpacking inverters of frame size H


Frame H	
Crate 1 (VFDXXXC43A)	Crate 2 (VFDXXXC43E-1)
	Secure the drive from the external. (Skip to the next step if this situation does not apply to you.) Loosen 8 of M8 screws on the both sides and place the 2 plates that were removed from the last step. Fix the plates to by fasten 8 of the M8 screws. (As shown in below) Torque: 150–180kg-cm (130.20–156.24lb-in.)
	C2000_365 Lift the drive by hooking the lifting hole. It is now ready for
	installation.
	C2000_366

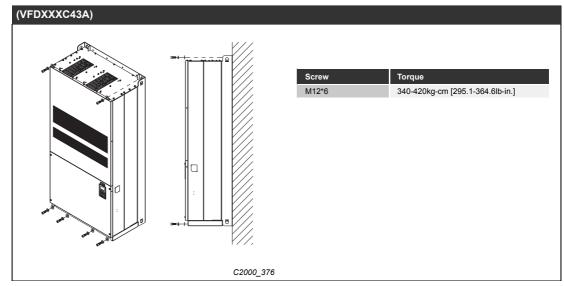
Tab. 2-11: Unpacking inverters of frame size H



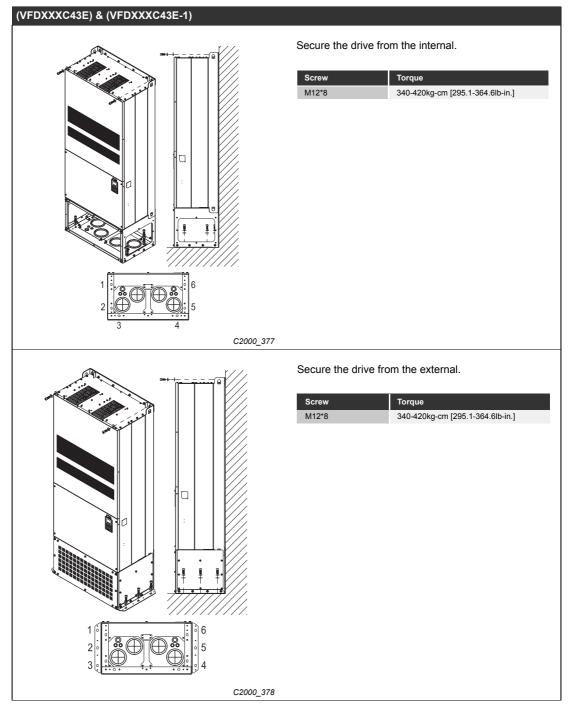
Tab. 2-12: Unpacking inverters of frame size H



Tab. 2-13: Unpacking inverters of frame size H



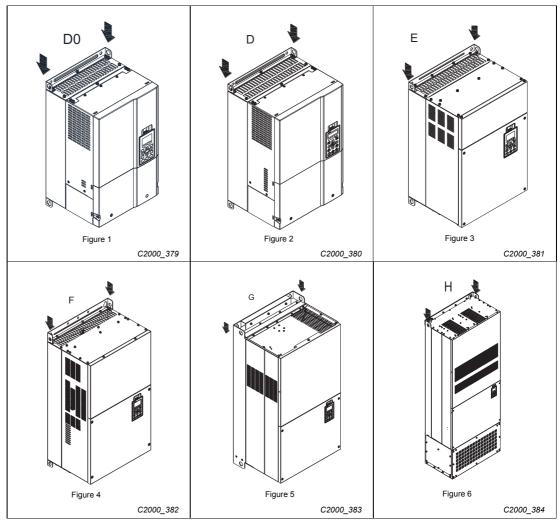
Tab. 2-14: Attachment of the inverter



Tab. 2-15: Attachment of the inverter

Frame H Secure the drive

Tab. 2-16: Attachment of the inverter



Tab. 2-17: Attachment of the inverter

2.1.1 The lifting hook

The arrows indicate the location of the lifting holes of frame D to H, as shown in figure below 2-18:

Tab. 2-18: Lifting the inverter

DANGER:

Ensure, that the equipment for lifting the frequency inverter is suitable and the lifting hook properly goes through the lifting hole. The following diagrams (fig. 2-1 and fig. 2-2) show the right handling. Otherwise, there is the risk of injury or damaging the device.

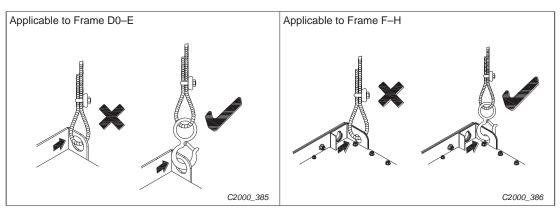
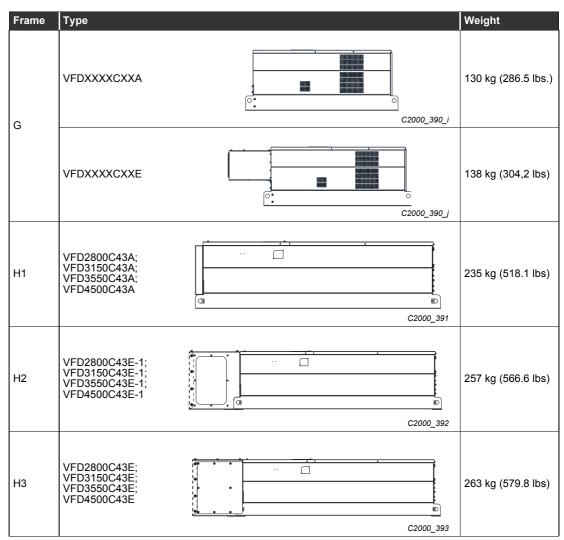


Fig. 2-1: Proper use of the lifting hook

Ensure the angle between the lifting holes and the lifting device is within the specification, as shown in the following figure 2-2.

Fig. 2-2: Correct lifting method

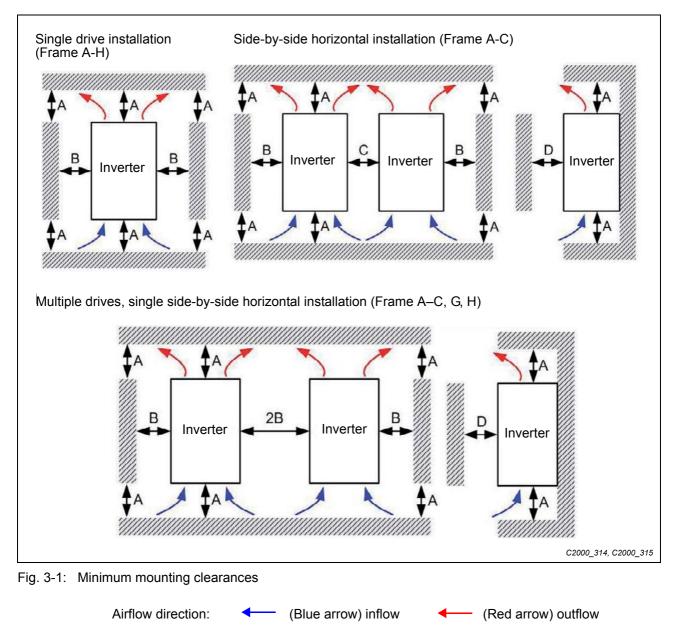


DANGER:

The following tables (Tab. 2-19) show inverters with high weight. Transport the product using the correct method that corresponds to the weight. Failure to observe this could lead to injuries or damages of the product.

Frame	Туре		Weight
D0	VFDXXXXCXXA	C2000_390_a	27 kg (59.5 lbs.)
	VFDXXXXCXXE	C2000_390_b	29 kg (63.9 lbs.)
D	VFDXXXXCXXA	C2000_390_c	37.6 kg (82.9 lbs.)
	VFDXXXXCXXE	C2000_390_d	40 kg (88.2 lbs.)
E	VFDXXXXCXXA	С2000_390_е	63.6 kg (140.2 lbs.)
	VFDXXXXCXXE	C2000_390_f	66 kg (145.5 lbs.)
F	VFDXXXXCXXA	C2000_390_g	85 kg (187.2 lbs.)
	VFDXXXXCXXE	C2000_390_h	88 kg (193.8 lbs.)

Tab. 2-19: Weight of inverters (2)


3 Installation

3.1 Minimum mounting clearance and installation

NOTES

- Prevent fiber particles, scraps of paper, shredded wood saw dust, metal particles, etc. from adhereing to the heat sink.
- Install the in a metal cabinet. When installing one drive below another one, use a metal separation between the s to prevent mutual heating and to prevent the risk of fire accident.
- Install the in Pollution Degree 2 environments only: normally only nonconductive pollution occurs and temporary conductivity caused by condensation is expected.

The appearances shown in the following figures are for reference only.

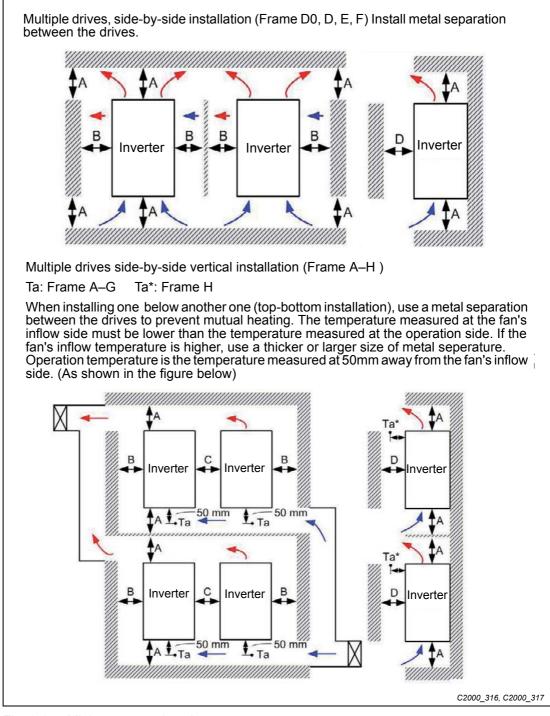
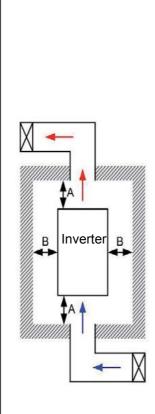


Fig. 3-2: Minimum mounting clearances

Frame	A (mm)	B (mm)	C (mm)	D (mm)
A–C	60	30	10	0
D0–F	100	50	-	0
G	200	100	-	0
Н	350	0	0	200 (100, Ta=Ta*=40°C)

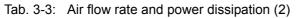

Tab. 3-1: Minimum mounting clearances

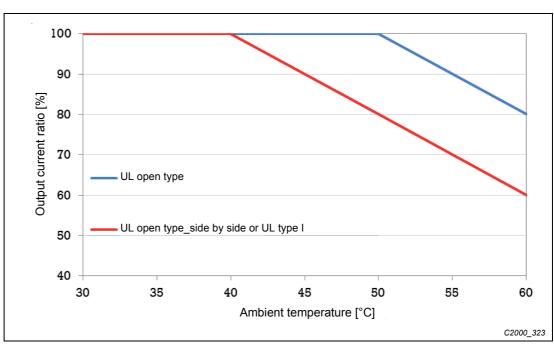
Frame	Inverter
А	VFD007C23A; VFD007C43A/E; VFD015C23A; VFD015C43A/E; VFD022C23A; VFD022C43A/E; VFD037C23A; VFD037C43A/E; VFD040C43A/E; VFD055C43A/E;
В	VFD055C23A; VFD75C23A; VFD075C43A/E; VFD110C23A; VFD110C43A/E; VFD150C43A/E;
С	VFD150C23A; VFD185C23A; VFD185C43A/E; VFD220C23A; VFD220C43A/E; VFD300C43A/E;
D	VFD370C43S; VFD450C43S; VFD370C43U; VFD450C43U;
D0	VFD300C23A/E; VFD370C23A/E; VFD550C43A/E; VFD750C43A/E;
E	VFD450C23A/E; VFD550C23A/E; VFD750C23A/E; VFD900C43A/E; VFD1100C43A/E;
F	VFD900C23A/E; VFD1320C43A/E; VFD1600C43A/E;
G	VFD1850C43A; VFD2200C43A; VFD1850C43E; VFD2200C43E;
н	VFD2800C43A; VFD3150C43A; VFD3550C43A; VFD4500C43A; VFD2800C43E-1; VFD3150C43E-1; VFD3550C43E-1; VFD4500C43E-1; VFD2800C43E; VFD3150C43E; VFD3550C43E; VFD4500C43E

Tab. 3-2: Relation between frame and inverter type

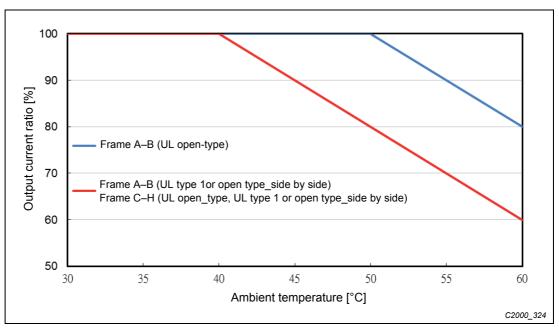
NOTES

- The minimum mounting clearances stated in the table 3-1 above applies to s frame A to D. A drive fails to follow the minimum mounting clearances may cause the fan to malfunction and heat dissipation problem.
- The mounting clearances stated in the figure is for installing the drive in an open area. To install the drive in a confined space (such as cabinet or electric box), please follow the following three rules:
 - Keep the minimum mounting clearances.
 - Install a ventilation equipment or an air conditioner to keep surrounding temperature lower than operation temperature.
 - Refer to parameter setting and set up Pr. 00-16, Pr. 00-17, and Pr. 06-55.
- The following table shows the heat dissipation and the required air volume when installing a single drive in a confined space. When installing multiple drives, the required air volume shall be multiplied by the number the drives.
- Refer to the chart 3-3 (Air flow rate for cooling and power dissipation) for ventilation equipment and air conditioner design and selection.
- Different control mode will affect the derating. See Pr. 06-55 for more information.
- Ambient temperature derating curve shows the derating status in different temperature in relation to different protection level.
- If UL Type 1 models need side by side installation, please remove top cover of Frame A–C, and please do not install conduit box of Frame D and above.


- The required airflow shown in chart is for installing single drive in a confined space.
- When installing the multiple drives, the required air volume should be the required air volume for single drive X the number of the drives.
- The heat dissipation shown in the chart is for installing single drive in a confined space.
- When installing the multiple drives, volume of heat dissipation should be the heat dissipated for single drive X the number of the drives.
- Heat dissipation for each model is calculated by rated voltage, current and default carrier.


	А	ir flow rate	for cool	ling			Powe	r dissipati	on of
	Flo	ow rate (cfr	n)	Flo	w rate (m ³ /	/hr)	Pow	er dissipa	tion
Model No.	External	Internal	Total	External	Internal	Total	Loss external (Heat sink)	Internal	Total
VFD007C23A	—	—	—	—	—	—	33	27	61
VFD015C23A	14	—	14	24	—	24	56	31	88
VFD022C23A	14	—	14	24	—	24	79	36	115
VFD037C23A	10	—	10	17	—	17	113	46	159
VFD055C23A	40	14	54	68	24	92	197	67	264
VFD075C23A	66	14	80	112	24	136	249	86	335
VFD110C23A	58	14	73	99	24	124	409	121	529
VFD150C23A	166	12	178	282	20	302	455	161	616
VFD185C23A	166	12	178	282	20	302	549	184	733
VFD220C23A	166	12	178	282	20	302	649	216	865
VFD300C23A/E	179	30	209	304	51	355	913	186	1099
VFD370C23A/E	179	30	209	304	51	355	1091	220	1311
VFD450C23A/E	228	73	301	387	124	511	1251	267	1518
VFD550C23A/E	228	73	301	387	124	511	1401	308	1709
VFD750C23A/E	246	73	319	418	124	542	1770	369	2139
VFD900C23A/E	224	112	336	381	190	571	2304	484	2788
VFD007C43A/E	_	_	_	_	_	_	33	25	59
VFD015C43A/E	—	—	_	—	—	—	45	29	74
VFD022C43A/E	14	—	14	24	—	24	71	33	104
VFD037C43A/E	10	—	10	17	—	17	103	38	141
VFD040C43A/E	10	—	10	17	—	17	116	42	158
VFD055C43A/E	10	—	10	17	—	17	134	46	180
VFD075C43A/E	40	14	54	68	24	92	216	76	292
VFD110C43A/E	66	14	80	112	24	136	287	93	380
VFD150C43A/E	58	14	73	99	24	124	396	122	518
VFD185C43A/E	99	21	120	168	36	204	369	138	507
VFD220C43A/E	99	21	120	168	36	204	476	158	635
VFD300C43A/E	126	21	147	214	36	250	655	211	866
VFD370C43A/E	179	30	209	304	51	355	809	184	993
VFD450C43A/E	179	30	209	304	51	355	929	218	1147
VFD550C43A/E	179	30	209	304	51	355	1156	257	1413
VFD750C43A/E	186	30	216	316	51	367	1408	334	1742
VFD900C43A/E	257	73	330	437	124	561	1693	399	2092
VFD1100C43A/E	223	73	296	379	124	503	2107	491	2599

Tab. 3-3: Air flow rate and power dissipation (1)


	Air flow rate for cooling								on of
	Flo	ow rate (cfr	n)	Flo	w rate (m ³ /	'hr)	Power dissipation		
Model No.	External	Internal	Total	External	Internal	Total	Loss external (Heat sink)	Internal	Total
VFD1320C43A/E	224	112	336	381	190	571	2502	579	3081
VFD1600C43A/E	289	112	401	491	190	681	3096	687	3783
VFD1850C43A/E			454			771			4589
VFD2200C43A/E			454			771			5772
VFD2800C43A/E			769			1307			6381
VFD3150C43A/E			769			1307			7156
VFD3550C43A/E			769			1307			8007
VFD4500C43A/E			769			1307			11894

Normal control ambient temperature derating curve

Fig. 3-3: Derating for high ambient temperature at normal control

Advanced control ambient temperature derating curve

Fig. 3-4: Derating for high ambient temperature at advanced control

4 Wiring

After removing the front cover, examine if the power and control terminals are clearly noted. Please read following precautions before wiring.

- Make sure that power is only applied to the R/L1, S/L2, T/L3 terminals. Failure to comply may result in damage to the equipment. The voltage and current should lie within the range as indicated on the nameplate (Chapter 1-1).
- All the units must be grounded directly to a common ground terminal to prevent lightning strike or electric shock.
- Please make sure to fasten the screw of the main circuit terminals to prevent sparks which is made by the loose screws due to vibration.

DANGER:

- It is crucial to turn off the power before any wiring installation are made. A charge may still remain in the DC bus capacitors with hazardous voltages even if the power has been turned off therefore it is suggested for users to measure the remaining voltage before wiring. For your personnel safety, please do not perform any wiring before the voltage drops to a safe level < 25 V DC. Wiring installation with remaining voltage condition may cause sparks and short circuit.</p>
- Only qualified personnel familiar with s is allowed to perform installation, wiring and commissioning. Make sure the power is turned off before wiring to prevent electric shock.

Caution:

- When wiring, please choose the wires with specification that complys with local regulation for your personnel safety.
- Check following items after finishing the wiring:
 - Are all connections correct?
 - Any loosen wires?
 - Any short-circuits between the terminals or to ground?

4.1 Wiring

4.1.1 Wiring diagram for frame A–C

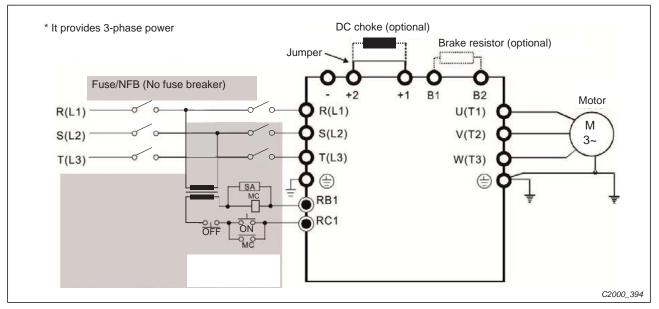


Fig. 4-1: Inverter wiring diagram for frame size A-C

NOTE It is the recommended to install a protective circuit at RB-RC to protect it from system damage. When fault occurs, the contact will switch ON to shut the power and protect the power system. Rb1 and RC1 is the multifunction output terminals.

4.1.2 Wiring diagram for frame D and frames above

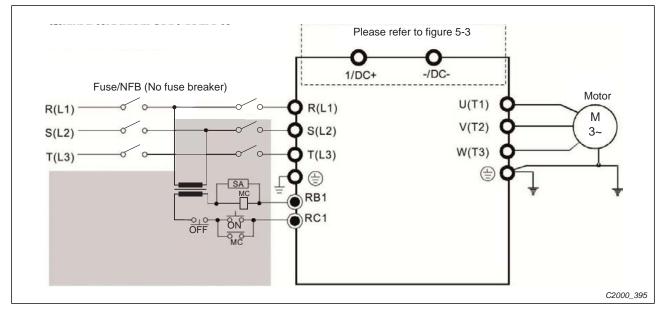


Fig. 4-2: Inverter wiring diagram for frame size D and above

NOTE

It is the recommended to install a protective circuit at RB-RC to protect it from system damage. When fault occurs, the contact will switch ON to shut the power and protect the power system. Rb1 and RC1 is the multifunction output terminals.

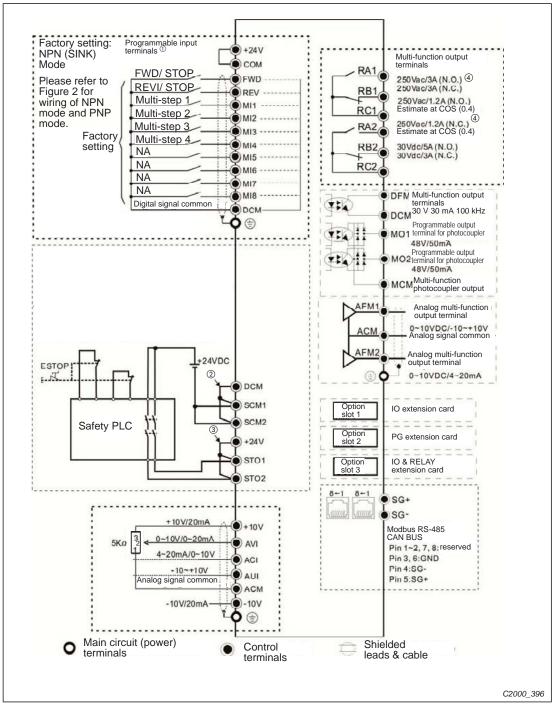


Fig. 4-3: Wiring of the input/output terminals

- ① See NOTES
- ⁽²⁾ It is a short circuiting jumper installed between DCM, SCM1 and SCM2 when C2000 leaves the factory. Remove this short circuiting jumper before using the safety function while wiring.
- ³ It is a short circuiting jumper installed between +24V, STO1 and STO2 when C2000 leaves the factory. Remove this short circuiting jumper before using the safety function while wiring.
- (4) N.O. = normally open N.C. = normally closed

NOTES

- MI8 can input 100 kHz pulses.
- Do NOT apply the mains voltage directly to above terminals.

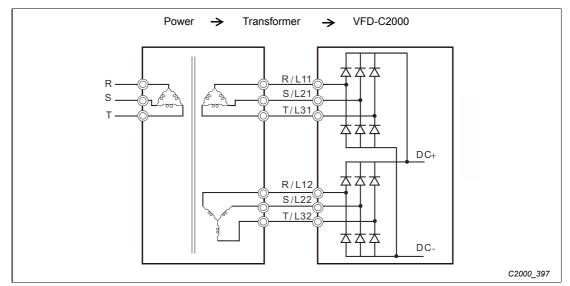


Fig. 4-4: Main circuit wiring diagram for framesize G and above

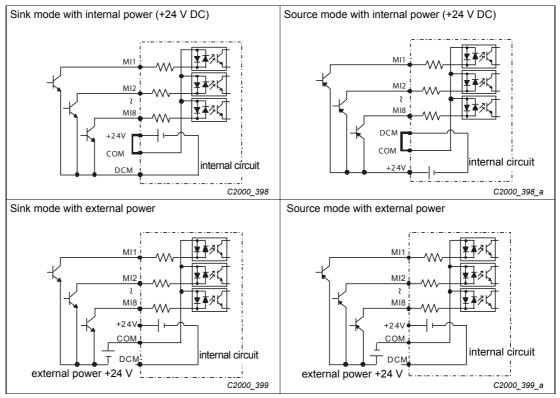
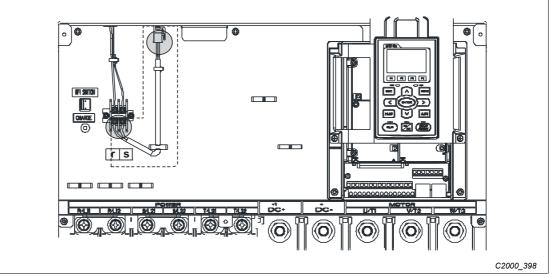
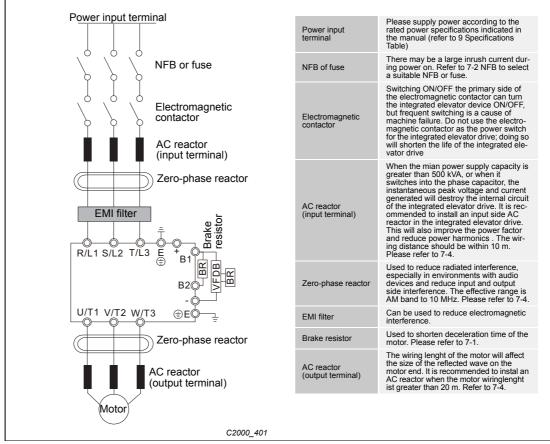



Fig. 4-5: Sink (NPN)/source (PNP) mode

DC-Link testcable for framesize E to H (inclusive common DC-Link or DC supply).

Fig. 4-6: Connection cable for DC-Link

- Applicable to Frame E–H
- Operation Instruction
 - When RST power is off, please disconnect terminal r and terminal s. (As circled in dotted line, uninstall the gray section and properly store cable r and cable s. Cable r and cable s are not available in optional accessories, do not dispose them.)


After terminal r and terminal s are cleared, user may now connect new power source to terminal r and terminal s. Please connect 220 V AC for 220 V model and 440 V AC for 440 V model.

When the drive power is on, if terminal r and terminal s are not connected to new power source (220 V AC for 220 V model and 440 V AC for 440 V model), the digital keypad will display an error message "ryF".

 At internal power supply of the control circuit (via terminals RST), it is not required to remove terminal r and terminal s.

NOTE

The voltage for the separate power supply of the control circuit must me in the same power range as the voltage for the drive. If in your case the drives are in different power range, please contact with us (Delta Industrial Automation Business Unit).

4.1.3 System wiring diagram

Fig. 4-7: System wiring diagram

5 Main Circuit Terminals

5.1 Main circuit diagram

For frame A–C

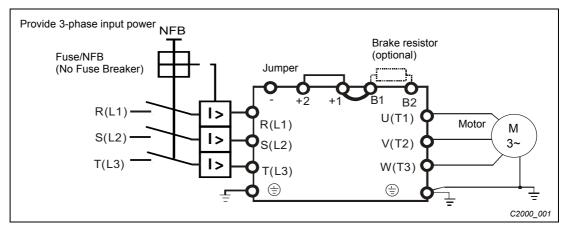


Fig. 5-1: Main circuit wiring diagram for frame A-C

For frame A–C

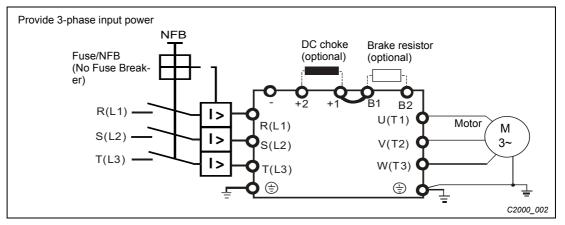


Fig. 5-2: Main circuit wiring diagram for frame A-C with DC choke

For frame D0 and above D0

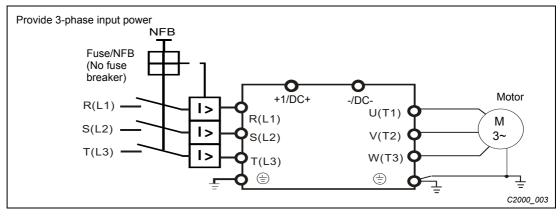


Fig. 5-3: Main circuit wiring diagram for frame D0 and above

For frame G and above

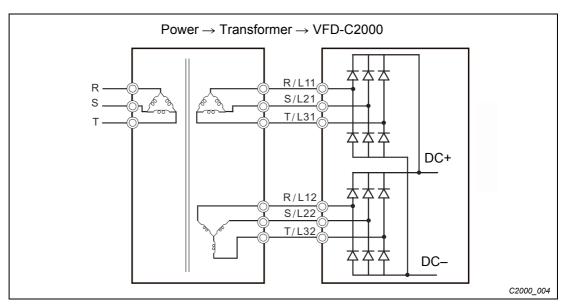


Fig. 5-4: Main circuit wiring diagram for frame G and above

NOTE

Please remove short circuit plate of FRAME G and H if 12 pulse is implemented.

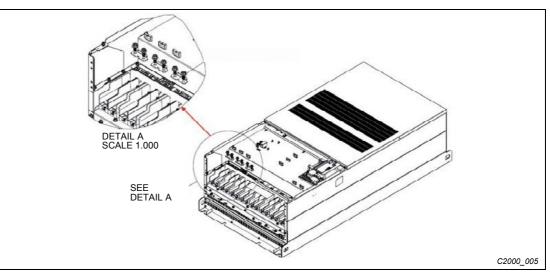


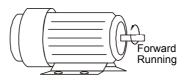
Fig. 5-5: Short circuit plate removement

NOTE

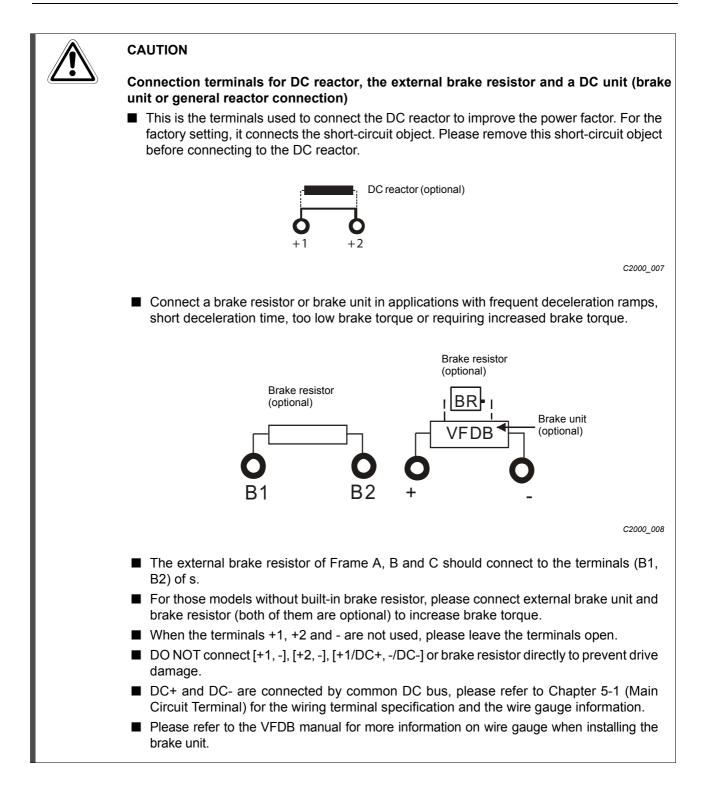
Before implementing 12 pulse, consult Delta for more details.

Terminal	Description
R/L1, S/L2, T/L3	AC line input terminals 3-phase
U/T1, V/T2, W/T3	AC drive output terminals for connecting 3-phase induction motor
	Applicable to frame A–C
+1, +2	Connections for DC reactor to improve the power factor. It needs to remove the jumper for installation.
+1/DC+, -/DC-	Connections for brake unit (VFDB series) (for 230V models: ≤22 kW, built-in brake unit) (for 460V models: ≤30 kW, built-in brake unit) Common DC Bus
B1, B2	Connections for brake resistor (optional)
	Earth connection, please comply with local regulations.

Tab. 5-1: Main power terminals

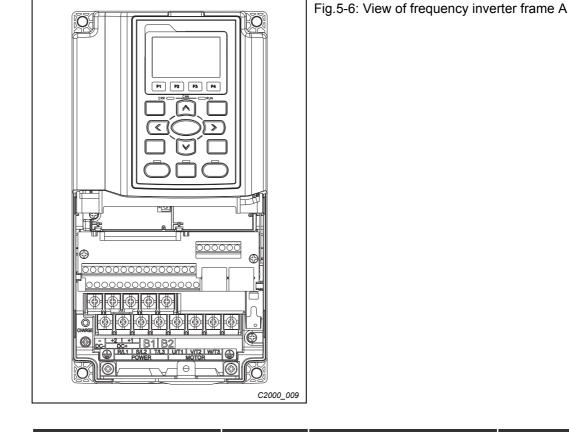

CAUTION

Main power terminals

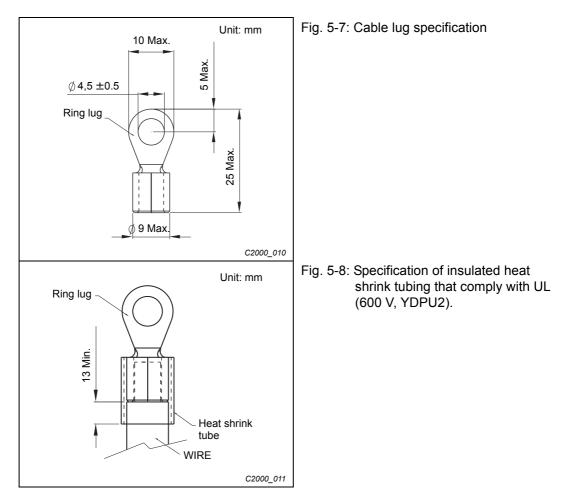

- Do not connect 3-phase model to one-phase power. R/L1, S/L2 and T/L3 has no phasesequence requirement, it can be used upon random selection.
- It is recommend to add a magnetic contactor (MC) to the power input wiring to cut off power quickly and reduce malfunction when activating the protection function of the . Both ends of the MC should have an R-C surge absorber.
- Fasten the screws in the main circuit terminal to prevent sparks condition made by the loose screws due to vibration.
- Please use voltage and current within the specification.
- When using a general GFCI (Ground Fault Circuit Interrupter), select a current sensor with sensitivity of 200 mA or above and not less than 0.1-second operation time to avoid nuisance tripping.
- Please use the shield wire or tube for the power wiring and ground the two ends of the shield wire or tube.
- Do NOT run/stop s by turning the power ON/OFF. Run/stop s by RUN/STOP command via control terminals or keypad. If you still need to run/stop s by turning power ON/OFF, it is recommended to do so only ONCE per hour.

Output terminals for main circuit

- When it needs to install the filter at the output side of terminals U/T1, V/T2, W/T3 on the Please use inductance filter. Do not use phase-compensation capacitors or L-C (Inductance-Capacitance) or R-C (Resistance-Capacitance), unless approved by Delta.
- DO NOT connect phase-compensation capacitors or surge absorbers at the output terminals of s.
- Use well-insulated motor, suitable for inverter operation.
- Note down the rated data and the torque force of the wiring when the output terminal is below 75 °C. This information provides the right wiring method to wire terminals (It corresponds to the terminals of the motor wire and non-motor wire).
- When the AC drive output terminals U/T1, V/T2, and W/T3 are connected to the motor terminals U/T1, V/T2, and W/T3, respectively, the motor will rotate counterclockwise (as viewed on the shaft end of the motor) when a forward operation command is received. To permanently reverse the direction of motor rotation, switch over any of the two motor leads.


C2000_006

5.2 Main circuit terminals


Frame A

Models	Max. wire gauge	Min. wire gauge	Torque (±10 %)
VFD007C23A		14 AWG (2.1 mm ²)	
VFD015C23A		12 AWG (3.3 mm ²)	
VFD022C23A		10 AWG (5.3 mm ²)	
VFD037C23A		8 AWG (8.4 mm ²)	
VFD007C43A		14 AWG (2.1 mm ²)	
VFD007C43E	8 AWG (8.4 mm ²)	14 AWG (2.1 mm ²)	M4 20 kg-cm (17.4 lb-in.) (1.962 Nm)
VFD015C43A		14 AWG (2.1 mm ²)	
VFD015C43E		14 AWG (2.1 mm ²)	
VFD022C43A		14 AWG (2.1 mm ²)	
VFD022C43E		14 AWG (2.1 mm ²)	(1.302 Nill)
VFD037C43A		10 AWG (5.3 mm ²)	
VFD037C43E		10 AWG (5.3 mm ²)	
VFD040C43A		10 AWG (5.3 mm ²)	
VFD040C43E		10 AWG (5.3 mm ²)	
VFD055C43A		10 AWG (5.3 mm ²)	
VFD055C43E		10 AWG (5.3 mm ²)	

Tab. 5-2: Usable wirings for main circuit terminals R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, =, B1, B2, +1, +2, –

NOTE UL installations must use 600 V, 75 °C or 90 °C wire. Use copper wire only.

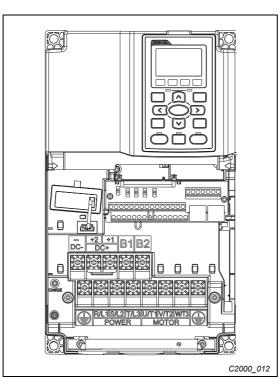
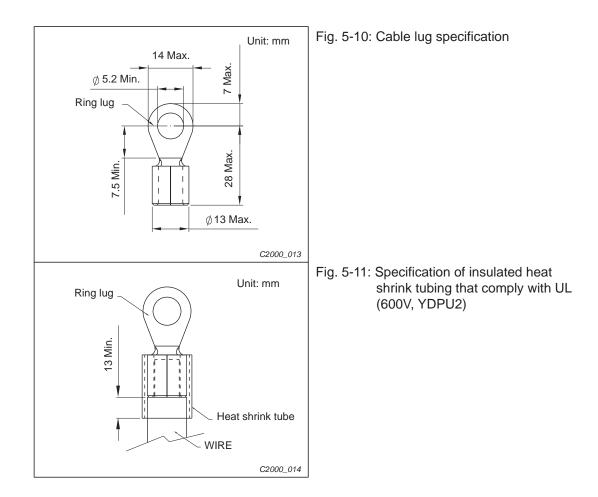
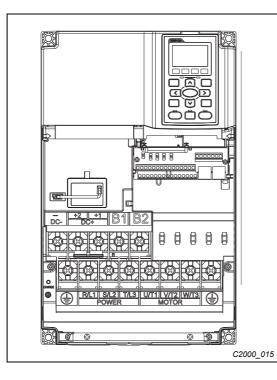


Fig. 5-9: View of frequency inverter frame B

Models	Max. wire gauge	Min. wire gauge	Torque (±10 %)
VFD055C23A ^①		8 AWG (8.4 mm ²)	
VFD075C23A ^①		6 AWG (13.3 mm ²)	
VFD110C23A ²		4 AWG (21.2 mm ²)	
VFD075C43A ^①	4 0000	8 AWG (8.4 mm ²)	M5
VFD075C43E ^①	4 AWG (21.2 mm ²)	8AWG (8.4 mm ²)	35 kg-cm (30.4 lb-in.)
VFD110C43A ^①	(21.21)	8 AWG (8.4 mm ²)	(3.434 Nm)
VFD110C43E ^①		8 AWG (8.4 mm ²)	
VFD150C43A ^①		6 AWG (13.3 mm ²)	
VFD150C43E ^①		6 AWG (13.3 mm ²)	


Tab. 5-3: Usable wirings for main circuit terminals R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, (=), B1, B2, +1, +2, -

 $^{\textcircled{0}}$ UL installations must use 600 V, 75 °C or 90 °C wire. Use copper wire only.


 $^{\textcircled{0}}$ UL installation must use 600 V, 90 °C wire when surrounding temperature exceeds 45 °C.

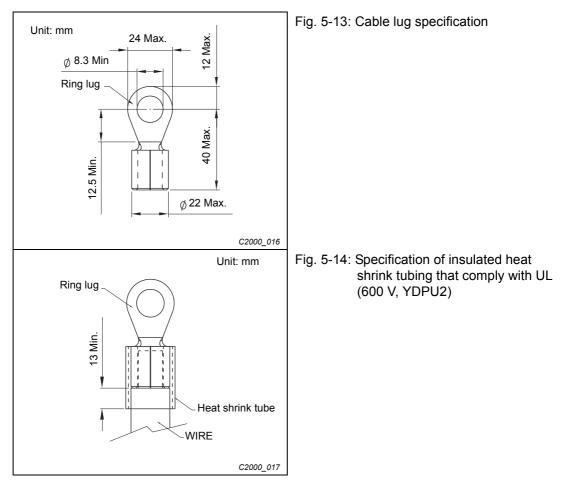
NOTE

Terminal D+ [+2 & +1]: Torque: 45 kg-cm [39.0 lb-in.] (4.415 Nm) (±10 %)

Frame C

Fig. 5-12: View of frequency inverter frame C

Models	Max. wire gauge	Min. wire gauge	Torque (±10 %)
VFD150C23A ^①		1 AWG (42.4 mm ²)	
VFD185C23A ^①		1/0 AWG (53.5 mm ²)	
VFD220C23A ²		1/0 AWG (53.5 mm ²)	
VFD185C43A ^①	4/0 414/0	4 AWG (21.2 mm ²)	M8
VFD185C43E ^①	1/0 AWG (53.5 mm ²)	4 AWG (21.2 mm ²)	80 kg-cm (69.4 lb-in.)
VFD220C43A ^①	(00.0 mm)	4 AWG (21.2 mm ²)	(7.85 Nm)
VFD220C43E ^①		4 AWG (21.2 mm ²)	
VFD300C43A ^①		2 AWG (33.6 mm ²)	
VFD300C43E ^①		2 AWG (33.6 mm ²)	

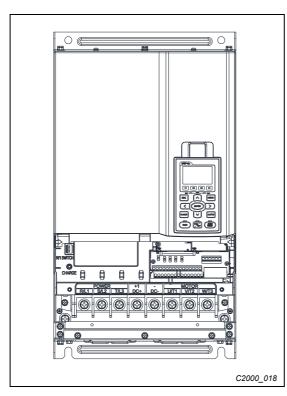

Tab. 5-4: Usable wirings for main circuit terminals R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, (=), B1, B2, +1, +2, -

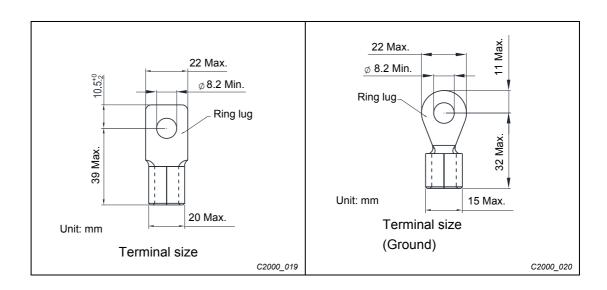
 $^{\textcircled{0}}$ $\,$ UL installations must use 600 V, 75 °C or 90 °C wire. Use copper wire only.

 $^{\textcircled{0}}$ UL installation must use 600 V, 90 °C wire when surrounding temperature exceeds 40 °C.

NOTE Terminal D+ [+2 & +1]: torque: 90 kg-cm [78.2 lb-in.] (8.83 Nm) (±10 %)

Frame D0




Fig. 5-15: View of frequency inverter frame D0

Models	Max. wire gauge	Min. wire gauge	Torque (±10 %)
VFD370C43S		1/0 AWG (53.5 mm ²)	
VFD450C43S	2/0 AWG (67.4 mm ²)	2/0 AWG (67.4 mm ²)	M8 80 kg-cm
VFD370C43U		1/0 AWG (53.5 mm ²)	(70 lĎ-in.) (7.85 Nm)
VFD450C43U		1/0 AWG (53.5 mm ²)	(1.00 1.11)

Tab. 5-5: Usable wirings for main circuit terminals R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, (=), +1/ DC+, -/DC-

NOTE

UL installations must use 600 V, 75 °C or 90 °C wire. Use copper wire only. Specification of grounding wire: 2AWG x 2 (33.6 $mm^2 x 2$)

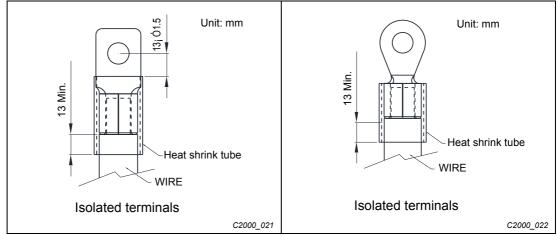
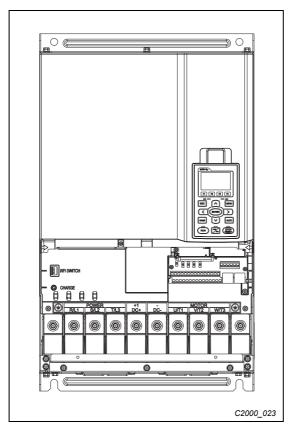
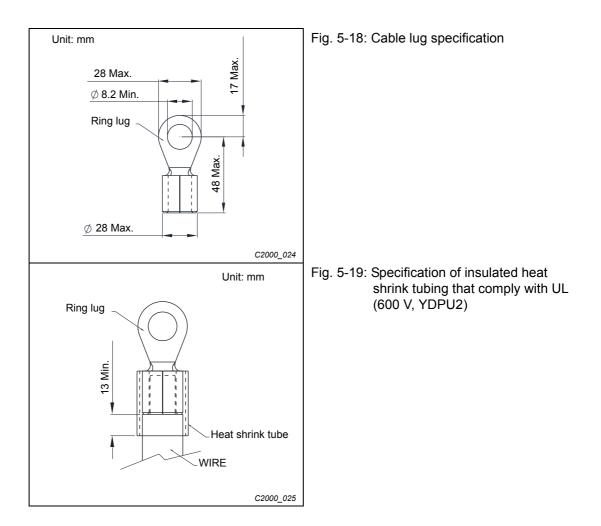


Fig. 5-16: Specification of insulated heat shrink tubing that comply with UL (600 V, YDPU2)




Fig. 5-17: View of frequency inverter frame D

Models	Max. wire gauge	Min. wire gauge	Torque (±10 %)
VFD300C23A		4/0 AWG (107 mm ²)	
VFD370C23A	300MCM	250MCM (127 mm ²)	
VFD550C43A	(152 mm ²)	3/0 AWG (85 mm ²)	
VFD750C43A		300MCM (152 mm ²)	M8
VFD300C23E		3/0 AWG (85 mm ²)	200 kg-cm
VFD370C23E		4/0 AWG (107 mm ²)	(173 lb-in.) (19.62 Nm)
VFD370C43E	4/0 AWG.	1/0 AWG (53.5 mm ²)	(10.02 111)
VFD450C43E	(107 mm ²)	1/0 AWG (53.5 mm ²)	
VFD550C43E		2/0 AWG (67.4 mm ²)	
VFD750C43E		4/0 AWG (107 mm ²)	

Tab. 5-6: Usable wirings for main circuit terminals R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, (=), +1/ DC+, -/DC-

NOTE

UL installations must use 600 V, 75 °C or 90 °C wire. Use copper wire only.

Frame E

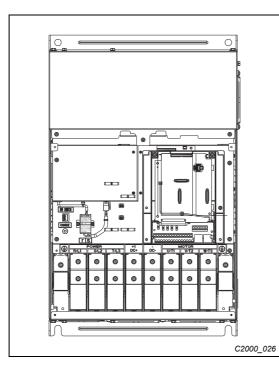


Fig. 5-20: View of frequency inverter frame E

Models	Max. wire gauge	Min. wire gauge	Torque (±10 %)
VFD450C23A		1/0AWG x 2(53.5 mm ² x 2)	
VFD550C23A	000140140	3/0AWG x 2 (85 mm ² x 2)	
VFD750C23A	300MCM x 2 (152 mm ² x 2)	4/0 AWG x 2 (107 mm ² x 2)	
VFD900C43A		1/0AWG x 2 (53.5 mm ² x 2)	M8 200 kg-cm
VFD1100C43A		3/0AWG x 2 (85 mm ² x 2)	
VFD450C23E		1/0AWG x 2 (53.5mm ² x 2)	(173 lb-in.) (19.62 Nm)
VFD550C23E		2/0AWG x 2 (67.4 mm ² x 2)	(10.02 111)
VFD750C23E	4/0 AWG x 2 (107 mm ² x 2)	3/0AWG x 2 (85 mm ² x 2)	
VFD900C43E		1/0AWG x 2 (53.5 mm ² x 2)	
VFD1100C43E		2/0AWG x 2 (67.4 mm ² x 2)	

Tab. 5-7: Usable wirings for main circuit terminals R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, = , +1/ DC+, –/DC–

NOTE

UL installations must use 600 V, 75 °C or 90 °C wire. Use copper wire only

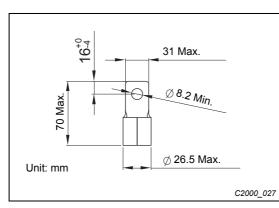


Fig. 5-21: Specification for ring lug

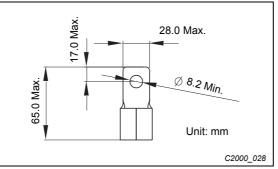
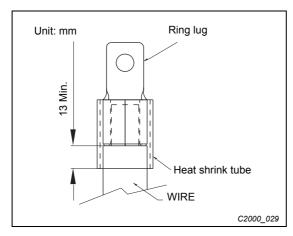



Fig. 5-22: Ring lug grounding wire

Specification of grounding wire : 300MCM [152 mm²]; Torque: M8 180 kg-cm (156 lb-in.) (17.64 Nm) (±10 %)

Fig. 5-23: Specification of insulated heat shrink tubing that comply with UL (600C, YDPU2)

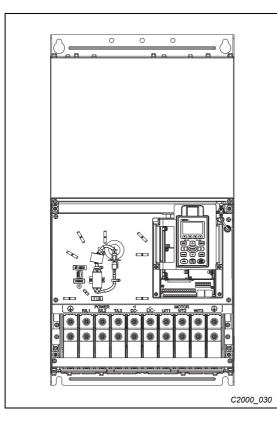
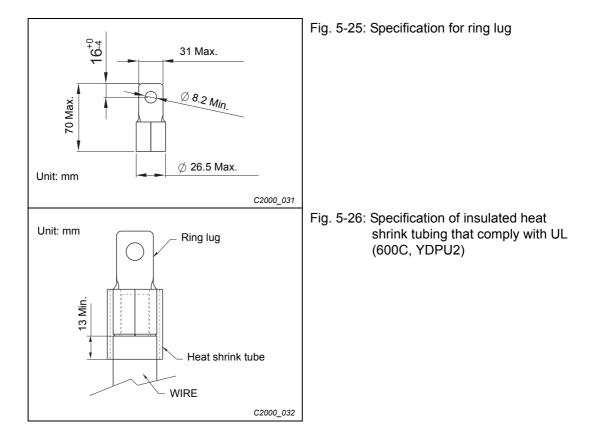


Fig. 5-24: View of frequency inverter frame F



Models	Max. wire gauge	Min. wire gauge	Torque (±10 %)
VFD900C23A ^①	20014014 2	300MCMx x 2 (152 mm ² x 2)	
VFD1320C43A ²	300MCM x 2 (152 mm ² x 2)	4/0 AWG x 2 (107 mm ² x 2)	M8
VFD1600C43A ²	(102 11111 X 2)	300MCM x 2 (152 mm ²)	200 kg-cm
VFD900C23E ^①		4/0 AWG x 2 (107 mm ² x 2)	(173 lb-in.) (19.62 Nm)
VFD1320C43E ²	4/0 AWG x 2 (107 mm ² x 2)	3/0AWG x 2 (85 mm ² x 2)	(13.02 1411)
VFD1600C43E ²		4/0 AWG x 2 (107 mm ² x 2)	

- Tab. 5-8: Usable wirings for main circuit terminals R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, ⊕, +1/ DC+, -/DC-
- $^{\textcircled{}}$ UL installations must use 90 $^{\circ}\text{C}$ wire.
- $^{\textcircled{0}}$ $\,$ UL installations must use 600 V, 75 °C or 90 °C wire. Use copper wire only.

NOTE

Specification of groundinwire \oplus : 300MCM x 2 [152 mm² x 2] Torque: M8 200 kg-cm (173 lb-in.) (19.62 Nm) (±10 %)

Frame G

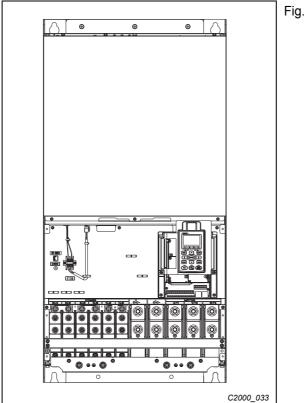


Fig. 5-27: View of frequency inverter frame G

Models	Max. wire gauge	Min. wire gauge	Torque (±10 %)
VFD1850C43A ^①		2/0AWGx4 (67.4 mm ² x 4)	M8
VFD2200C43A ²	300MCM x 4	3/0AWGx4 (85 mm ² x 4)	200 kg-cm
VFD1850C43E ^①	(152 mm ² x 4)	1/0AWGx4 (53.5 mm ² x 4)	(173 lb-in.) (19.62 Nm)
VFD2200C43E ^①		2/0AWGx4 (67.4 mm ² x 4)	(10.02 Mill)

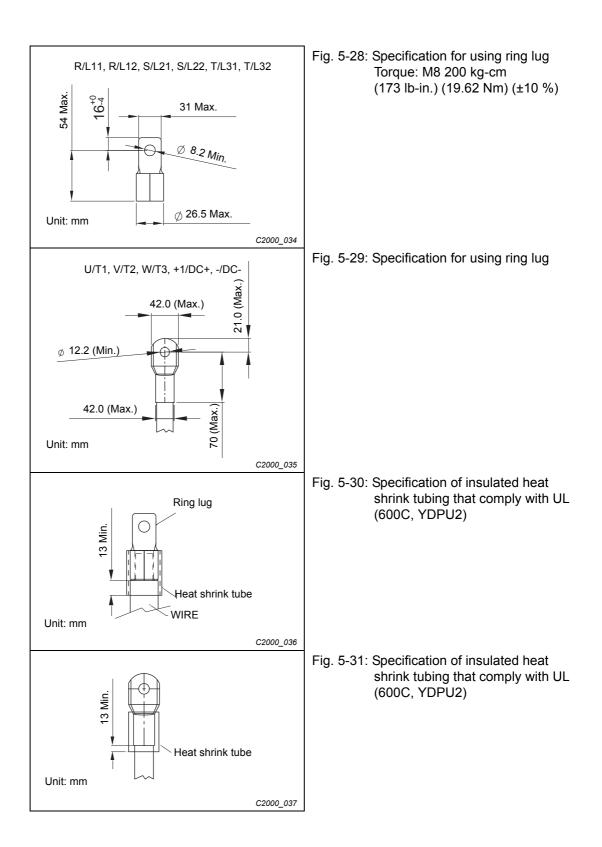
Tab. 5-9: Usable wirings for main circuit terminals R/L11, R/L12, S/L21, S/L22, T/L31, T/L32

0 UL installations must use 600 V, 75 °C or 90 °C wire. Use copper wire only.

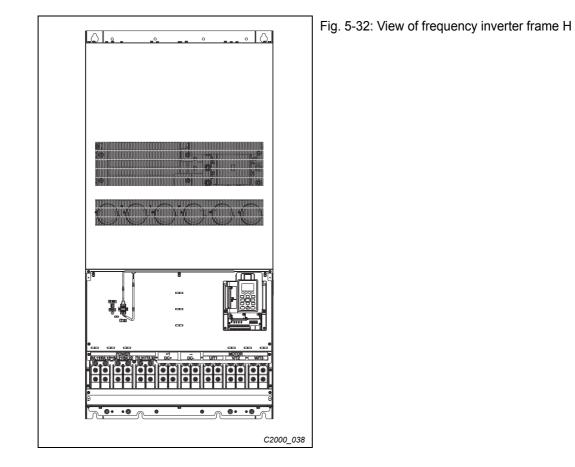
 $^{(2)}$ Use 600 V, 90 °C wire when the surrounding temperature is over 45 °C.

NOTE

Specification for grounding wire \oplus : 300MCM x 4 [152 mm² x 4]


Models	Max. wire gauge	Min. wire gauge	Torque (±10 %)
VFD1850C43A ^①		400MCM x 2 (203 mm ² x 2)	M12
VFD2200C43A ²	500MCM x 2	500MCM x 2 (253 mm ² x 2)	408 kg-cm
VFD1850C43E ^①	(253 mm ² x 2)	300MCM x 2 (152 mm ² x 2)	(354 lb-in.) (40 Nm)
VFD2200C43E ^①		400MCM x 2 (203 mm ² x 2)	

Tab. 5-10: Usable wirings for main circuit terminals U/T1, V/T2, W/T3, +1/DC+, -/DC-


 $^{\textcircled{0}}$ UL installations must use 600 V, 75 °C or 90 °C wire. Use copper wire only.

 $^{\textcircled{0}}$ Use 600 V, 90 °C wire when the surrounding temperature is over 45 °C.

Frame H

Models	Max. wire gauge	Min. wire gauge	Torque (±10 %)
VFD2800C43A ^①		4/0 AWGx4 (107 mm ² x 4)	
VFD3150C43A ^①		300MCMx4 (152 mm ² x 4)	
VFD3550C43A ^①		300MCMx4 (152 mm ² x 4)	
VFD4500C43A ²		300MCMx4 (152 mm ² x 4)	
VFD2800C43E-1 ^①		3/0 AWGx4 (85 mm ² x 4)	M8
VFD3150C43E-1 ^①	300MCM x 4	4/0 AWGx4 (107 mm ² x 4)	200 kg-cm
VFD3550C43E-1 ^①	(152 mm ² x 4)	250MCMx4 (127 mm ² x 4)	(173 lb-in.) (19.62 Nm)
VFD4500C43E-1 ²		300MCMx4 (152 mm ² x 4)	(13.02 Mill)
VFD2800C43E ^①		300MCMx4 (152 mm ² x 4)	
VFD3150C43E ^①		4/0 AWGx4 (107 mm ² x 4)	
VFD3550C43E ^①		300MCMx4 (152 mm ² x 4)	
VFD4500C43E ²		300MCMx4 (152 mm ² x 4)	

Tab. 5-11: Usable wirings for main circuit terminals R/11, R12, S/21, S/22, T/31, T/32, U/T1, V/T2, W/T3, +1/DC+, –/DC–

 $^{\textcircled{0}}$ $\,$ UL installations must use 600 V, 75 °C or 90 °C wire. Use copper wire only.

2 need to use 90 °C wire.

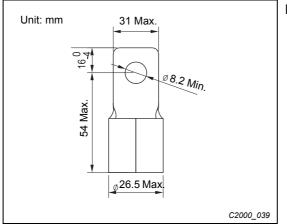
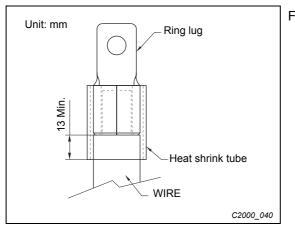
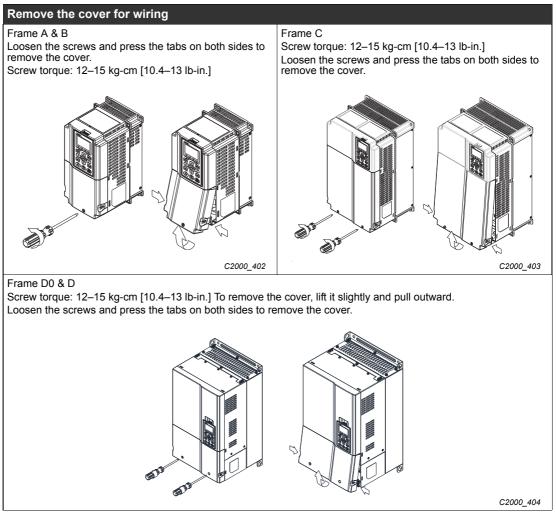
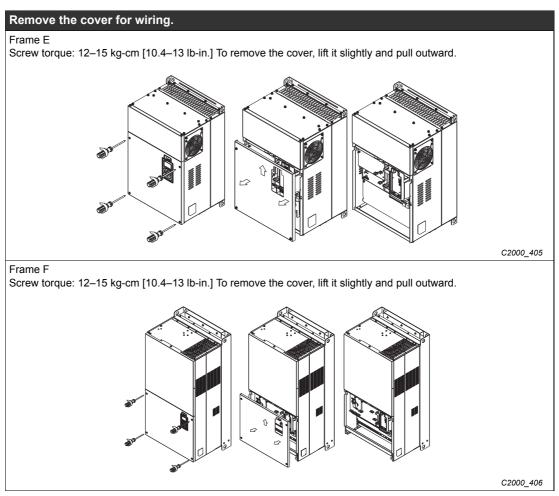



Fig. 5-33: Use of the ring lug

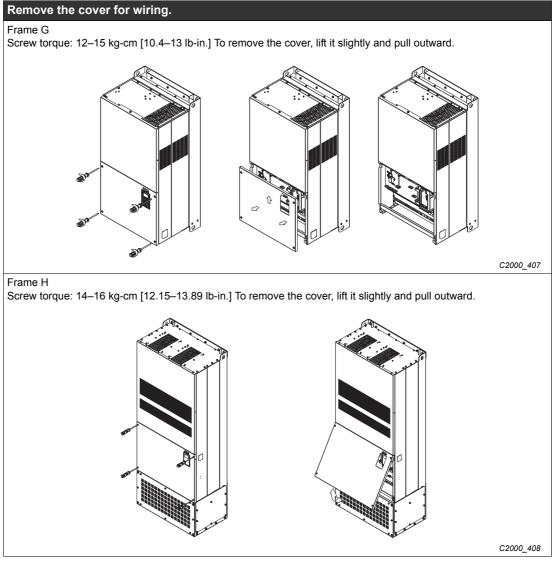
Specification of grounding wire \oplus : 300MCM x 4 [152 mm² x 4]; Torque: M8 200 kg-cm (173 lb-in.) (19.62 Nm) (±10 %)


Fig. 5-34: Specification of heat shrink tubing that comply with UL (600C, YDPU2)


6 Control Terminals

Please remove the top cover before wiring the multi-function input and output terminals.

The drive appearances shown in the figures are for reference only, a real drive may look different.



Tab. 6-1: Frame A–D

Tab. 6-2: Frame E-F

Tab. 6-3: Frame G-H

6.1 Specifications of control terminal

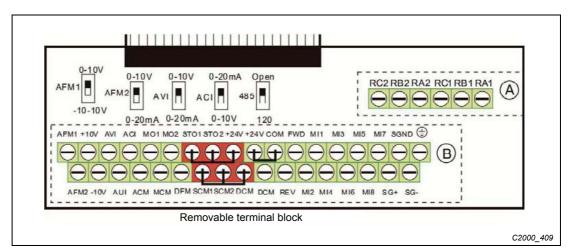


Fig. 6-1: Control terminals

Wire gauge: 26-16AWG (0.1281-1.318 mm²)

Torque: (A) 5 kg-cm [4.31 lb-in.] (0.49 Nm) (As shown in figure above)

(B) 8 kg-cm [6.94 lb-in.] (0.78 Nm) (As shown in figure above)

Wiring precautions

- Reserves 5 mm and properly install the wire into the terminal; fasten the installation by a slotted screwdriver. If the wire is stripped, sort the wire before install into the terminal.
- Flathead screwdriver: blade width 3.5 mm, tip thickness 0.6 mm.
- In the figure 6-1 above, the factory setting for SCM1-SCM2-DCM, STO1-STO2-+24V and +24 V-COM is short circuit and SINK mode (NPN); please refer to Chapter 4 Wiring for more detail.

Terminals	Terminal function	Factory setting (NPN mode)
+24V	Digital control signal common (Source)	+24 V 5 % 200 mA
СОМ	Digital control signal common (Sink)	Common for multi-function input terminals
FWD	Forward-stop command	FWD-DCM: ON \rightarrow forward running OFF \rightarrow deceleration to stop
REV	Reverse-stop command	REV-DCM: ON \rightarrow reverse running OFF \rightarrow deceleration to stop
MI1 _ MI8	Multi-function input 1–8	Refer to parameters 02-01–02-08 to program the multi-function inputs MI1–MI8. Source mode ON: the activation current is 3.3 mA \geq 11 V DC OFF: cut-off voltage \leq 5 V DC Sink mode ON: the activation current is 3.3 mA \leq 13 V DC OFF: cut-off voltage \geq 19 V DC

Tab. 6-4: Description of the control terminals (1)

Terminals	Terminal function	Factory setting (NPN mode)
	Digital frequency meter	
		Regard the pulse voltage as the output monitor signal
DFM		Duty-cycle: 50 % Min. load impedance: 1 k Ω /100 pf
	C2000_410	Max. current: 30 mA Max. voltage: 30 V DC
DCM	Digital frequency signal	Max. Voltage. 00 V 20
	common	The releases various monitor signals, such as drive in operation,
MO1	Multi-function output 1 (photocoupler)	frequency attained and overload indication, via transistor (open collector).
MO2	Multi-function output 2 (photocoupler)	MD1 MD2 MDV C2000_411
MCM	Multi-function output	Max 48 V DC 50 mA
RA1	Multi-function relay output 1 (N.O.) a	
RB1	Multi-function relay output 1 (N.C.) b	Resistive Load: 3A (N.O.)/3A (N.C.) 250 V AC
RC1	Multi-function relay common 1	5A (N.O.)/3A (N.C.) 30 V DC Inductive Load (COS 0.4): 1.2A (N.O.)/1.2A (N.C.) 250 V AC
RA2	Multi-function relay output 2 (N.O.) a	2.0A (N.O.)/1.2A (N.C.) 30 V DC
RB2	Multi-function relay output 2 (N.C.) b	It is used to output each monitor signal, such as drive is in opera- tion, frequency attained or overload indication
RC2	Multi-function relay common 2	
+10V	Potentiometer power supply	Analog frequency setting: +10 V DC 20 mA
-10V	Potentiometer power supply	Analog frequency setting: -10 V DC 20 mA
	Analog voltage input	
AVI	ACM ACM internal circuit C2000_411_a	Impedance: 20 k Ω Range: 0–20 mA/4–20 mA/0–10 V = 0–Max. output frequency (Pr. 01-00) AVI switch, factory setting is 0–10 V
	Analog current input	
ACI	ACI ACI circuit	Impedance: 250 Ω Range: 0–20 mA/4–20 mA/0–10 V = 0 – Max. output frequency (Pr. 01-00) ACI Switch, factory setting is 4–20 mA
	C2000_411_b	

Tab. 6-4: Description of the control terminals (2)

Terminals	Terminal function	Factory setting (NPN mode)
AUI	Auxiliary analog voltage input +10V AUI (-10V-+10V) ACM -10Vinternal circuit C2000_411_c	Impedance: 20 kΩ Range: -10–+10 V DC = 0 – max. output frequency (Pr. 01-00)
AFM1	Multi-function analog output	0–10 V max. output current 2 mA, max. load 5 k Ω -10–10 V maximum output current 2 mA, maximum load 5 k Ω output current: 2 mA max. Resolution: 0–10 V corresponds to max. operation frequency Range: 0–10 V \rightarrow -10–+10 V AFM 1 switch, factory setting is 0–10 V
AFM2		0–10 V max. output current 2 mA, max. load 5 k Ω 0–20 mA max. load 500 Ω Output current: 20 mA max Resolution: 0–10 V corresponds to max. operation frequency Range: 0–10 V \rightarrow 4–20 mA AFM 2 switch, factory setting is 0–10 V
ACM	Multi-function analog output common	Common for multi-function analog output terminals
STO1		
SCM1	Default setting is shorted	for EN 954-1 and IEC/EN 61508
STO2		CM2 is activated, the activation current is 3.3 mA \geq 11 V DC
SCM2		
SG+		
SG-	Modbus RS485	
SGND		
RJ-45	PIN 1,2,7,8: Reserved PIN 3, 6: SGND PIN 4: SG- PIN 5: SG+	

Tab. 6-4: Description of the control terminals (3)

NOTE Wire size of analog control signals: 18 AWG (0.75 mm²) with shielded wire.

6.2 Analog input terminals (AVI, ACI, AUI, ACM)

- Analog input signals are easily affected by external noise. Use shielded wiring and keep it as short as possible (<20 m) with proper grounding. If the noise is inductive, connecting the shield to terminal ACM can bring improvement.
- If the analog input signals are affected by noise from the , please connect a capacitor and ferrite core as indicated in the following diagram:

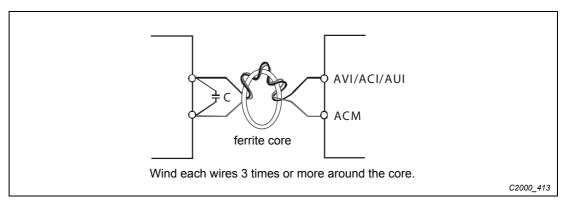


Fig. 6-2: Noise recuction by capacitator and ferrite core

Digital inputs (FWD, REV, MI1-MI8, COM)

- When using contacts or switches to control the digital inputs, please use high quality components to avoid contact bounce.
- The "COM" terminal is the common side of the photo-coupler. Any of wiring method, the "common point" of all photo-coupler must be the "COM".
- When the photo-coupler is using internal power supply, the switch connection for Sink and Source as below:

MI-DCM: Sink mode

MI-+24V: Source mode

■ When the photo-coupler is using external power supply, please remove the short circuit cable between the +24V and COM terminals. The connection mode is Sink mode or Source mode is according to the below:

The "+" of 24 V connecting to "COM: Sink mode

The "--" of 24 V connecting to COM: Source mode

Transistor outputs (MO1, MO2, MCM)

- Make sure to connect the digital outputs to the right polarity.
- When connecting a relay to the digital outputs connect a surge absorber across the coil and check the polarity.

6.3 Remove the terminal block

① Loosen the screws by screwdriver. (As shown in figure below).

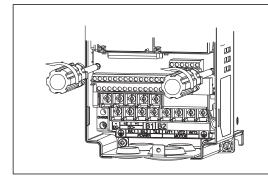


Fig. 6-3: Removing the screws

C2000_414

(2) Remove the control board by pulling it out for a distance 6–8 cm (as 1 in the figure 6-4) then lift the control board upward (as 2 in the figure 6-4).

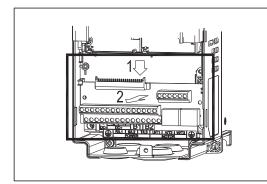


Fig. 6-4: Removing the control board

C2000_418

7 Optional Accessories

The optional accessories listed in this chapter are available upon request. Installing additional accessories to your drive would substantially improve the drive's performance. Please select an applicable accessory according to your need or contact the local distributor for suggestion.

7.1 All brake resistors and brake units used in AC motor drives

Appli mo		e 125 % Braking torque ^① 10			10 % ED		Max. I	orake torqu	ie ^②	
НР	F/W					Resistor value spec. for	Total bra- king	Min. resistor	Max. total braking	Peak power
	ŇŸŸ		for each brake	e unit [®]	each AC motor drive	cur- rent [A]	value $[\Omega]$	current [A]	[kW]	
1	0.7	0.5	_	BR080W200) x 1	80 W 200 Ω	1.9	63.3	6	2.3
2	1.5	1.0	—	BR200W091	l x 1	200 W 91 Ω	4.2	47.5	8	3.0
3	2.2	1.5	-	BR300W070) x 1	300 W 70 Ω	5.4	38.0	10	3.8
5	3.7	2.5	—	BR400W040) x 1	400 W 40 Ω	9.5	19.0	20	7.6
7.5	5.5	3.7	-	BR1K0W020 x 1		1000 W 20 Ω	19	14.6	26	9.9
10	7.5	5.1	-	BR1K0W020 x 1		1000 W 20 Ω	19	14.6	26	9.9
15	11	7.5	—	BR1K5W013 x 1		1500 W 13 Ω	29	13.6	28	10.6
20	15	10.2	—	BR1K0W4P3 x 2	2 series	2000 W 8.6 Ω	44	8.3	46	17.5
25	18	12.2	_	BR1K0W4P3 x 2	2 series	2000 W 8.6 Ω	44	8.3	46	17.5
30	22	14.9	—	BR1K5W3P3 x 2	2 series	3000W 6.6 Ω	58	5.8	66	25.1
40	30	20.3	2015 x 2	BR1K0W5P1 x2	2 series	4000 W 5.1 Ω	75	4.8	80	30.4
50	37	25.1	2022 x 2	BR1K2W3P9 x 2	2 series	4800 W 3.9 Ω	97	3.2	120	45.6
60	45	30.5	2022 x 2	BR1K5W3P3 x 2	2 series	6000 W 3.3 Ω	118	3.2	120	45.6
75	55	37.2	2022x3	BR1K2W3P9 x 2	2 series	7200 W 2.6 Ω	145	2.1	180	68.4
100	75	50.8	2022x4	BR1K2W3P9 x2	2 series	9600 W 2 Ω	190	1.6	240	91.2
125	90	60.9	2022x4	BR1K5W3P3 x 2	2 series	12000 W 1.65 Ω	230	1.6	240	91.2

Tab. 7-1: Brake data for AC drive units with 230 V power supply

0 Calculation for 125 % brake toque: (kw) x 125 % x0.8; where 0.8 is motor efficiency.

Because there is a resistor limit of power consumption, the longest operation time for 10 % ED is 10 sec (on: 10 sec/off: 90 sec).

2 Please refer to the Brake Performance Curve for "Operation Duration & ED" vs. "Braking Current".

For heat dissipation, a resistor of 400 W or lower should be fixed to the frame and maintain the surface temperature below 50 °C; a resistor of 1000 W and above should maintain the surface temperature below 350 °C.

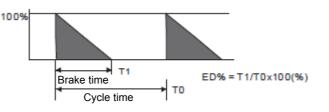
Please refer to VFDB series Braking Module Instruction for more detail on braking resistor.

Apj cat mo	ble	125		125 % Braking torque igodot		10 % ED		Max. brake torque $^{\textcircled{2}}$		
НР	kW	Braking torque [kg-m]	Brake unit VFDB ^④	Braking resistor series for each brake unit ^③		Resistor value spec. for each AC motor drive	Total bra- king cur- rent [A]	Min. resistor value [Ω]	Max. total braking current [A]	Peak pow- er [kW]
1	0.7	0.5	_	BR080W750 x 1		80 W 750 Ω	1	190.0	4	3.0
2	1.5	1.0	_	BR200W360 x 1		200 W 360 Ω	2.1	126.7	6	4.6
3	2.2	1.5	_	BR300W250	0 x 1	300 W 250 Ω	3	108.6	7	5.3
5	3.7	2.5	_	BR400W150	0 x 1	400 W 150 Ω	5.1	84.4	9	6.8
5.5 7.5	4.0 5.5	2.7 3.7	_	BR1K0W07	5 x 1	1000 W 75 Ω	10.2	54.3	14	10.6
10	7.5	5.1	_	BR1K0W075	5 x 1	1000 W 75 Ω	10.2	47.5	16	12.2
15	11	7.5	—	BR1K5W043 x 1		1500 W 43 Ω	17.6	42.2	18	13.7
20	15	10.2	—	BR1K0W016 x 2	2 series	2000 W 32 Ω	24	26.2	29	22.0
25	18	12.2		BR1K0W016 x 2	2 series	2000 W 32 Ω	24	23.0	33	25.1
30	22	14.9	—	BR1K5W013 x 2	2 series	3000 W 26 Ω	29	23.0	33	25.1
40	30	20.3	—	BR1K0W016 x 4	2 parallel, 2 series	4000 W 16 Ω	47.5	14.1	54	41.0
50	37	25.1	4045 x 1	BR1K2W015 x 4	2 parallel, 2 series	4800 W 15 Ω	50	12.7	60	45.6
60	45	30.5	4045 x 1	BR1K5W013 x 4	2 parallel, 2 series	6000 W 13 Ω	59	12.7	60	45.6
75	55	37.2	4030 x 2	BR1K0W5P1 x 4	4 parallel	8000 W 10.2 Ω	76	9.5	80	60.8
100	75	50.8	4045 x 2	BR1K2W015 x 4	2 parallel, 2 series	9600 W 7.5 Ω	100	6.3	120	91.2
125	90	60.9	4045 x 2	BR1K5W013 x 4	2 parallel, 2 series	12000 W 6.5 Ω	117	6.3	120	91.2
150	110	74.5	4110 x 1	BR1K2W015 x 10	5 parallel, 2 series	12000 W 6 Ω	126	6.0	126	95.8
175	132	89.4	4160 x 1	BR1K5W012 x 12	6 parallel, 2 series	18000 W 4 Ω	190	4.0	190	144.4
215	160	108.3	4160 x 1	BR1K5W012 x 12	6 parallel, 2 series	18000 W 4 Ω	190	4.0	190	144.4
250	185	125.3	4185 x 1	BR1K5W012 x 14	7 parallel, 2 series	21000 W 3.4 Ω	225	3.4	225	172.1
300	220	148.9	4110 x 2	BR1K2W015 x 10	5 parallel, 2 series	24000 W 3 Ω	252	3.0	252	190.5
375	280	189.6	4160 x 2	BR1K5W012 x 12	6 parallel, 2 series	36000 W 2 Ω	380	2.0	380	288.8
425	315	213.3	4160 x 2	BR1K5W012 x 12	6 parallel, 2 series	36000 W 2 Ω	380	2.0	380	288.8
475	355	240.3	4185 x 2	BR1K5W012 x 14	7 parallel, 2 series	42000 W 1.7 Ω	450	1.7	450	344.2

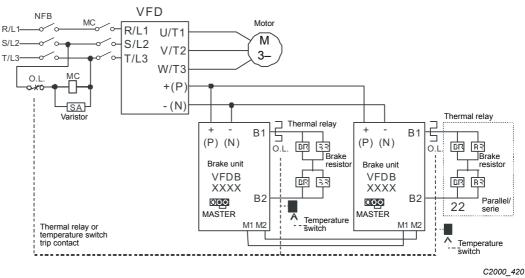
Tab. 7-2: Brake data for AC drive units with 460 V power supply

Calculation for 125 % brake toque: (kw) x 125 % x0.8; where 0.8 is motor efficiency. Because there is a resistor limit of power consumption,
 the longest operation time for 10 % ED is 10 sec (on: 10 sec/off: 90 sec).

2 Please refer to the Brake Performance Curve for "Operation Duration & ED" vs. "Braking Current".


Please refer to the brake Performance curve for Operation Duration of ED to braking curves.
 For heat dissipation, a resistor of 400 W or lower should be fixed to the frame and maintain the surface temperature below 50 °C; a resistor of 1000 W and above should maintain the surface temperature below 350 °C.
 Please refer to VFDB series Braking Module Instruction for more detail on braking resistor.

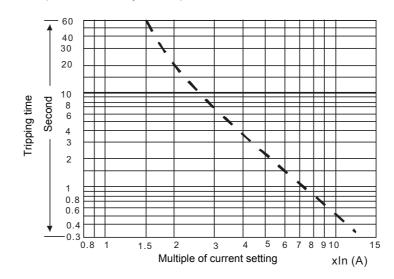
NOTES


(1) Definition for brake usage ED %

Explanation: The definition of the brake usage ED (%) is for assurance of enough time for the brake unit and brake resistor to dissipate away heat generated by braking. When the brake resistor heats up, the resistance would increase with temperature, and brake torque would decrease accordingly. Recommended cycle time is one minute.

C2000_419

For safety concern, install an overload relay (O.L) between the brake unit and the brake resistor in conjunction with the magnetic contactor (MC) prior to the drive for abnormal protection. The purpose of installing the thermal overload relay is to protect the brake resistor from damage due to frequent brake, or due to brake unit keeping operating resulted from unusual high input voltage. Under such circumstance, just turn off the power to prevent damaging the brake resistor.



- When AC drive is equipped with a DC reactor, please read user manual to know the wiring method of input circuit of brake unit +(P).
- Do Not connect input circuit -(N) to the neutral point of the power system.
- ② If damage to the drive or other equipment is due to the fact that the brake resistors and brake modules in use are not provided by Delta, the warranty will be void.
- ③ Take into consideration the safety of the environment when installing the brake resistors. If the minimum resistance value is to be utilized, consult local dealers for the calculation of Watt figures.
- ④ When using more than 2 brake units, equivalent resistor value of parallel brake unit can't be less than the value in the column "Minimum Equivalent Resistor Value for Each AC Drive" (the right-most column in the table 7-1 and table 7-2). Please read the wiring information in the user manual of brake unit thoroughly prior to operation.

NOTES

- (5) This chart is for normal usage; if the AC motor drive is applied for frequent braking, it is suggested to enlarge 2–3 times of the Watts.
- 6 Thermal relay:

Thermal relay selection is basing on its overload capability. A standard braking capacity for C2000 is 10 % ED (tripping time = 10 s). The figure below is an example of 406 V, 110 kw AC motor drive. It requires the thermal relay to take 260 % overload capacity in 10 s (host starting) and the braking current is 126 A. In this case, user should select a rated 50 A thermal relay. The property of each thermal relay may vary among different manufacturer, please carefully read specification.

C2000_421

7.2 Non-fuse circuit breaker

Comply with UL standard: Per UL 508, paragraph 45.8.4, part a.

The rated current of the breaker shall be 2–4 times of the maximum rated input current of AC motor drive.

3-phase 460 V			3-phase 230 V		
Model	Recommen- ded non-fuse breaker [A]		Model	Recommen- ded non-fuse breaker [A]	
VFD007C43A/E	5		VFD007C23A	15	
VFD015C43A/E	10		VFD015C23A	20	
VFD022C43A/E	15		VFD022C23A	30	
VFD040C43A/E	20		VFD037C23A	40	
VFD037C43A/E	20		VFD055C23A	50	
VFD055C43A/E	30		VFD075C23A	60	
VFD075C43A/E	40		VFD110C23A	100	
VFD110C43A/E	50		VFD150C23A	125	
VFD150C43A/E	60		VFD185C23A	150	
VFD185C43A/E	75		VFD220C23A	200	
VFD220C43A/E	100		VFD300C23A/E	225	
VFD300C43A/E	125		VFD370C23A/E	250	
VFD370C43A/E/S/U	150		VFD450C23A/E	300	
VFD450C43A/E/S/U	175		VFD550C23A/E	400	
VFD550C43A/E	250		VFD750C23A/E	450	
VFD750C43A/E	300		VFD900C23A/E	600	
VFD900C43A/E	300				
VFD1100C43A/E	400				
VFD1320C43A/E	500				
VFD1600C43A/E	600				
VFD1850C43A/E	600				
VFD2200C43A/E	800				
VFD2800C43A/E	1000				
VFD3150C43A/E	1200				
VFD3550C43A/E	1350				

Tab. 7-3: Rated current for non-fuse circuit breaker

7.3 Fuse specification chart.

CAUTION:

- Use only the fuses comply with UL certificated.
- Use only the fuses comply with local regulations.

220 [\/] model	Input cur	rent I [A]	Line fuse		
230 [V] model	Heavy duty	Normal duty	I [A]	Bussmann P/N	
VFD007C23A	6.1	6.4	20	JJS-20	
VFD015C23A	11	12	35	JJS-35	
VFD022C23A	15	16	50	JJS-50	
VFD037C23A	18.5	20	80	JJS-80	
VFD055C23A	26	28	100	JJS-100	
VFD075C23A	34	36	130	JJS-130	
VFD110C23A	50	52	175	JJS-175	
VFD150C23A	68	72	250	JJS-250	
VFD185C23A	78	83	300	JJS-300	
VFD220C23A	95	99	350	JJS-350	
VFD300C23A/E	118	124	400	DLS-R-400	
VFD370C23A/E	136	143	500	DLS-R-500	
VFD450C23A/E	162	171	700	JJN-700	
VFD550C23A/E	196	206	800	JJN-800	
VFD750C23A/E	233	245	1000	JJN-1000	
VFD900C23A/E	315	331	1000	KTU-1000	

Tab. 7-4: Line fuses for s with 230 V power supply

460 D/J model	Input cur	rent I [A]	Line fuse		
460 [V] model	Heavy duty	Normal duty	I [A]	Bussmann P/N	
VFD007C43A/E	4.1	4.3	10	JJS-10	
VFD015C43A/E	5.6	5.9	15	JJS-15	
VFD022C43A/E	8.3	8.7	20	JJS-20	
VFD037C43A/E	13	14	30	JJS-30	
VFD040C43A/E	14.5	15.5	35	JJS-35	
VFD055C43A/E	16	17	45	JJS-45	
VFD075C43A/E	19	20	70	JJS-70	
VFD110C43A/E	25	26	90	JJS-90	
VFD150C43A/E	33	35	125	JJS-125	
VFD185C43A/E	38	40	125	JJS-125	
VFD220C43A/E	45	47	150	JJS-150	
VFD300C43A/E	60	63	200	JJS-200	
VFD370C43/S/U	70	74	300	DLS-R-300	
VFD450C43/S/U	96	101	350	DLS-R-350	
VFD550C43A/E	108	114	400	DLS-R-400	
VFD750C43A/E	149	157	600	DLS-R-600	

Tab. 7-5: Line fuses for s with 460 V power supply

460 [V] model	Input cur	rent I [A]	Line fuse		
400 [V] model	Heavy duty	Normal duty	I [A]	Bussmann P/N	
VFD900C43A/E	159	167	600	JJN-600	
VFD1100C43A/E	197	207	800	JJS-800	
VFD1320C43A/E	228	240	800	KTU-800	
VFD1600C43A/E	285	300	800	KTU-800	
VFD1850C43A/E	361	380	800	KTU-800	
VFD2200C43A/E	380	400	1000	KTU-1000	
VFD2800C43A/E	469	494	1200	KTU-1200	
VFD3150C43A/E	527	555	1200	KTU-1200	
VFD3550C43A/E	594	625	1600	KTU-1600	
VFD4500C43A/E	816	866	0	1	

Tab. 7-5: Line fuses for s with 460 V power supply

O Contact Delta Electronics or an authorized distributor for corresponding fuse of VFD4500C43A/E.

7.4 AC/DC reactor

When the AC motor drive is connected directly to a large-capacity power transformer (600 kVA or above) or when a phase lead capacitor is switched, excess peak currents may occur in the power input circuit due to the load changes and the converter section may be damaged. To avoid this, it is recommend to use a serial connected AC input reactor (3%) at the AC motor drive mains input side to reduce the current and improve the input power efficiency.

7.4.1 AC input/output reactor

Туре	ĸw	HP	Rated Amps of AC reactor [A _{rms}]	Max. continuous Amps [A _{rms}]	3 % Impedance (mH]	5 % Impedance [mH]	Built-in DC reactor	3 % Input AC reactor Delta part #
007	0.75	1	5	8.64	2.536	4.227	Х	N/A
015	1.5	2	8	12.78	1.585	2.642	Х	N/A
022	2.2	3	11	18	1.152	1.922	Х	N/A
037	3.7	5	17	28.8	0.746	1.243	Х	N/A
055	5.5	7.5	25	43.2	0.507	0.845	Х	N/A
075	7.5	10	33	55.8	0.32	0.534	Х	DR033AP320
110	11	15	49	84.6	0.216	0.359	Х	DR049AP215
150	15	20	65	111.6	0.163	0.271	Х	DR065AP162
185	18.5	25	75	127.8	0.169	0.282	Х	N/A
220	22	30	90	154.8	0.141	0.235	Х	N/A
300	30	40	120	205.2	0.106	0.176	0	N/A
370	37	50	146	250.2	0.087	0.145	0	N/A
450	45	60	180	307.8	0.070	0.117	0	N/A
550	55	75	215	367.2	0.059	0.098	0	N/A
750	75	100	255	435.6	0.049	0.083	0	N/A
900	90	125	346	592.2	0.037	0.061	0	N/A

200 V-230 V/50-60 Hz

Tab. 7-6: AC reactors for s with 230V power supply

Туре	ĸw	НР	Rated Amps of AC reactor [A _{rms}]	Max. continuous Amps [A _{rms}]	3 % Impedance [mH]	5 % Impedance [mH]	Built-in DC reactor	3 % Input AC reactor Delta part #
007	0.75	1	3	5.22	8.102	13.502	Х	N/A
015	1.5	2	4	6.84	6.077	10.127	Х	N/A
022	2.2	3	6	10.26	4.050	6.752	Х	N/A
037	3.7	5	9	14.58	2.700	4.501	Х	N/A
040	4	5	10.5	17.1	2.315	3.858	Х	N/A
055	5.5	7.5	12	19.8	2.025	3.375	Х	N/A
075	7.5	10	18	30.6	1.174	1.957	Х	DR018A0117
110	11	15	24	41.4	0.881	1.468	Х	DR024AP880
150	15	20	32	54	0.66	1.101	Х	DR032AP660
185	18.5	25	38	64.8	0.639	1.066	Х	N/A
220	22	30	45	77.4	0.541	0.900	Х	N/A
300	30	40	60	102.6	0.405	0.675	0	N/A
370	37	50	73	124.2	0.334	0.555	0	N/A
450	45	60	91	154.8	0.267	0.445	0	N/A
550	55	75	110	189	0.221	0.368	0	N/A
750	75	100	150	257.4	0.162	0.270	0	N/A
900	90	125	180	307.8	0.135	0.225	0	N/A
1100	110	150	220	376.2	0.110	0.184	0	N/A
1320	132	175	260	444.6	0.098	0.162	0	N/A
1600	160	215	310	531	0.078	0.131	0	N/A
1850	185	250	370	633.6	0.066	0.109	0	N/A
2200	220	300	460	786.6	0.054	0.090	0	N/A
2800	280	375	550	941.4	0.044	0.074	0	N/A
3150	315	420	616	1053	0.039	0.066	0	N/A
3550	355	475	683	1168.2	0.036	0.060	0	N/A
4500	450	600	866	1468.8	0.028	0.047	0	N/A

380 V-460 V/50-60 Hz

Tab. 7-7: DC reactors for s with 460 V power supply

7.4.2 DC reactor

200 V-230 V/50-60 Hz

Туре	kW	HP	Rated Amps of AC reactor	Max. continuous Amps	Inductance [mH]
007	0.75	1	5	8.64	5.857
015	1.5	2	8	12.78	3.660
022	2.2	3	11	18	2.662
037	3.7	5	17	28.8	1.722
055	5.5	7.5	25	43.2	1.172
075	7.5	10	33	55.8	0.851
110	11	15	49	84.6	0.574
150	15	20	65	111.6	0.432
185	18.5	25	75	127.8	0.391
220	22	30	90	154.8	0.325

Tab. 7-8: DC reactors for s with 230 V power supply

380 V-460 V/50-60 Hz

Туре	kW	НР	Rated Amps of AC reactor	Max. continuous Amps	Inductance [mH]
007	0.75	1	3	5.22	18.709
015	1.5	2	4	6.84	14.031
022	2.2	3	6	10.26	9.355
037	3.7	5	9	14.58	6.236
040	4	5	10.5	17.1	5.345
055	5.5	7.5	12	19.8	4.677
075	7.5	10	18	30.6	3.119
110	11	15	24	41.4	2.338
150	15	20	32	54	1.754
185	18.5	25	38	64.8	1.477
220	22	30	45	77.4	1.247

Tab. 7-9: DC reactors for s with 460 V power supply

7.4.3 THD

Motor drive spec.	With	out built-in DC rea	actor	With built ir	DC reactor
Reactor spec.	3 % Input AC reactor	5 % Input AC reactor	4 % DC reactor	3 % Input AC reactor	5 % Input AC reactor
5th	38.5 %	30.8 %	25.5 %	27.01 %	25.5 %
7th	15.3 %	9.4 %	18.6 %	9.54 %	8.75 %
11th	7.1 %	6.13 %	7.14 %	4.5 %	4.2 %
13th	3.75 %	3.15 %	0.48 %	0.22 %	0.17 %
THDi	43.6 %	34.33 %	38.2 %	30.5 %	28.4 %

Tab. 7-10: Harmonic distortion with different AC and DC reactors

NOTE

THDi may have some difference due to different installation conditions and environment. According to IEC 61000-3-12, DC reactor is designed with 4 % system impedance, and AC reactor is designed with 3 % system impedance.

7.5 Zero phase reactors

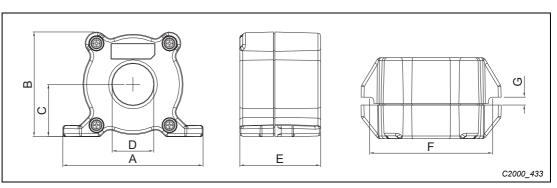


Fig. 7-1: Dimension drawing

UNIT: mm (inch)

Model	Α	В	С	D	E	F	G (Ø)	Torque
RF008X00A	98 (3.858)	73 (2.874)	36.5 (1.437	29 (1.142)	56.5 (2.224)	86 (3.386)	5.5 (0.217)	< 10 kgf/cm ²
RF004X00A110	110 (4.331)	87.5 (3.445)	43.5 (1.713)	36 (1.417)	53 (2.087)	96 (3.780)	5.5 (0.217)	< 10 kgf/cm ²

Tab. 7-11: Dimensions

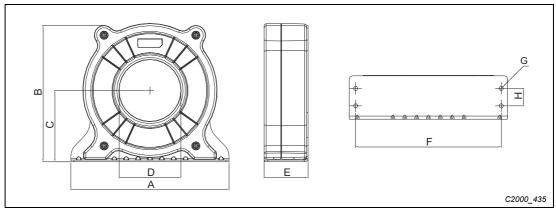


Fig. 7-2: Dimension drawing

UNIT: mm (inch)

Model	Α	В	С	D	E	F	G (Ø)	н	Torque
RF002X00A	200 (7.874)	172.5 (6.791)	90 (3.543)	78 (3.071)	55.5 (2.185)	184 (7.244)	5.5 (0.217)		<45 kgf/cm ²

Tab. 7-12: Dimensions

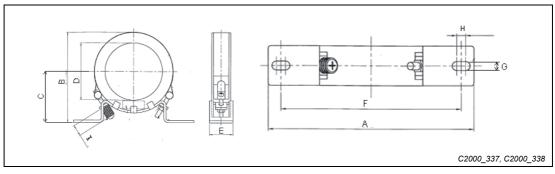


Fig. 7-3: Dimension drawing

UNIT: mm (inch)

Model A	_							
	. В	C	D	E	F	G (Ø)	н	1
RF300X00A 24 (9.4	1 217 88) (8.543)	114 (4.488)	155 (6.102)	42 (1.654)		6.5 (0.256)		20 (0.787)

Tab. 7-13: Dimensions

Reactor model (note)	Recommen	ided wire size	Wiring method	Qty	Corresponding motor drives
RF008X00A	\leq 8 AWG	\leq 8.37 mm ²	Diagram A	1	VFD007C23A; VFD015C23A; VFD022C23A; VFD037C23A; VFD007C43A; VFD015C43A; VFD022C43A; VFD037C43A; VFD040C43A VFD055C43A
RF004X00A	\leq 4 AWG	\leq 21.15 mm ²	Diagram A	1	VFD055C23A; VFD075C23A; VFD110C23A; VFD110C43A; VFD150C43A; VFD075C43A; VFD110C43A; VFD150C43A
RF002X00A	\leq 2 AWG	\leq 33.62 mm ²	Diagram A	1	VFD150C23A; VFD185C23A; VFD220C23A; VFD300C23A; VFD370C23A; VFD185C43A; VFD220C43A; VFD300C43A; VFD370C43A; VFD450C43A; VFD550C43A; VFD750C43A
RF300X00A	≤ 300 MCM	$\leq 152 \text{ mm}^2$	Diagram A	1	VFD450C23A; VFD550C23A; VFD750C23A; VFD900C23A; VFD900C43A; VFD1100C43A; VFD1320C43A; VFD1600C43A; VFD1850C43A; VFD2200C43A; VFD2800C43A; VFD3150C43A; VFD3550C43A; VFD4500C43A

Tab. 7-14: Wire gauge

NOTE 600 V insulated cable wire.

Diagram A

Please put all wires through at least one core without winding.

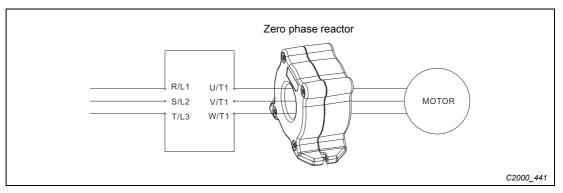


Fig. 7-4: Wiring of the zero phase reactor

- NOTES
- The table 7-14 gives approximate wire size for the zero phase reactors but the selection is ultimately governed by the type and diameter of cable fitted i.e. the cable must fit through the center hole of zero phase reactors.
- Only the phase conductors should pass through, not the earth core or screen.
- When long motor output cables are used an output zero phase reactor may be required to reduce radiated emissions from the cable.

7.6 EMI filter

				CE cabl	e length	Radiation emission
Model	Input current	Applicable EMI filter	Zero phase reactor	Default carri	Default carrier frequency	
				EN61800-3 C1	EN61800-3 C2	EN61800-3 C2
VFD007C23A	6.4 A		RF008X00A	50 m	100 m	Pass
VFD015C23A	12 A	EMF021A23A		50 m	100 m	Pass
VFD022C23A	16 A	EIVIFUZ IAZSA		50 m	100 m	Pass
VFD037C23A	20 A			50 m	100 m	Pass
VFD055C23A	28 A	EMF056A23A	RF004X00A	50 m	100 m	Pass
VFD075C23A	36 A			50 m	100 m	Pass
VFD110C23A	52 A			50 m	100 m	Pass
VFD150C23A	76 A			50 m	100 m	Pass
VFD185C23A	83 A	KMF3100A		50 m	100 m	Pass
VFD220C23A	99 A		RF002X00A	50 m	100 m	Pass
VFD300C23A	124 A	B84143D0150R127		50 m	100 m	Pass
VFD370C23A	143 A	B04145D0150K127		50 m	100 m	Pass
VFD450C23A	171 A			50 m	100 m	Pass
VFD550C23A	206 A	B84143B0250S020	RF300X00A	50 m	100 m	Pass
VFD750C23A	245 A		KI 300A00A	50 m	100 m	Pass
VFD900C23A	331 A	B84143B0400S020		50 m	100 m	Pass

Tab. 7-15: Assignment of EMI filters (1)

				CE cabl	e length	Radiation emission
Model	Input current	Applicable EMI filter	Zero phase reactor	Default carri	er frequency	Default carrier frequency
				EN61800-3 C1	EN61800-3 C2	EN61800-3 C2
VFD007C43A	4.3 A			50 m	100 m	Pass
VFD015C43A	5.9 A	EMF014A43A		50 m	100 m	Pass
VFD022C43A	8.7 A		RF008X00A	50 m	100 m	Pass
VFD037C43A	14 A		KF000A00A	50 m	100 m	Pass
VFD040C43A	15.5 A	EMF018A43A		50 m	100 m	Pass
VFD055C43A	17 A			50 m	100 m	Pass
VFD075C43A	20 A			50 m	100 m	Pass
VFD110C43A	26 A	EMF039A43A	RF004X00A	50 m	100 m	Pass
VFD150C43A	35 A			50 m	100 m	Pass
VFD185C43A	40 A	KMF370A		50 m	100 m	Pass
VFD220C43A	47 A			50 m	100 m	Pass
VFD300C43A	63 A			50 m	100 m	Pass
VFD370C43A	74 A		RF002X00A	50 m	100 m	Pass
VFD450C43A	101 A	B84143D0150R127		50 m	100 m	Pass
VFD550C43A	114 A	B04143D0150R127		50 m	100 m	Pass
VFD750C43A	157 A			50 m	100 m	Pass
VFD900C43A	167 A	D04442D0200D427		50 m	100 m	Pass
VFD1100C43A	207 A	B84143D0200R127		50 m	100 m	Pass
VFD1320C43A	240 A			50 m	100 m	Pass
VFD1600C43A	300 A			50 m	100 m	Pass
VFD1850C43A	380 A	MIF3400B		50 m	100 m	Pass
VFD2200C43A	400 A		RF300X00A	50 m	100 m	Pass
VFD2800C43A	494 A			50 m	100 m	Pass
VFD3150C43A	555 A	MIF3800		50 m	100 m	Pass
VFD3550C43A	625 A			50 m	100 m	Pass
VFD4500C43A	866 A	B84143B1000S020		50 m	100 m	Pass

Tab. 7-15: Assignment of EMI filters (2)

EMI filter installation

All electrical equipment, including AC motor drives, will generate high-frequency/low-frequency noise and will interfere with peripheral equipment by radiation or conduction when in operation. By using an EMI filter with correct installation, much interference can be eliminated. It is recommended to use DELTA EMI filter to have the best interference elimination performance.

We assure that it can comply with following rules when AC motor drive and EMI filter are installed and wired according to user manual:

- EN61000-6-4
- EN61800-3: 1996
- EN55011 (1991) Class A group 1 (1st environment, restricted distribution)

General precaution

- ① EMI filter and AC motor drive should be installed on the same metal plate.
- ② Please install AC motor drive on footprint EMI filter or install EMI filter as close as possible to the AC motor drive.
- ③ Please wire as short as possible.
- ④ Metal plate should be grounded.
- (5) The cover of EMI filter and AC motor drive or grounding should be fixed on the metal plate and the contact area should be as large as possible.

Choose suitable motor cable and precautions

Improper installation and choice of motor cable will affect the performance of EMI filter. Be sure to observe the following precautions when selecting motor cable.

- (1) Use the cable with shielding (double shielding is the best).
- (2) The shielding on both ends of the motor cable should be grounded with the minimum length and maximum contact area.
- ③ Remove any paint on metal saddle for good ground contact with the plate and shielding.

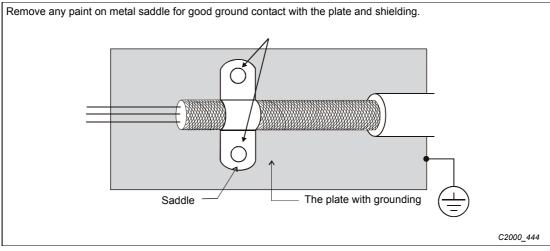


Fig. 7-5: Grounding of a shielded cable

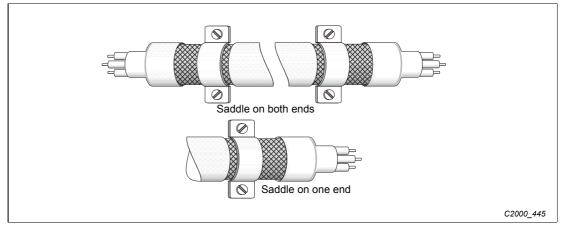


Fig. 7-6: Mounting of the saddles

The length of motor cable

When motor is driven by an AC motor drive of PWM type, the motor terminals will experience surge voltages easily due to components conversion of AC motor drive and cable capacitance. When the motor cable is very long (especially for the 460 V series), surge voltages may reduce insulation quality. To prevent this situation, please follow the rules below:

- Use a motor with enhanced insulation.
- Connect an output reactor (optional) to the output terminals of the AC motor drive.
- The length of the cable between AC motor drive and motor should be as short as possible (10–20 m or less)
- For models 5.5 kW and above:

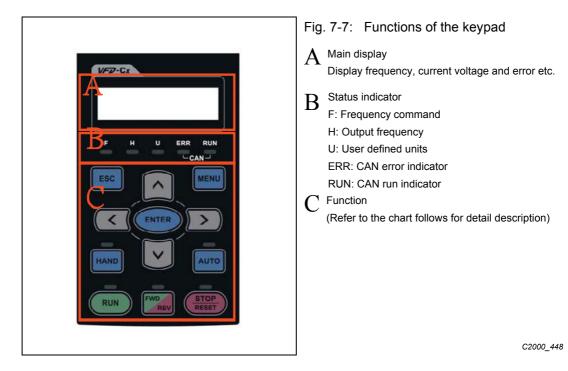
Insulation level of motor	1000 V	1300 V	1600 V
460 V AC input voltage	20 m	100 m	400 m
230 V AC input voltage	400 m	400 m	400 m

Tab. 7-16: Length of motor cable

■ For models 3.7 kW and less.

Insulation level of motor	1000 V	1300 V	1600 V
460 V AC input voltage	20 m	100 m	400 m
230 V AC input voltage	400 m	400 m	400 m

Tab. 7-17: Length of motor cable


NOTES

Never connect phase lead capacitors or surge absorbers to the output terminals of the AC motor drive:

- If the length is too long, the stray capacitance between cables will increase and may cause leakage current. It will activate the protection of over current, increase leakage current or not insure the correction of current display. The worst case is that AC motor drive may damage.
- If more than one motor is connected to the AC motor drive, the total wiring length is the sum of the wiring length from AC motor drive to each motor.
- For the 460 V series AC motor drive, when an overload relay is installed between the drive and the motor to protect motor over heating, the connecting cable must be shorter than 50 m. However, an overload relay malfunction may still occur. To prevent the malfunction, install an output reactor (optional) to the drive or lower the carrier frequency setting (Pr. 00-17).
- When a thermal O/L relay protected by motor is used between AC motor drive and motor, it may malfunction (especially for 460 V series), even if the length of motor cable is only 165 ft (50 m) or less. To prevent it, please use AC reactor and/or lower the carrier frequency (Pr. 00-17 PWM carrier frequency).

7.7 Digital keypad

7.7.1 KPC-CE01

Кеу	Description
ESC	ESC key Press ESC key to return to the previous page. It also functions as a return to last category key in the sub-menu.
MENU	Menu key Press MENU key under any condition will return to the main MENU. Menu content: ① Parameter detail
MENO	② Copy parameter
	③ Keypad locked
	④ PLC function
ENTER	ENTER key Press ENTER and go to the next level. If it is the last level then press ENTER to execute the command.
HAND	 HAND ON key HAND key will operates according to the parameter settings when the source of HAND master frequency command and the source of HAND operation command is properly set. The factory setting of the source command for frequency and operation are from the digital keypad.
	② Press HAND key in stop status, the drive setting switches to the parameter setting of HAND. Press HAND key in during operation, the drive will come to stop then switches to the parameter setting of HAND.
	③ When process complete: H/A LED ON.

Tab. 7-18: Keys of the keypad

Кеу	Description
AUTO	 Auto operation key AUTO function executes according to the parameter settings of the source of AUTO frequency and AUTO operation. The factory setting is the external terminal (source of operation is 4–20 mA).
	② Press the ATUO key in stop status, the drivel switches to auto-setting. Press the auto key during operation status, the drivel will come to stop and switch to auto-setting.
	③ When process complete: H/A LED is OFF.
FWD/REV	 Operation direction key FWD/REV key controls the operation direction but will NOT activate the drive. FWD: forward, REV: reverse.
	② The drive operates in the direction as shown by the LED light.
	Start key This button is functional only when the keypad is the source of the command.
RUN	② This button allows the motor drive to run by following its settings. See description of LED functions for LED status.
	③ Press repeatedly the "RUN" button is allow while the motor drive is stopping.
	Stop key STOP key has the highest priority in command.
STOP	② Press STOP key, the drive will come to stop under any condition.
	(3) The RESET key can be used to reset the drive when faults occur. If the RESET key is not responding, check MENU \rightarrow Fault Records and check the most recent fault.

Tab. 7-18: Keys of the keypad

Descriptions of LED functions

Descriptions of El			
LED		Descriptions	
RUN	Steady ON: operation indicator of the AC motor drive, including DC brake, zero speed, standby, restart after fault and speed search. Blinking: drive is decelerating to stop or in the status of base block. Steady OFF: drive doesn't execute the operation command.		
STOP RESET	Blinking: drive is in the	ator of the AC motor drive. e standby status. esn't execute "STOP" command.	
FWD REV	Operation direction LED [green light = forward]; [red light = reversely] Steady ON: the drive is running forward. Blinking: the drive is changing direction. Steady OFF: the drive is running reversely.		
	RUN (green light):		
	(8 8 7	Condition/state	
	LED status OFF	CANopen at initial No LED	
		CANopen at pre-operation	
CANopen – "RUN"	Blinking	OFF	
		C2000_450_c	
	Single flash	$\begin{array}{c} ON \\ OFF \end{array} = \begin{array}{c} 200 \\ ms \end{array} \xrightarrow{200} 1000 \\ ms \end{array} \xrightarrow{1000} C2200 450 d \end{array}$	
	ON	CANopen at operation status No LED	
	ERR (red light):		
	LED status	Condition/state	
	OFF	No Error	
		One message fail	
	Single flash	$\begin{array}{c} ON \\ \hline 200 \\ OFF \end{array} \xrightarrow{200 \\ ms} \end{array} \xrightarrow{1000} \\ \hline ms \\ ms \\ \hline ms \\ \hline c2000 \\ 450 \\ e \end{array}$	
		Guarding fail or heartbeat fail	
CANopen – "ERR"	Double flash	ON 200 200 1000 OFF ms ms ms ms	
		C2000_450_f SYNC fail	
	Triple flash	$ON \xrightarrow{200} \underbrace{200}_{ms} \underbrace{200}_{ms} \underbrace{200}_{ms} \underbrace{200}_{ms} \underbrace{200}_{ms} \underbrace{1000}_{ms} \underbrace{1000}_{ms$	
	ON	Bus off	

Tab. 7-19: LED functions

7.7.2 Dimension

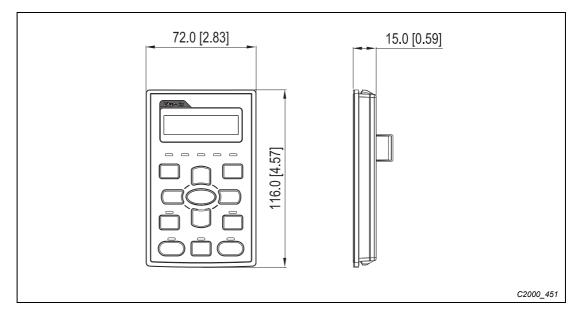
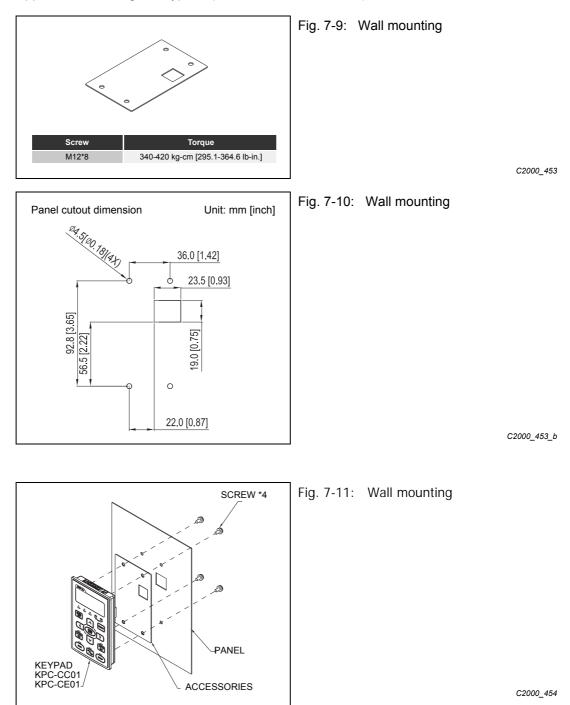
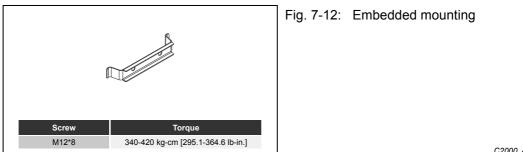


Fig. 7-8: Dimensions of the digital keypad

7.7.3 RJ45 extension lead for digital keypad

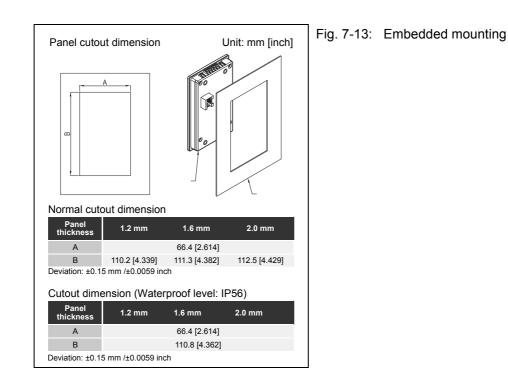

Part #	Description
CBC-K3FT	3 feet RJ45 extension lead (approximately 0.9 m)
CBC-K5FT	5 feet RJ45 extension lead (approximately 1.5 m)
CBC-K7FT	7 feet RJ45 extension lead (approximately 2.1 m)
CBC-K10FT	10 feet RJ45 extension lead (approximately 3 m)
CBC-K16FT	16 feet RJ45 extension lead (approximately 4.9 m)

Tab. 7-20: RJ45 extension leads


7.8 Panel mounting (MKC-KPPK)

For MKC-KPPK model, user can choose wall mounting or embedded mounting, protection level is IP56.

Applicable to the digital keypads (KPC-CC01 & KPC-CE01).



C2000_453_a

C2000_453_c

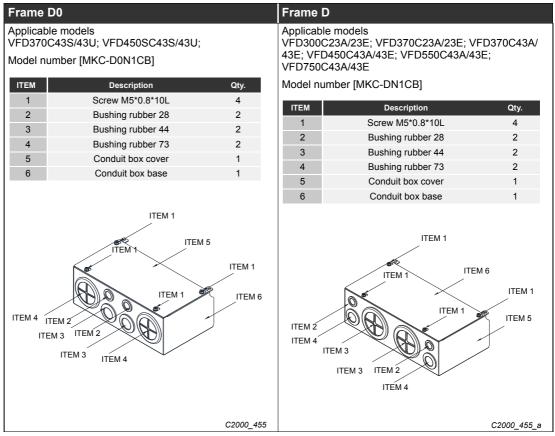

KEYPAD KPC-CC01 KPC-CE01 SCREW *4 ACCESSORIES

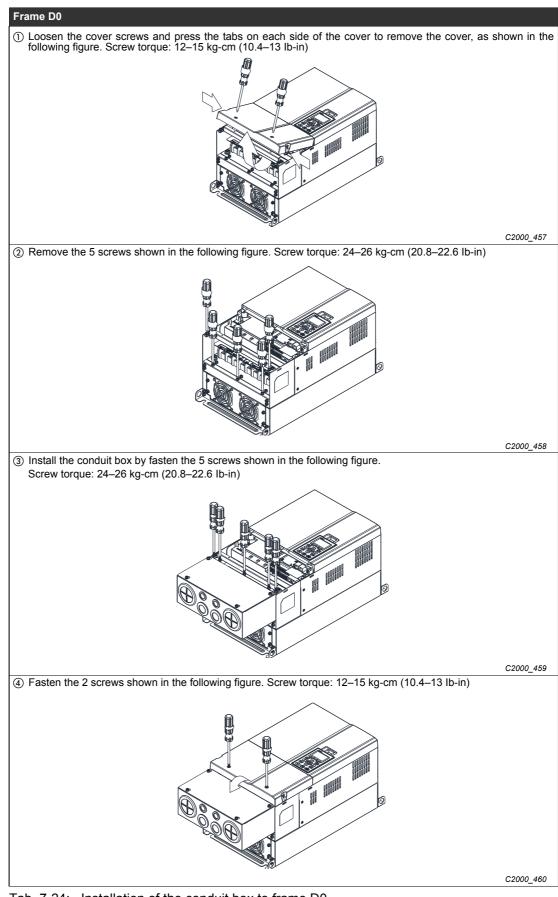
Fig. 7-14: Embedded mounting

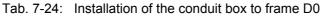
C2000_454_a, C2000_454_b

7.9 Conduit box kit

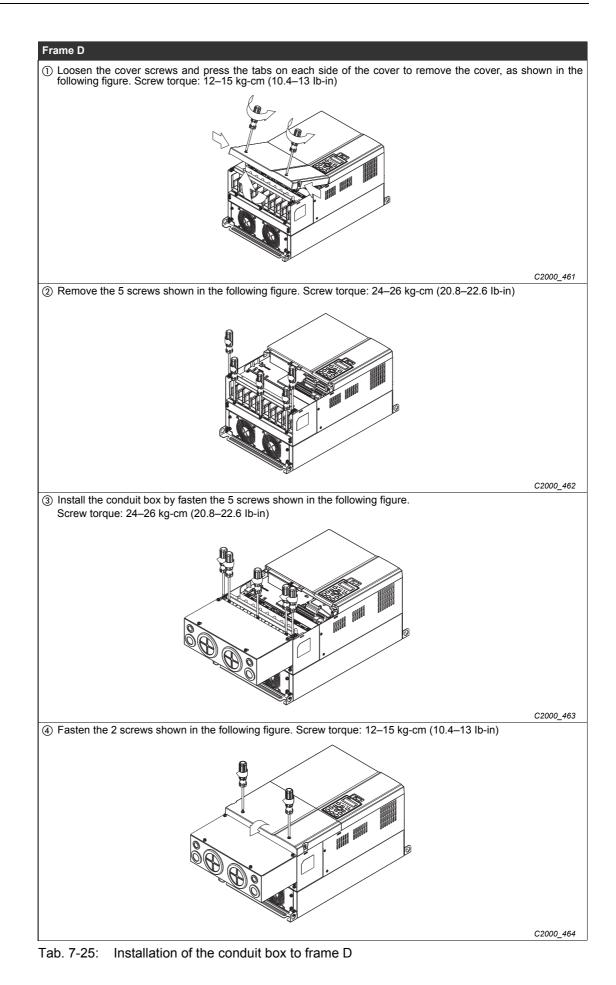
■ Appearance

Tab. 7-21: Conduit box for frames D0 and D

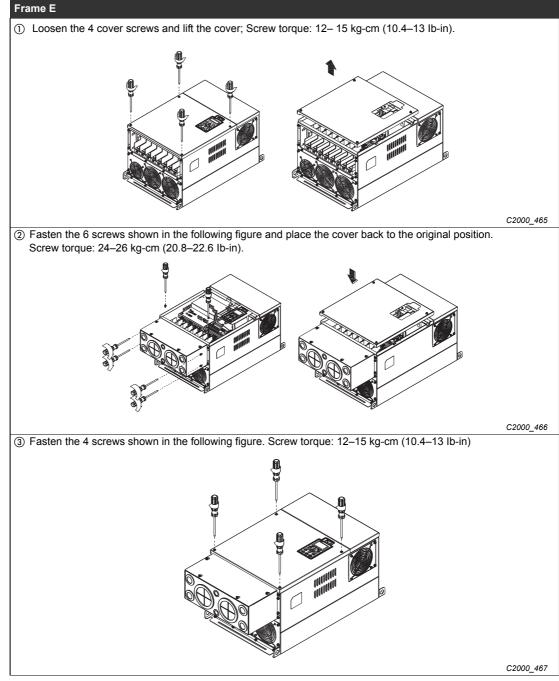

Applicable models FD370C43S/43U; VFD450SC43S/43U; odel number [MKC-D0N1CB] TEM Oescription Qtv 1 Screw M5*0.8*10L 6 2 Bushing rubber 28 2 3 Bushing rubber 44 4 4 Bushing rubber 100 2 5 Conduit box cover 1 6 Conduit box base 1				Frame F		
Model number [MKC-DUNTCB] Model number [MKC-FN1CB] Model number [MKC-FN1CB] Model number [MKC-FN1CB] ITEM 5 Screw M5*0.8*10L 6 Conduit box cover 1 Screw M5*0.8*10L 8 Screw M5				VFD900C23	A/23E; VFD1320C43A/43E;	
ITEM Description Qty. 1 Screw M5*0.8*10L 6 2 Bushing rubber 28 2 3 Bushing rubber 44 4 4 Bushing rubber 100 2 5 Conduit box cover 1 6 Conduit box base 1	odel numb	per [MKC-D0N1CB]				
Image: 1 Screw M5*0.8*10L 6 2 Bushing rubber 28 2 3 Bushing rubber 44 4 4 Bushing rubber 100 2 5 Conduit box cover 1 6 Conduit box base 1 7 TEM 1 0 0 0 1 1 Conduit box base 1	ITEM	Description	Qty.	wodel numb	er [MKC-FN1CB]	
2 Bushing rubber 20 2 3 Bushing rubber 44 4 4 Bushing rubber 100 2 5 Conduit box cover 1 6 Conduit box base 1 TTEM 2 TTEM 4 TTEM 4 TTEM 5 TTEM 5 TTEM 5 TTEM 5 TTEM 5 TTEM 6 TTEM 7 TTEM 7 T			-	ITEM	Description	Qty.
3 Bushing rubber 44 4 4 Bushing rubber 100 2 5 Conduit box cover 1 6 Conduit box base 1 7 TEM 1 TEM 1 1 TEM 3 TEM 1 1 TEM 4 TEM 2 1 TEM 5 TEM 6 1 TEM 4	2	Bushing rubber 28	2	1	Screw M5*0.8*10L	8
4 Bushing rubber 100 2 5 Conduit box cover 1 6 Conduit box base 1 6 Conduit box cover 1 6 Conduit box base 1 7 TEM 5 ITEM 7 1 ITEM 7 ITEM 7	3	Bushing rubber 44	4	2	Bushing rubber 28	2
6 Conduit box base 1 6 Conduit box base 1 6 Conduit box cover 1 6 Conduit box base 1 1 6 Conduit box base 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	Bushing rubber 100	2	3	Bushing rubber 44	4
6 Conduit box base 1 6 Conduit box base 1 6 Conduit box base 1 1 TEM 1	5	Conduit box cover	1	4	Bushing rubber 100	2
ITEM 1 ITEM 1 ITEM 3 ITEM 5 ITEM 4 ITEM 5 ITEM 5 ITEM 5 ITEM 5 ITEM 5 ITEM 6 ITEM 1 ITEM 3 ITEM 3 ITEM 3 ITEM 3 ITEM 3 ITEM 4 ITEM 3 ITEM 4 ITEM 4	6	Conduit box base	1	5	Conduit box cover	1
	I.		i		े ।тем 5	9.9

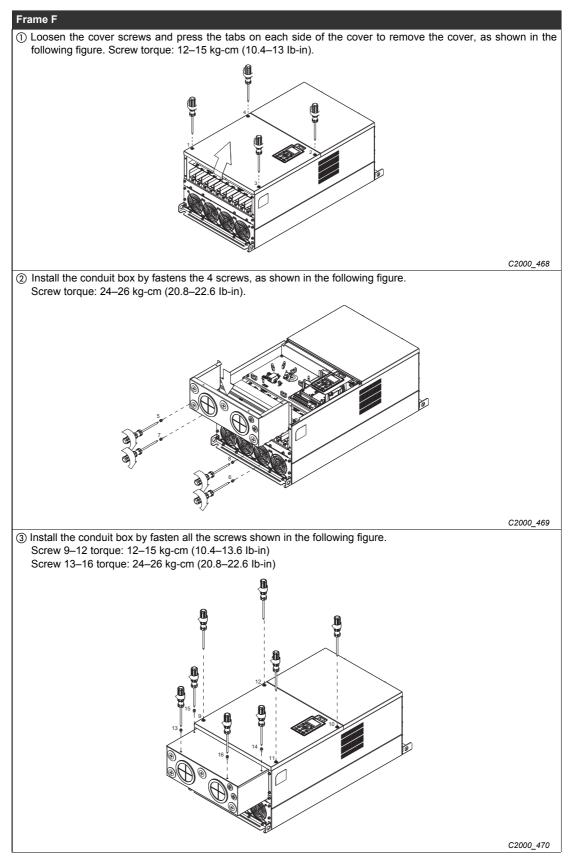

Tab. 7-22: Conduit box for frames E and F

Frame (G	
	e models	
	0C43A/43E; VFD2200C43A/43E	
Model nu	mber [MKC-GN1CB]	
ITEM	Description	Qty.
1	Screw M5*0.8*10L	12
2	Bushing Rubber 28	2
3	Bushing Rubber 44	2
4	Bushing Rubber 130	3
5	Conduit box cover	1
6	Conduit box base	1
ITEM 2 ITEM 3 ITEM 4 ITEM 4 ITEM 4 ITEM 4		
		C2000_456

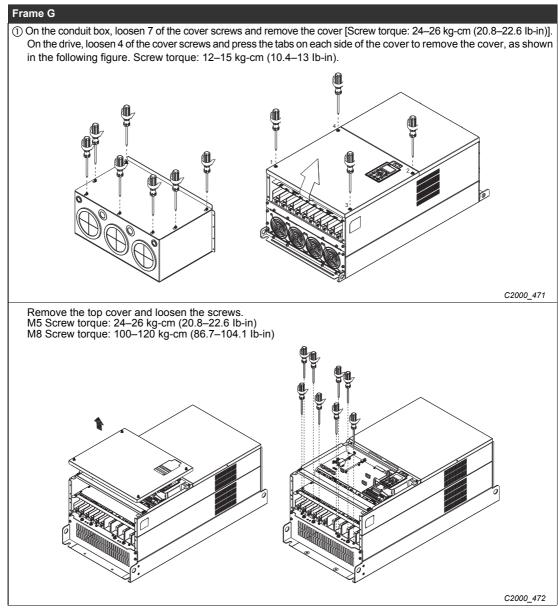

Tab. 7-23: Conduit box for frame G

Conduit box installation

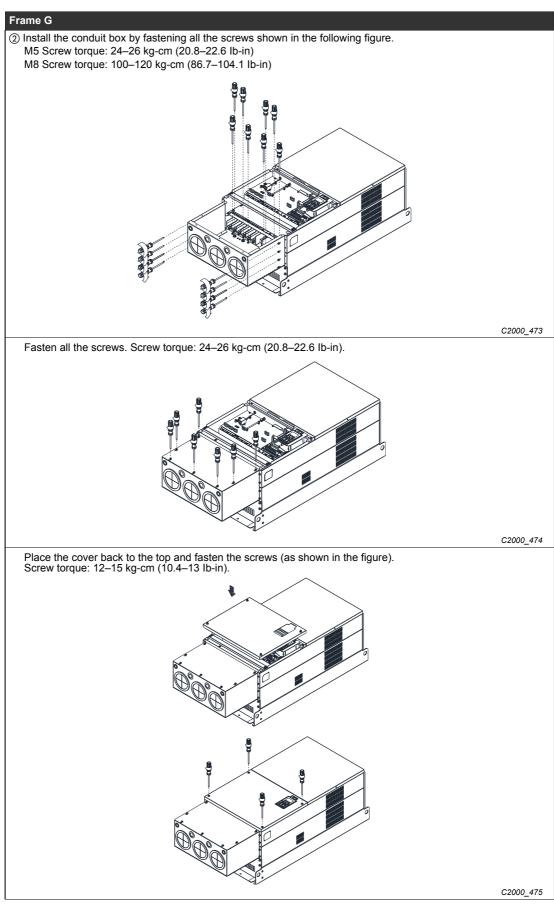




C2000 series

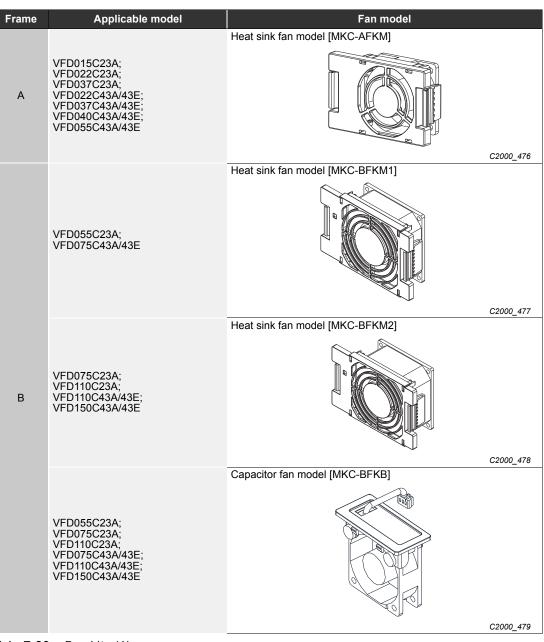


Tab. 7-26: Installation of the conduit box to frame E



Tab. 7-27: Installation of the conduit box to frame F

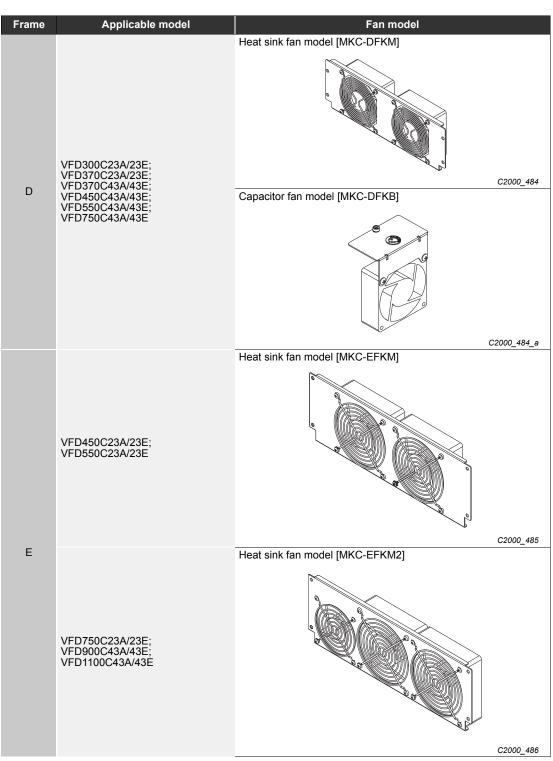
Tab. 7-28: Installation of the conduit box to frame G



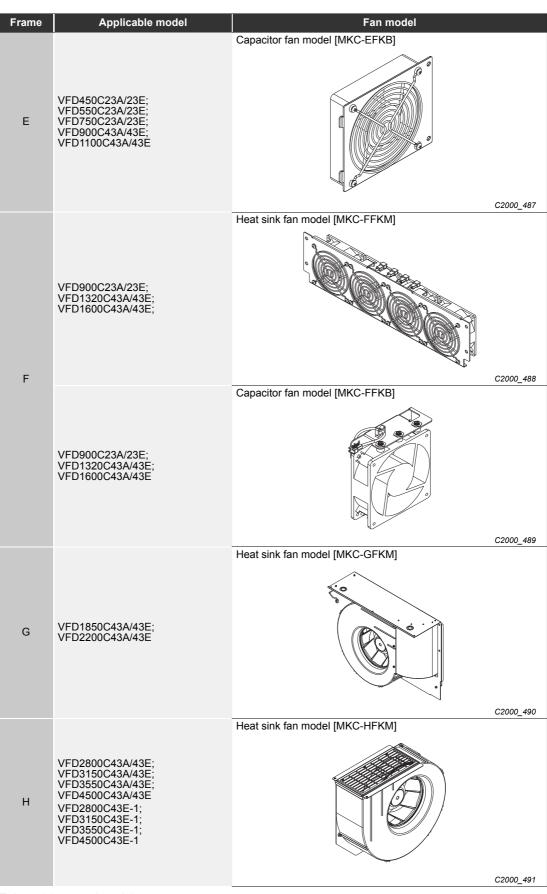
Tab. 7-29: Installation of the conduit box to frame G


7.10 Fan kit

Frames of the fan kit



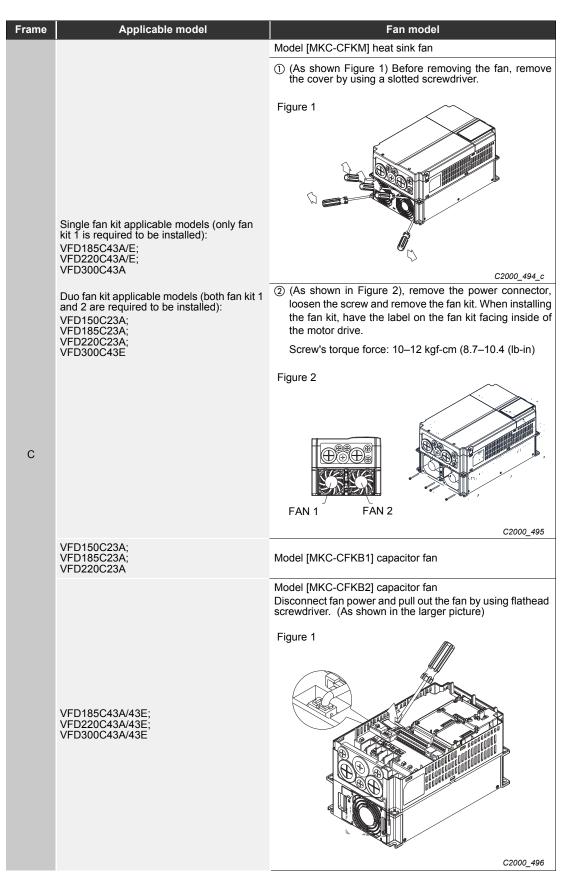
Tab. 7-30: Fan kits (1)



Tab. 7-30: Fan kits (2)

Tab. 7-30: Fan kits (3)

Tab. 7-30: Fan kits (4)



Tab. 7-31:Removal of fan kits (1)

Frame	Applicable model	Fan model
		Model [MKC-BFKM2] heat sink fan
		 Refer to Figure 1, press the tab on both side of the fan to successfully remove the fan.
	VFD075C23A; VFD110C23A;	C2000_494
	VFD110C43A/43E; VFD150C43A/43E	 Disconnect the power terminal before removing the fan. (As shown below.)
В		C2000_494_8
	VFD055C23A; VFD075C23A; VFD075C43A/43E; VFD110C23A; VFD110C43A/43E; VFD150C43A/43E	Model [MKC-BFKB] capacitor fan Disconnect fan power and pull out the fan by using flathead
		screwdriver. (As shown in the larger picture)
		C2000_494_b

Tab. 7-31: Removal of fan kits (2)

Tab. 7-31: Removal of fan kits (3)

Fromo	Annicable medal	For model
Frame	Applicable model	Fan model Model [MKC-DFKB] capacitor fan
		 Model [MKC-DFKB] capacitor fan Loosen screw 1 and screw 2, press the tab on the right and left to remove the cover, follow the direction the arrows indicate. Press on top of digital keypad to properly remove it. Screw 1, 2 [Torque: 12–15 kgf-cm (8.6–10.4 lb-in)] Figure 1 <i>C2000_497</i> (2) (Figure 2) Loosen screw 3, press the tab on the right and the left to remove the cover.
		Screw 3 [Torque: 6-8 kgf-cm (5.2-6.9 lb-in)]
D0	VFD370C43S/43U; VFD450C43S/43U	Figure 2 Figure 2
		C2000_497_b
	VFD370C43S/43U; VFD450C43S/43U	 Model [MKC-D0FKM] heat sink fan ① Loosen the screw and remove the fan kit. [Screw torque: 24–26 kgf-cm (20.8–22.6 lb-in)] ② (As shown Figure 1) Before removing the fan, remove the cover by using a slotted screwdriver
		Figure 1
Tab 73	1: Removal of fan kits (4)	C2000_498

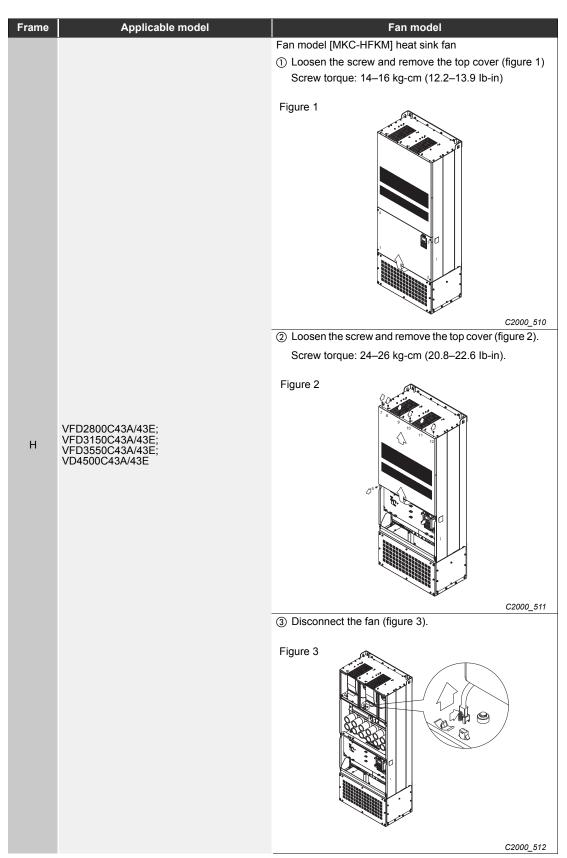
Tab. 7-31: Removal of fan kits (4)

Fan model Model [MKC-DFKB] capacitor fan
 ① Loosen screw 1 and screw 2, press the on the right and the left to remove the cover, follow the direction the arrows indicate. Press on top of digital keypad to properly remove it. Screw 1, 2 [Torque : 12–15 kgf-cm (10.4–13 lb-in)] Figure 1 Figure 1 C2000_499 ② (Figure 2) Loosen screw 3, press the tab on the right and the left to remove the cover.
Screw 3, 4 [Torque : 6–8 kgf-cm (5.2–6.9 lb-in)] Figure 2
③ Loosen screw 5 (figure 3) and disconnect fan power and pull out the fan. (As shown in the enlarged picture 3) Screw 5 [Torque : 10–12 kgf-cm (8.6–10.4 lb-in)] Figure 3 C2000_499_b
 Model [MKC-DFKM] heat sink fan ① Loosen the screw and remove the fan kit. [Screw torque: 24–26 kgf-cm (20.8–22.6 lb-in)] ② (As shown Figure 1) Before removing the fan, remove the cover by using a slotted screwdriver Figure 1 Figure 1 Comparison of the screw driver Figure 1 Comparison of the screw driver Comparison of the screw driver

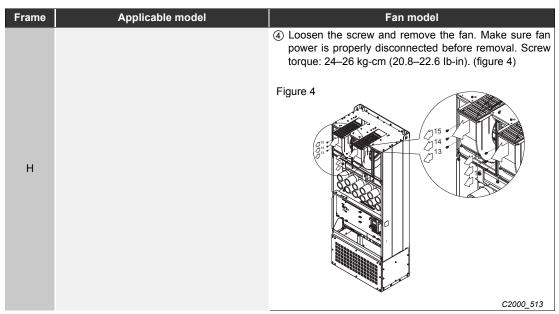
Tab. 7-31: Removal of fan kits (5)

Frame	Applicable model	Fan model
Traine		Model [MKC-EFKM1] heat sink fan
		 Loosen screw 1–4 (figure 1) and disconnect fan power and pull out the fan. (As shown in the enlarged picture 3)
		Screw1-4 [Torque : 24-26 kgf-cm (20.8-22.6 lb-in)]
		Figure 1
		C2000_501
		 Model [MKC-EFKM2] heat sink fan (2) Loosen screw 1–4 (figure 2) and disconnect fan power and pull out the fan. (As shown in the enlarged picture 2) Screw1–4 [Torque : 24–26 kgf-cm (20.8–22.6 lb-in)]
E	VFD450C23A/23E; VFD550C23A/23E; VFD750C23A/23E; VFD900C43A/43E; VFD1100C43A/43E	Figure 2
		C2000_501_a
		Model [MKC-EFKB] capacitor fan
		(3) 1 Loosen screw 1–2 (figure 3) and disconnect fan power and pull out the fan. (As shown in the enlarged picture 3) Screw1–2 [Torque : 24–26 kgf-cm (20.8–22.6 lb-in)]
		Figure 3
		C2000_502

Tab. 7-31: Removal of fan kits (6)


Frame	Applicable model	Fan model
F	VFD900C23A/23E; VFD1320C43A/43E; VFD1600C43A/43E;	Fan model [MKC-FFKM] heat sink fan
		Loosen the screws and plug out the power of fan before removing (figure 1). Screw torque: 12–15 kg-cm (10.4–13 lb-in)
		Figure 1
		C2000_503
		Fan model [MKC-FFKB] capacitor fan
		 Loosen the screw (figure 1) and removes the cover. Screw torque: 14–16 kg-cm (12.2–13.9 lb-in).
		Figure 2
		C2000_504
		 2 Loosen the screw (figure 2) and removes the cover.
		Screw torque: 24–26 kg-cm (20.8–22.6 lb-in).
		Figure 3
		③ Loosen the screws and remove the fan. (figure 3 and figure 4) Screw torque: 24–26 kg-cm (20.8–22.6 lb-in).
		Figure 4
		C2000_506

Tab. 7-31: Removal of fan kits (7)


Frame	Applicable model	Fan model
		 Fan model [MKC-GFKM] heat sink fan 1) Loosen the screw (figure 1) and remove the cover. Screw torque: 12–15 kg-cm (10.4–13 lb-in).
		Figure 1
		C2000_507
		② For 1–8 shown in the figure 2: Loosen the screws
		Screw torque: 35–40 kg-cm (30.4–34.7 lb-in)
		For 9–10 shown in the figure 2: Loosen the screws and removes the cover.
		Screw M4 torque: 14-16 kg-cm (12.2-13.9 lb-in).
		Figure 2
G	VFD1800C43A/43E; VFD2200C43A/43E	3 Loosen screw 1, 2, 3 and remove the protective ring (as shown in figure 3) Screw torque: 14–16 kg-cm
		(12.2–13.9 lb-in).
		Figure 3
		④ Lift the fan by putting your finger through the protective holes, as indicates in 1 and 2 on the figure 4.
		Figure 4
Tob 7.2	1: Domoval of fan kits (9)	C2000_509

Tab. 7-31: Removal of fan kits (8)

Tab. 7-31: Removal of fan kits (9)

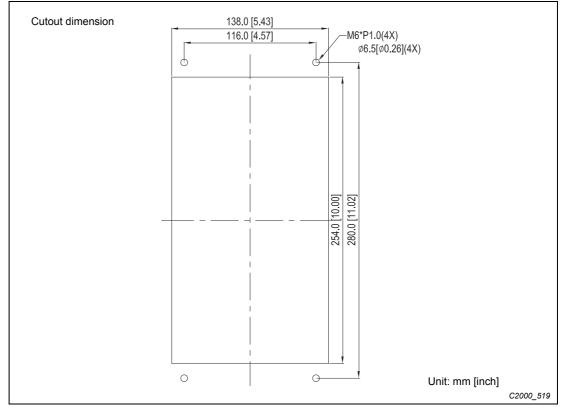
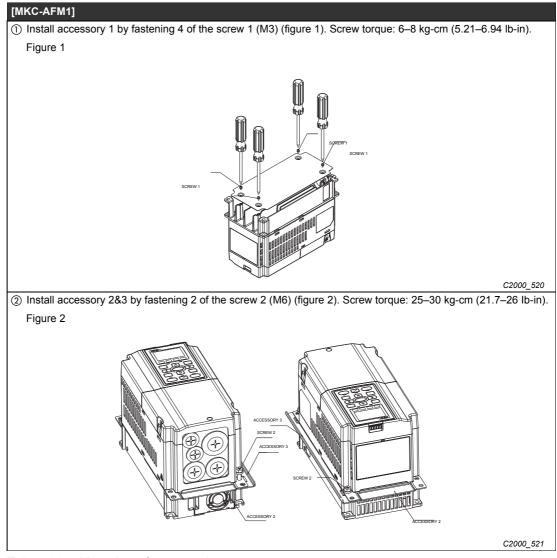
Tab. 7-31: Removal of fan kits (10)

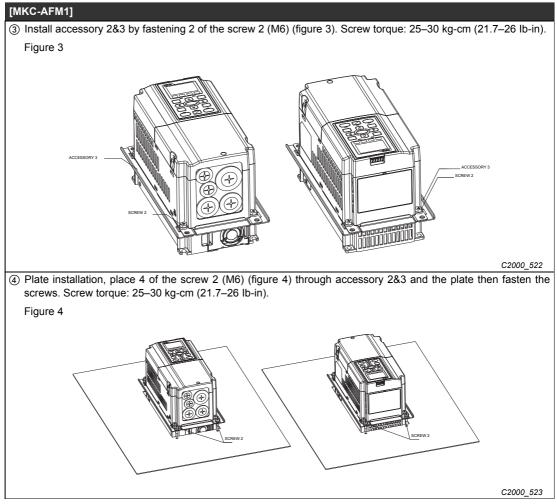
7.11 Flange mounting kit

Applicable Models, Frame A-F

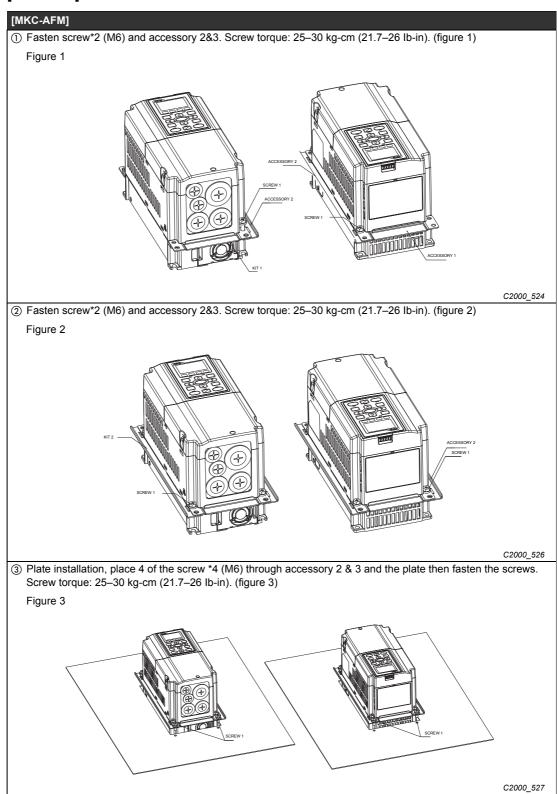
Frame	Applicable model	Mounting Kit
		[MKC-AFM1]
		1x Accessories 1 2x Accessories 2 2x Accessories 3
Α	VFD015C23A; VFD022C23A; VFD022C43A/43E	
		C2000_514, C2000_515, C2000_516
		Screw 1 *4 M3*P 0.5; L = 6 mm
A		2 *8 M6*P 1.0; L = 16 mm
		[MKC-AFM]
	VFD007C23A; VFD007C43A/43E; VFD015C43A/43E; VFD037C23A; VFD037C43A/43E; VFD040C43A/43E; VFD055C43A/43E	2x Accessory 2 2x Accessory 3
		C2000_517, C2000_518
		Screw 1 *8 M6*P 1.0; L = 16 mm

Tab. 7-32: Flange mounting kits for AC drives

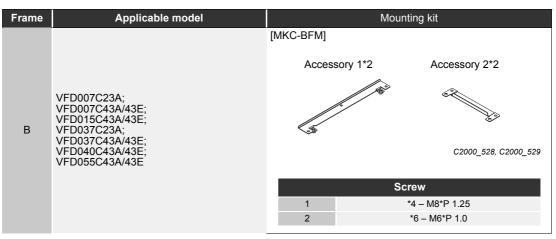




Fig. 7-15: Cutout dimension for plate installation

[MKC-AFM1] Installation



Tab. 7-33: Mounting of accessories


Tab. 7-34: Mounting of accessories and plate installation

[MKC-AFM] Installation

Tab. 7-35: Mounting of accessories and plate installation

Tab. 7-36: Flange mounting kits for AC drive units

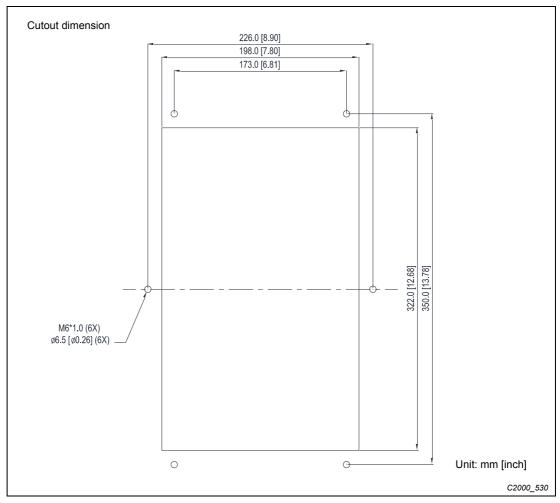
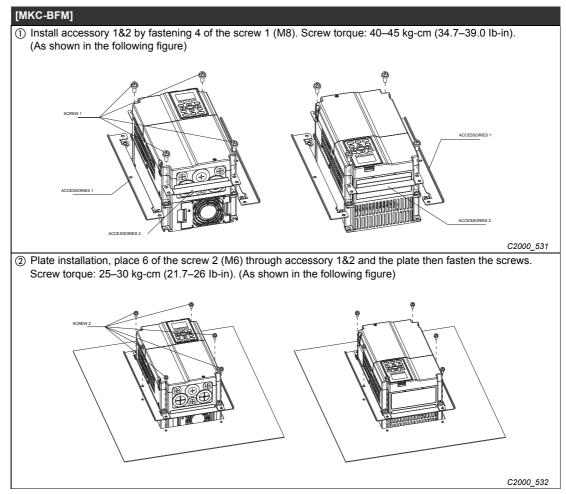



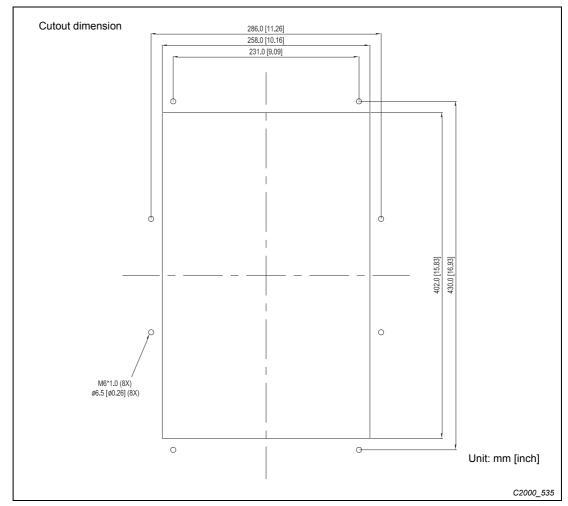
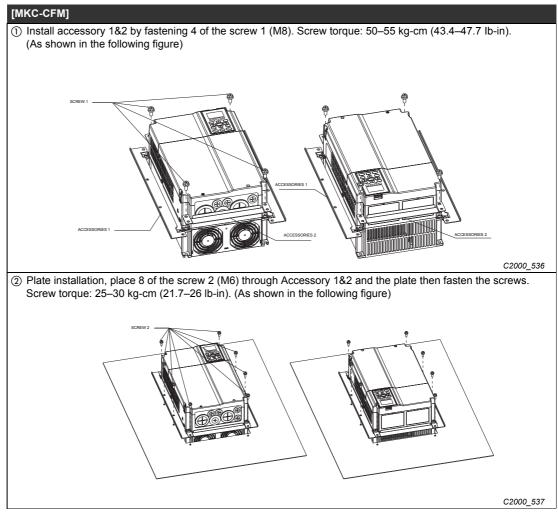
Fig. 7-16: Cutout dimension for plate installation

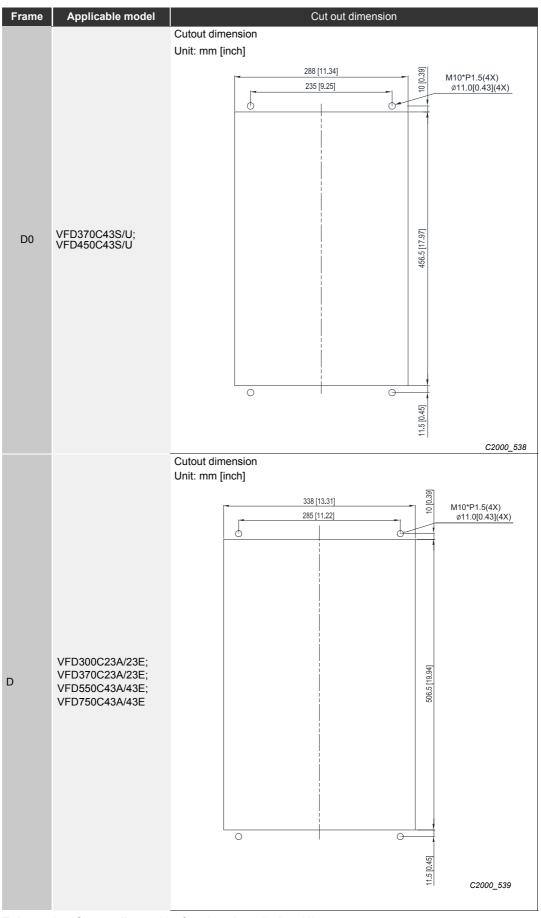
[MKC-BFM] Installation

Tab. 7-37: Mounting of accessories and plate installation

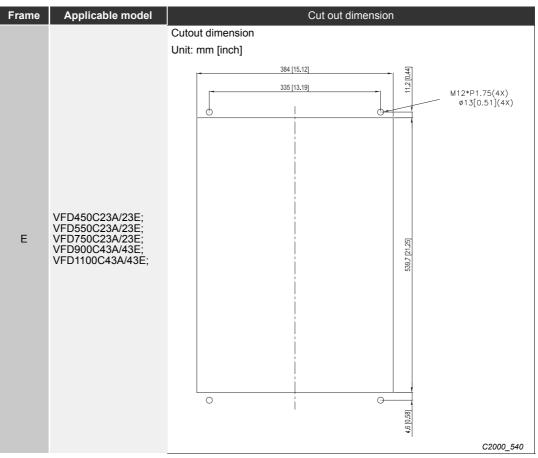
Frame	Applicable model		Mount	ing Kit
		[MKC-CFM]		
		Acces	sory 1*2	Accessory 2*2
С	VFD150C23A; VFD185C23A; VFD220C23A; VFD185C43A/43E; VFD220C43A/43E; VFD200C43A/43E;	5	N	C2000_533, C2000_534
			Sc	rew
		1		*4 – M8*P 1.25
		2		*8 – M6*P 1.0

Tab. 7-38: Flange mounting kits for AC drive units

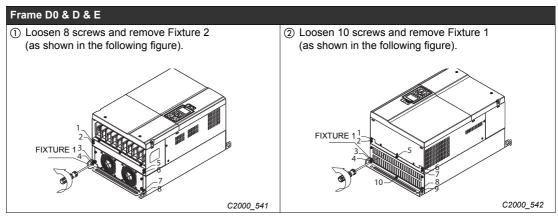




Fig. 7-17: Cutout dimension for plate installation

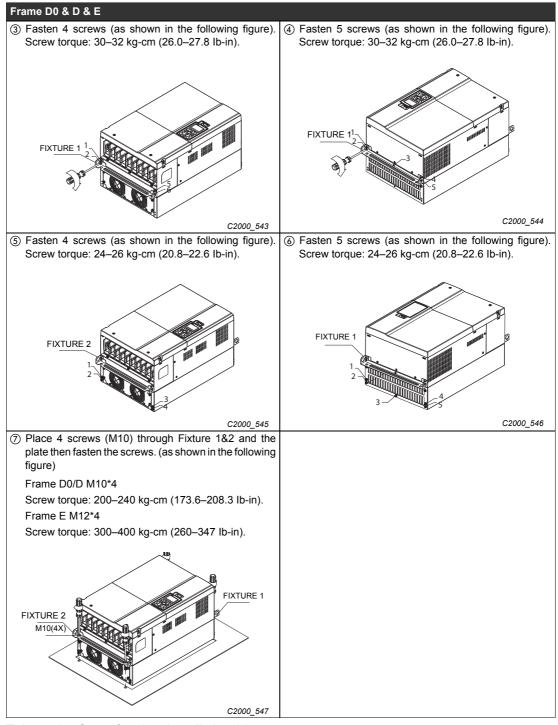
[MKC-CFM] Installation



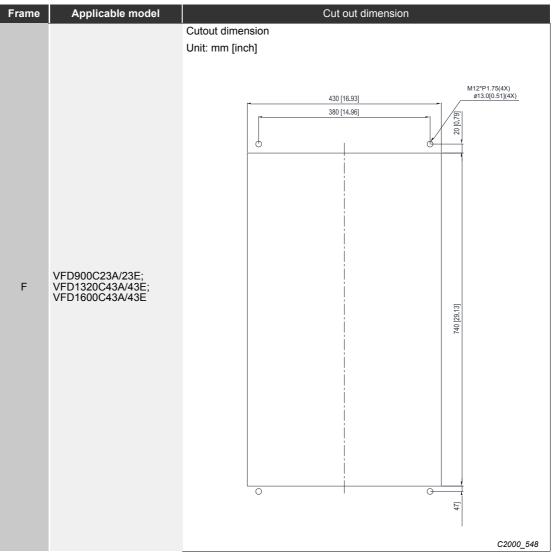
Tab. 7-39: Mounting of accessories and plate installation



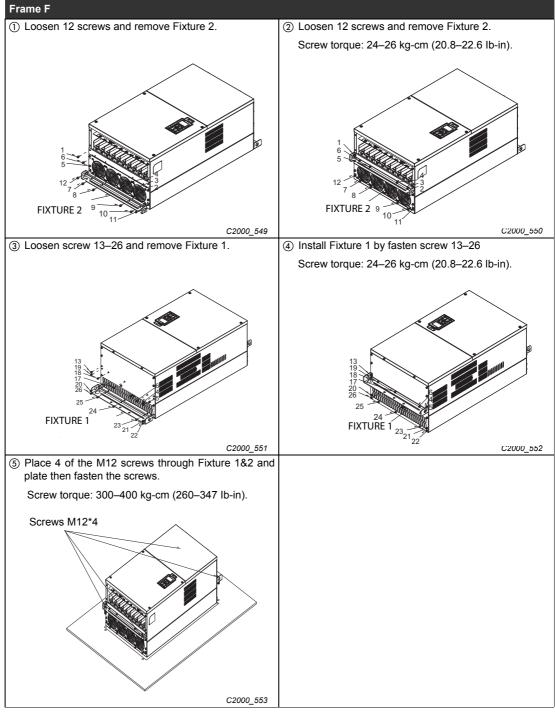
Tab. 7-40: Cutout dimension for plate installation (1)



Tab. 7-40: Cutout dimension for plate installation (2)



Tab. 7-41: Steps for plate installation (1)



Tab. 7-41: Steps for plate installation (2)

Tab. 7-42: Cut out dimension for plate installation

Tab. 7-43: Steps for plate installation

7.12 USB/RS485 communication interface IFD6530

CAUTION:

Please thoroughly read this instruction sheet before installation and putting it into use.

The content of this instruction sheet and the driver file may be revised without prior notice. Please consult our distributors or download the most updated instruction/driver version at http://www.delta.com.tw/product/em/control/cm/control_cm_main.asp

7.12.1 Introduction

IFD6530 is a convenient RS485-to-USB converter, which does not require external power-supply and complex setting process. It supports baud rate from 75 to 115.2 kbps and auto switching direction of data transmission. In addition, it adopts RJ-45 in RS485 connector for users to wire conveniently. And its tiny dimension, handy use of plug-and-play and hot-swap provide more conveniences for connecting all DELTA IABU products to your PC.

Applicable models: All DELTA IABU products.

(Application & dimension)

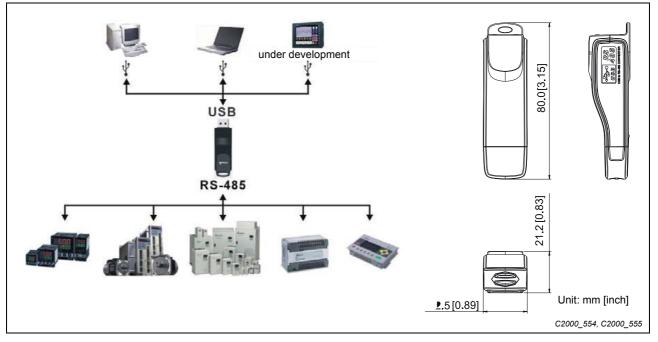


Fig. 7-18: Interface converter IFD6530

7.12.2 Specifications

Power supply	No external power is needed	
Power consumption	1.5 W	
Isolated voltage	2,500 V DC	
Baud rate	75, 150, 300, 600, 1,200, 2,400, 4,800, 9,600, 19,200, 38, 400, 57,600, 115,200 bps	
RS-485 connector	RJ-45	
USB connector	A type (plug)	
Compatibility	Full compliance with USB V2.0 specification	
Max. cable length	RS485 Communication Port: 100 m	
Support RS485 half-duplex transmission		

Tab. 7-44: Specifications of IFD6530

■ RJ-45

PIN	Description
1	Reserved
2	Reserved
3	GND
4	SG-
5	SG+
6	GND
7	Reserved
8	+9V

Tab. 7-45: Pinning of RJ-45 connector

7.12.3 Preparations before driver installation

Please extract the driver file (IFD6530_Drivers.exe) by following steps. You could find driver file (IFD6530_Drivers.exe) in the CD supplied with IFD6530.

NOTE DO NOT connect IFD6530 to PC before extracting the driver file.

Tab. 7-46: Extracting the driver file

7.12.4 Driver installation

After connecting IFD6530 to PC, please install driver by following steps.

Fig. 7-19: Driver installation for IFD6530

7.12.5 LED display

- ① Steady green LED ON: power is ON.
- (2) Blinking orange LED: data is transmitting.

8 Option Cards

Please select applicable option cards for your drive or contact local distributor for suggestion. To prevent drive damage during installation, please removes the digital keypad and the cover before wiring. Refer to the following instruction.

8.1 Removal of the front cover

Frame A & B & C

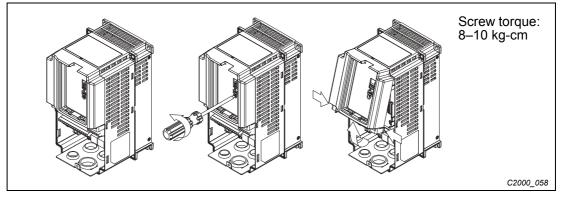


Fig. 8-1: Cover removal and screw tightening torque

Frame D0

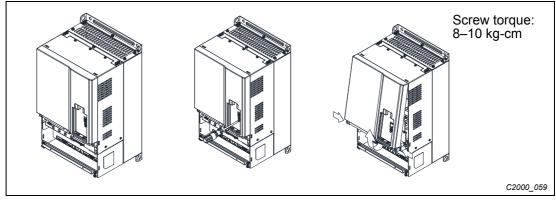


Fig. 8-2: Cover removal and screw tightening torque

Frame D

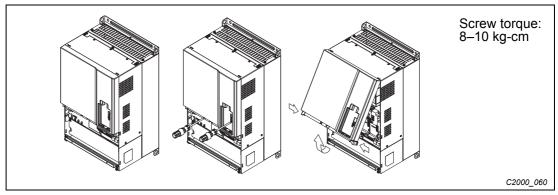


Fig. 8-3: Cover removal and screw tightening torque

Frame E

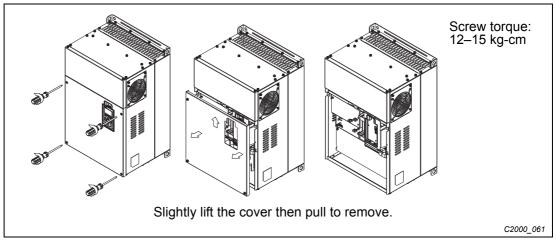


Fig. 8-4: Cover removal and screw tightening torque

Frame F

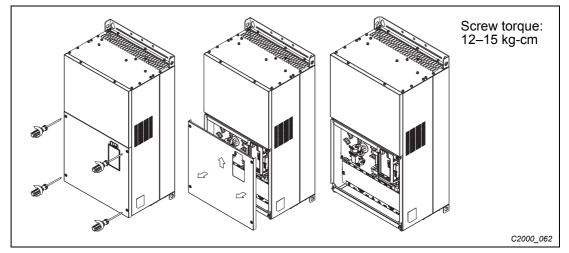


Fig. 8-5: Cover removal and screw tightening torque

Frame G

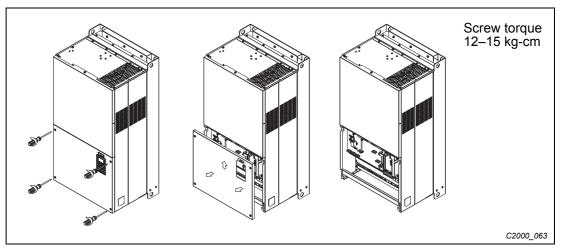


Fig. 8-6: Cover removal and screw tightening torque

Frame H

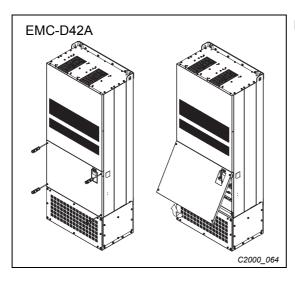
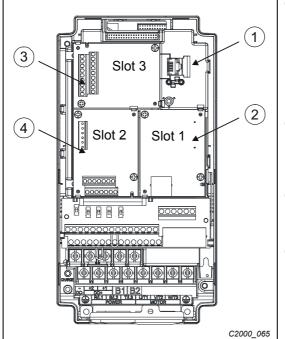



Fig. 8-7: Cover removal and screw tightening torque: 14–16 kg-cm

- RJ-45 (Socket) for digital keypad KPC-CC01; KPC-CE01 Please refer to CH10 Digital Keypad for more details on KPC-CE01. Please refer to CH10 Digital Keypad for more details on optional accessory RJ-45 extension cable.
- Communication extension card (Slot 1) CMC-MOD01; CMC-PD01; CMC-DN01; CMC-EIP01; EMC-COP01;
- I/O & relay extension card (Slot 3) EMC-D42A; EMC-D611A; EMC-R6AA; EMC-BPS01;
- PG card (Slot 2) EMC-PG01L; EMC-PG02L; EMC-PG01O; EMC-PG02O; EMC-PG01U; EMC-PG02U; EMC-PG01R;

8.2 Screw speciations for option card terminals

Option card		
EMC-D42A EMC-D611A	Wire gauge	24–12AWG (0.205–3.31mm ²)
EMC-D6TTA EMC-BPS01	Torque	5 kg-cm [4.34 lb-in]
EMC-R6AA	Wire gauge	26–16AWG (0.128–1.31mm ²)
EMC-ROAA	Torque	8 kg-cm [6.94 lb-in]
EMC-PG01L	Wire gauge	30–16AWG (0.0509–1.31mm ²)
EMC-PG010 EMC-PG01R EMC-PG01U	Torque	2 kg-cm [1.74 lb-in]

Tab. 8-1: Wire sizes and screw tightening torques

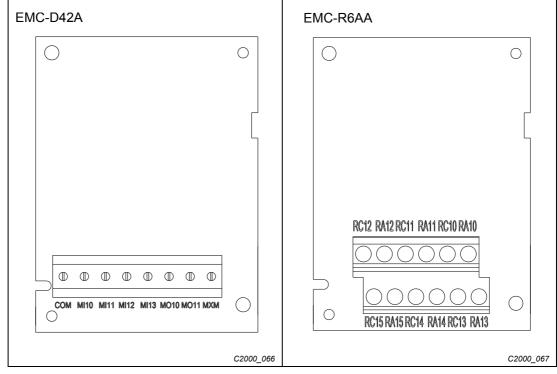


Fig. 8-8: I/O & relay extension card (Slot 3)

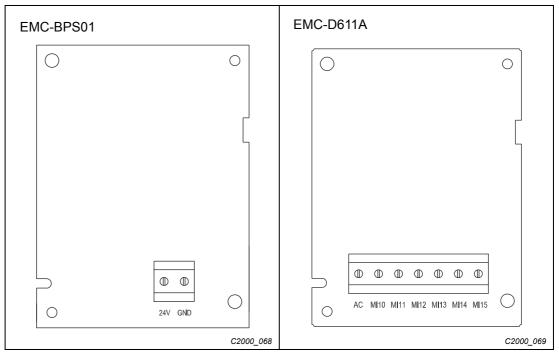


Fig. 8-9: I/O & relay extension card (Slot 3)

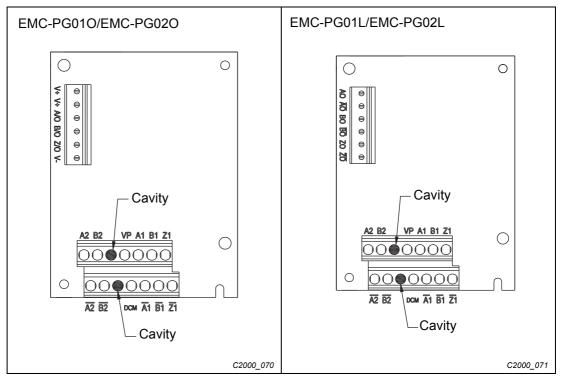


Fig. 8-10: PG card (Slot 2)

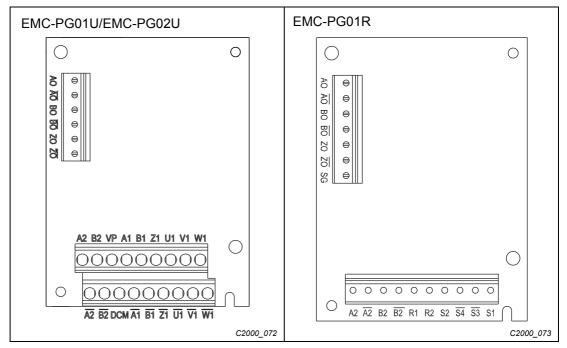


Fig. 8-12: Communication extension card (Slot 1)

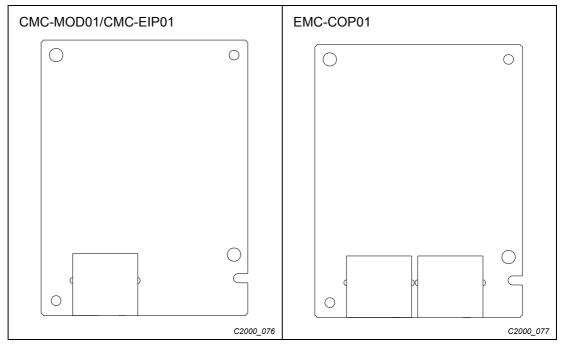


Fig. 8-13: Communication extension card (Slot 1)

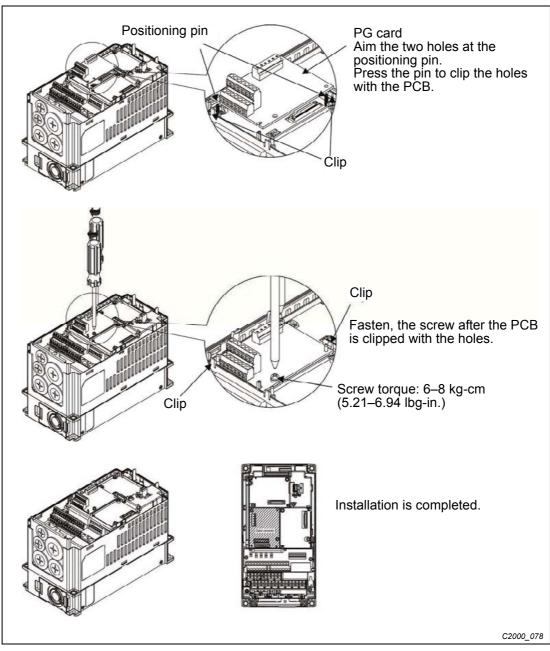


Fig. 8-14: PG card intallation

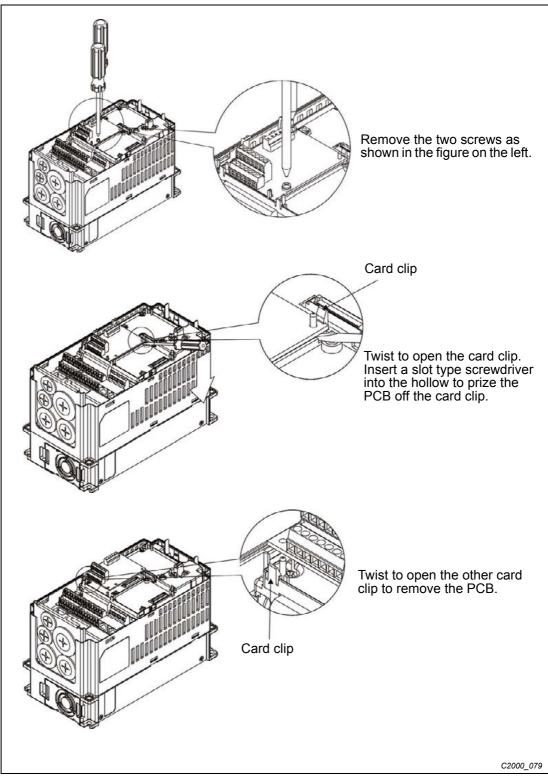


Fig. 8-15: Disconneting the extension card

8.3 EMC-D42A

Туре	Terminal	Description
	СОМ	Common for multi-function input terminals Select SINK (NPN)/SOURCE (PNP) in J1 jumper/external power supply
	MI10-MI13	Refer to parameters 02.26–02.29 to program the multi-function inputs MI10–MI13.
		Internal power is applied from terminal E24: +24 V DC ±5 % 200 mA, 5 W External power +24 V DC: max. voltage 30 V DC, min. voltage 19 V DC, 30 W ON: the activation current is 6.5 mA OFF: leakage current tolerance is 10 μ A
I/O extension card	MO10-MO11	Multi-function output terminals (photocoupler) The AC motor drive releases various monitor signals, such as drive in operation, frequency attained and overload indication, via transistor (open collector):
		© 107/101 C2000_080
	MXM	Common for multi-function output terminals MO10, MO11(photocoupler) Max 48 V DC 50 mA

Tab. 8-2: Specifications of I/O extension card EMC-D42A

8.4 EMC-D611A

Туре	Terminal	Description
	AC	AC power common for multi-function input terminal (Neutral)
I/O extension card	MI10-MI15	Refer to Pr. 02-26–Pr. 02-31 for multi-function input selection Input voltage: 100–130 V AC Input frequency: 47–63 Hz Input impedance: 27 Kohm Terminal response time: ON: 10 ms OFF: 20 ms

Tab. 8-3: Specifications of I/O extension card EMC-D611A

8.5 EMC-R6AA

Туре	Terminal	Description
Relay extension card	R10A-R15A R10C-R15C	Refer to Pr. 02-36–Pr. 02-41 for multi-function input selection Resistive load: 5 A (N.O.) 250 V AC 5 A (N.O.) 30 V DC Inductive load (COS 0.4) 2.0 A (N.O.) 250 V AC 2.0 A (N.O.) 30 V DC It is used to output each monitor signal, such as drive is in operation, frequency attained or overload indication.

Tab. 8-4: Specifications of relay extension card EMC-R6AA

8.6 EMC-BPS01

Туре	Terminal	Description
		Input power: 24 V ±5 %
		Maximum input current: 0.5 A
External power		Note:
supply	24 V GND	Do not connect control terminal +24V (Digital control signal common: SOURCE) directly to the EMC-BPS01input terminal 24 V.
		Do not connect control terminal GND directly to the EMC-BPS01 input terminal GND.

Tab. 8-5: Specifications of external power supply EMC-BPS01

NOTE Refer to I/O & relay extension card installation/disconnecting method for PG card installation/disconnecting.

8.7 EMC-PG01L/EMC-PG02L

8.7.1 Terminal description

Terminals		Description
	VP	Output voltage for power: +5 V/+12 V ± 5 % (use FSW3 to switch +5 V/ +12 V)
		Max. output current: 200 mA
	DCM	Common for power and signal
PG1		Encoder input signal (Line driver or open collector)
		Open collector input voltage: +5–+24 V $^{\textcircled{1}}$
	A1, /A1, B1, /B1, Z1, /Z1	It can be 1-phase or 2-phase input.
	,01,21,721	EMC-PG01L: Max. input frequency: 300 kHz
		EMC-PG02L: Max. input frequency: 30 kHz ²
	A2, /A2, B2, /B2	Pulse Input signal (Line driver or open collector)
		Open collector input voltage: +5–+24 V $^{\textcircled{1}}$
PG2		It can be 1-phase or 2-phase input.
		EMC-PG01L: Max. input frequency: 300 kHz
		EMC-PG02L: Max. input frequency: 30 kHz ²
	AO, /AO, BO, / BO, ZO, /ZO, SG,	PG card output signals. It has division frequency function: 1-255 times
		Max. output voltage for Line driver: 5 V DC
PG OUT		Max. output current: 50 mA
		EMC-PG01L Max. output frequency: 300 kHz
		EMC-PG02L Max. output frequency: 30 kHz
		SG is the GND of PG card. It is also the GND of position machine or PLC to make the ouput signal to be the common pivot point.

Tab. 8-6: Terminal description EMC-PG01L/EMC-PG02L

Open collector application, input current 5–15 mA to each set then each set needs one pull-up resistor. If input voltage of open collector is 24 V, the power of encoder needs to be connected externally. Please refer diagram 2 of PG1.
 5 V: Recommended pull-up resistor: above 100–220 Ω, 1/2 W
 12 V: Recommended pull-up resistor: above 510 Ω–1.35 kΩ, 1/2 W
 24 V: Recommended pull-up resistor, above 1.8–3.3 kΩ, 1/2 W

⁽²⁾ If the required bandwidth is not over 30 kHz at the application, it is recommended to use EMC-PG02O/L (bandwidth 30 kHz) to avoid interference.

NOTE Set by Pr. 10-00–10-02, 10-16–10-18

PG1 card wiring diagram

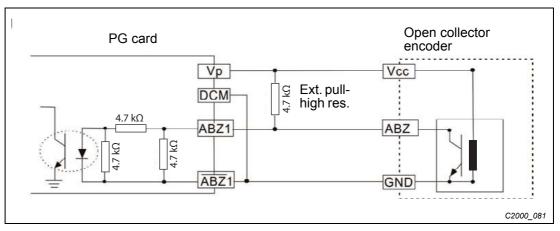


Fig. 8-16: Wiring diagram of open collector encoder

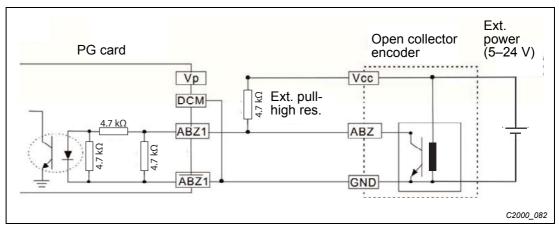


Fig. 8-17: Wiring diagram of open collector encoder with external power supply

PG2 wiring diagram

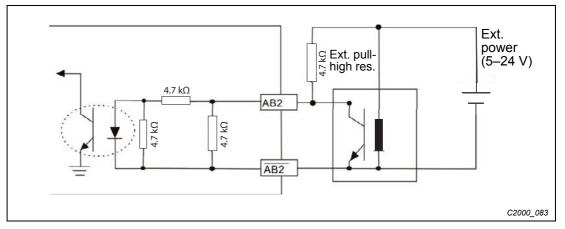


Fig. 8-18: Wiring daigram of open collector encoder

8.7.2 Wiring diagram

- Please use a shielded cable to prevent interference. Do not run control wires parallel to any high voltage AC power line (200 V and above).
- Recommended wire size 0.21 to 0.81mm² (AWG24 to AWG18).
- Cable length: Less than 100 m

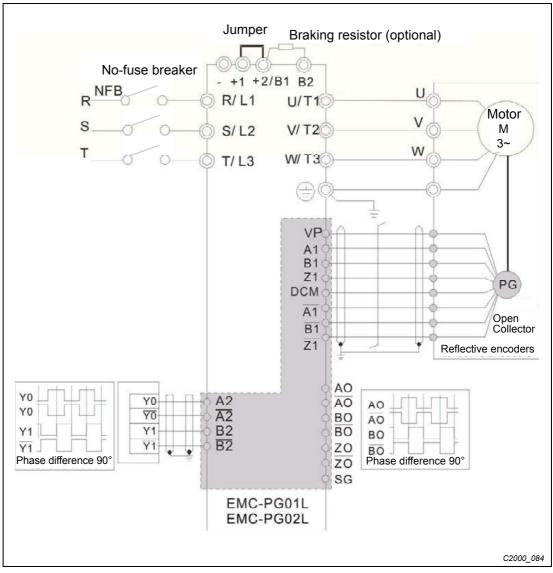
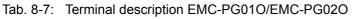



Fig.8-19: Wiring diagram of option card EMC-PG01L/EMC-PG02L

8.8 EMC-PG010/EMC-PG020

8.8.1 Terminal description

Terminal		Description
	VP	Output voltage for power: +5 V/+12 V \pm 5 % (use FSW3 to switch +5 V/ +12 V) Max. output current: 200 mA
50/	DCM	Common for power and signal
PG1	A1, /A1, B1, /B1, Z1, /Z1	Encoder input signal (Line driver or open collector) Open collector input voltage: +5 V–+24 V ^① It can be 1-phase or 2-phase input. EMC-PG010 Max. input frequency: 300 kHz EMC-PG020 Max. input frequency: 30 kHz ^②
PG2	A2, /A2, B2, /B2	Pulse input signal (Line driver or open collector) Open collector input voltage: +5–+24 V ⁽¹⁾ EMC-PG010 Max. input frequency: 300 kHz EMC-PG020 Max. input frequency: 30 kHz ⁽²⁾
	V+, V+	Needs external power source for PG OUT circuit. Input voltage of power: +12 V $-$ +24 V
	V–	Input voltage for the negative side
PG OUT	A/O, B/O, Z/O	PG card output signals has division frequency function: 1–255 times. On the open collector's output signal, add a high-pull resistor on the external power V+ – V- (e.g. power of PLC) to prevent the interference of the receiving signal. Max. [Three pull-up resistor are included in the package (1.8 kΩ/1 W)] ^① EMC-PG010 Max. input frequency: 300 kHz EMC-PG020 Max. input frequency: 30 kHz

- Open collector application, input current 5–15 mA to each set then each set needs one pull-up resistor. If input voltage of open collector is 24 V, the power of encoder needs to be connected externally. Please refer diagram 2 of PG1.
 5 V: Recommended pull-up resistor: above 100–220 Ω, 1/2 W
 - 12 V: Recommended pull-up resistor: above 510 Ω -1.35 k Ω , 1/2 W
 - 24 V: Recommended pull-up resistor, above 1.8–3.3 kΩ, 1/2 W
- If the required bandwidth is not over 30 kHz at the application, it is recommended to use EMC-PG02O/L (bandwidth 30 kHz) to avoid interference.

Set by Pr. 10-00–10-02, 10-16–10-18

PG1 card wiring diagram

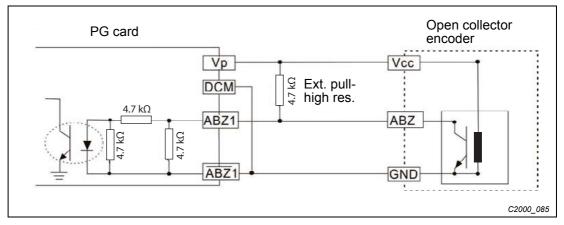


Fig. 8-20: Wiring diagram of open collector encoder

NOTE

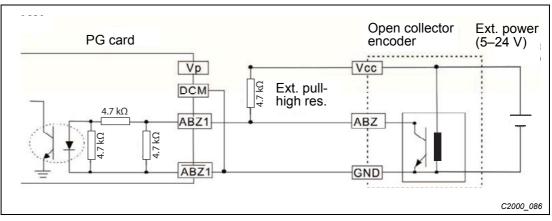


Fig. 8-21: Wiring diagram of open collector encoder with external power supply

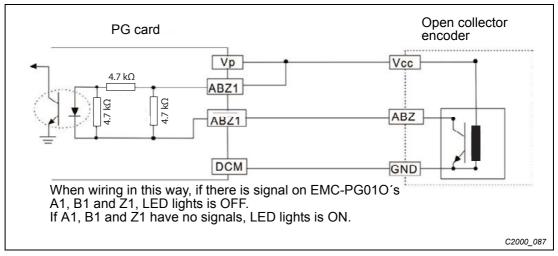


Fig. 8-22: Wiring diagram of open collector encoder

PG2 wiring diagram

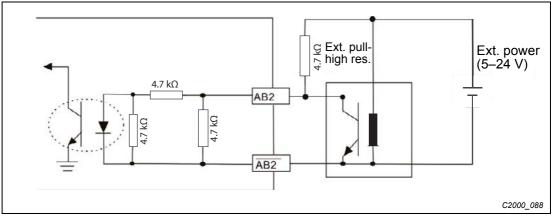


Fig. 8-23: Wiring diagram of open collector encoder with external power supply

8.8.2 Wiring diagram

- Please use a shielded cable to prevent interference. Do not run control wires parallel to any high voltage AC power line (200 V and above).
- Recommended wire size 0.21 to 0.81 mm² (AWG24 to AWG18).
- Cable length: Less than 30 m

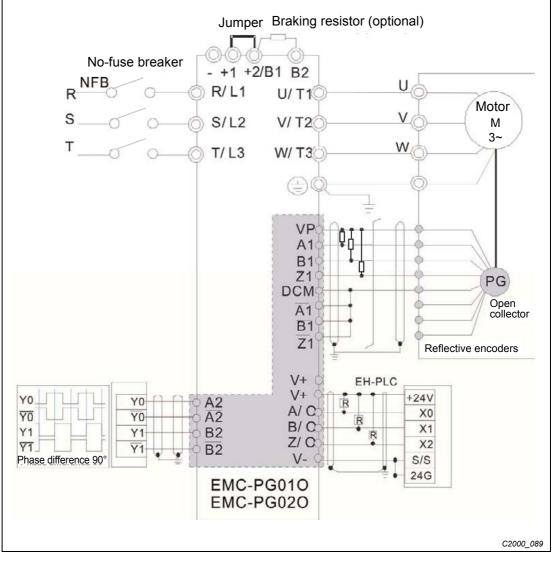


Fig. 8-24: Wiring diagram of option card EMC-PG01O/EMC-PG02O

8.9 EMC-PG01U/EMC-PG02U

8.9.1 Terminal description

Terminal		Description	
	VP	Output voltage for power: +5 V/+12 V ± 5 % (use FSW3 to switch +5 V/ +12 V) Max. output current: 200 mA	
	DCM	Common for power and signal	
PG1	A1, /A1, B1, /B1, Z1, /Z1	Encoder input signal (Line driver) It can be 1-phase or 2-phase input. Max. output frequency: 300 kP/sec	
	U1, /U1, V1, / V1, W1, /W1	Encoder input signal	
PG2	A2, /A2, B2, /B2	Pulse input signal (Line driver or open collector) Open collector input voltage: +5–+24 V ^① It can be 1-phase or 2-phase input. Max. output frequency: 300 kP/sec.	
PG OUT	AO, /AO, BO, / BO, ZO, /ZO, SG	PG Card Output signals. It has division frequency function: 1–255 times Max. output voltage for line driver: 5 V DC Max. output current: 50 mA Max. output frequency: 300 kP/sec SG is the GND of PG card. It is also the GND of position machine or PLC to make the ouput signal to be the common pivot point.	

Tab. 8-8: Terminal descriptions EMC-PG01U/EMC-PG02U

Open collector application, input current 5–15 mA to each set then each set needs one pull-up resistor.
 5 V: Recommended pull-up resistor: above 100–220 Ω, 1/2 W
 12 V: Recommended pull-up resistor: above 510 Ω–1.35 kΩ, 1/2 W
 24 V: Recommended pull-up resistor, above 1.8—3.3 kΩ, 1/2 W

NOTE

Set by Pr. 10-00–10-02, 10-16–10-18

- FSW1 S: Standard UVW Output Encoder; D: Delta Encoder
- When using the Delta Encoder, wait for at least 250 ms after powering up to receive signals from UVW. If a running command is received before UVW signals finish, a PGF5 error message will be given. So wait for 250 ms before sending a running command.
- EMC-PG02U has encoder disconnection detection function.

PG2 wiring diagram

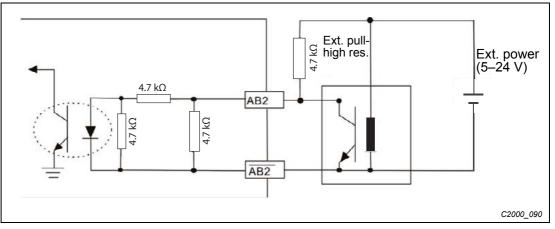


Fig.8-25: Wiring diagram of open collector encoder with external power supply

8.9.2 Wiring diagram

- Please use a shielded cable to prevent interference. Do not run control wires parallel to any high voltage AC power line (200 V and above).
- Recommended wire size 0.21 to 0.81 mm² (AWG24 to AWG18).
- Cable length: Less than 30 m

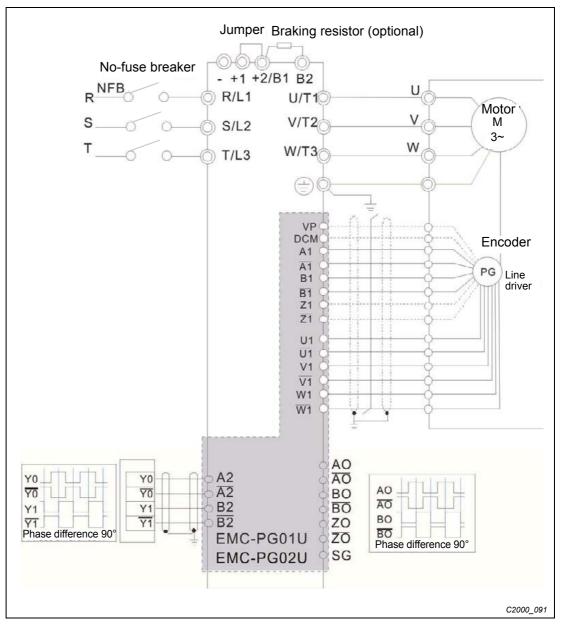


Fig.8-26: Wiring diagram of option card EMC-PG01U

8.10 EMC-PG01R

8.10.1 Terminal description

Terminal		Description
PG1	R1–R2	Resolver output power 7 Vrms, 10 kHz
FGI	S1, / S3, S2, / S4,	Resolver input signal (S2,/S4 = Sin; S1,/S3 = Cos) 3.5 ±0.175 Vrms, 10 kHz
PG2	A2, /A2, B2, /B2	Pulse input signal (Line driver or open collector) Open collector input voltage: +5–+24 V ^① It can be 1-phase or 2-phase input. Max. output frequency: 300 kP/sec.
PG OUT	AO, / AO, BO, / BO, ZO, / ZO, SG,	PG card output signals. It has division frequency function: 1–255 times Max. output voltage for line driver: 5 V DC Max. output current: 50 mA Max. output frequency: 300 kP/sec SG is the GND of PG card. It is also the GND of position machine or PLC to make the ouput signal to be the common pivot point.

Tab. 8-9: Terminal description EMC-PG01R

Open collector application, input current 5–15 mA to each set then each set needs one pull-up resistor.
 5 V: Recommended pull-up resistor: above 100–220 Ω, 1/2 W
 12 V: Recommended pull-up resistor: above 510 Ω–1.35 kΩ, 1/2 W

24 V: Recommended pull-up resistor, above 1.8–3.3 k Ω , 1/2 W

NOTE Set by Pr. 10-00–10-02

PG2 wiring diagram

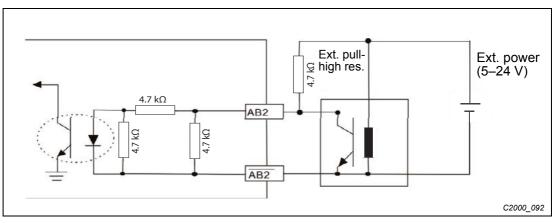


Fig.8-27: Wiring diagram of open collector encoder with external power supply

NOTES

- DOS (Degradation of Signal): If the amplitude of the sine wave input of the S1-/S3/ S2-/S4 is lower than or higher than the encoder IC's specification, a red light will be on. The possible reasons which cause this problem are the following:
 - The turns ratio of the resolver encoder is not 1: 0.5 which makes the sine wave input of the S1-/S3/S2-/S4 not equal to 3.5 ±0.175 Vrms.
 - While motor is running, motor creates common mode noise which makes accumulated voltage to be more than 3.5 ±0.175 Vrms.
 - LOT (Loss of tracking): Compare the angle of S1-/S3/S2-/S4 sine wave input to the R1-R2 cosine wave. If their difference is more than 5 degree, a red light will be on. Here are the possible reasons why that happens:
 - The output frequency of the PG card is incorrect.
 - The specification of Resolver's encoder is not 10 kHz.
 - The motor creates common mode noise while it is running. That causes a big difference, while the motor is rotating, between main winding's cosine wave angle and the sine wave angle of second and third windings.

8.10.2 Wiring diagram

- Please use a shielded cable to prevent interference. Do not run control wires parallel to any high voltage AC power line (200 V and above).
- Recommended wire size 0.21 to 0.81 mm² (AWG24 to AWG18).
- Cable length: Less than 100 m

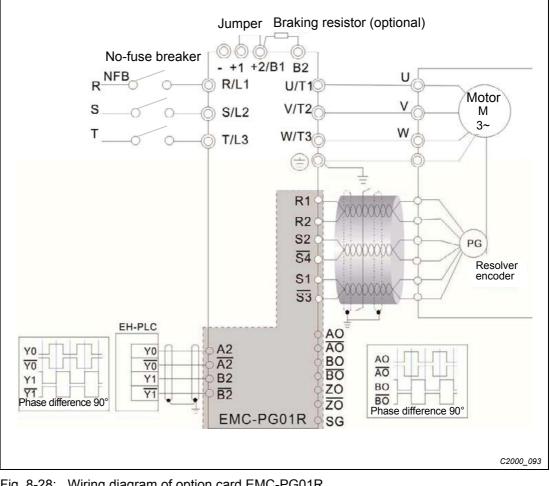


Fig. 8-28: Wiring diagram of option card EMC-PG01R

8.11 CMC-MOD01

8.11.1 Features

- Supports Modbus TCP protocol
- MDI/MDI-X auto-detect
- Baud rate: 10/100 Mbps auto-detect
- E-mail alarm
- AC motor drive keypad/Ethernet configuration
- Virtual serial port.

8.11.2 Product file

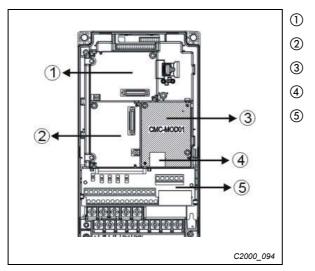


Fig. 8-29: Plug-in locations for option cards

8.11.3 Specifications

Specifications	
Interface	RJ-45 with auto MDI/MDIX
Number of ports	1 port
Transmission method	IEEE 802.3, IEEE 802.3u
Transmission cable	Category 5e shielding 100M
Transmission speed	10/100 Mbps auto-detect
Network protocol	ICMP, IP, TCP, UDP, DHCP, HTTP, SMTP, MODBUS OVER TCP/IP, Delta configuration

I/O card & relay card

Communication card

RJ-45 connection port

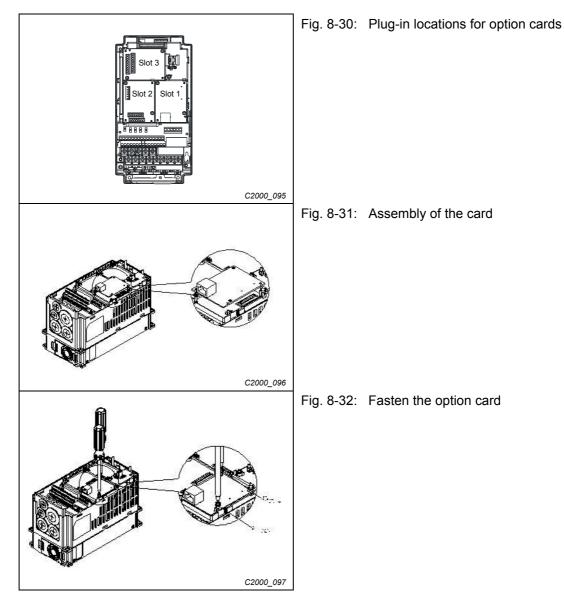
Removable control circuit terminal

PG card

Tab. 8-10: Network interface

Specifications	
Power supply voltage	5 V DC (supply by the AC motor drive)
Insulation voltage	2 kV
Power consumption	0.8 W
Weight	25 g

Tab. 8-11: Electrical specifications


Specifications

Noise immunity	ESD (IEC 61800-5-1, IEC 61000-4-2) EFT (IEC 61800-5-1, IEC 61000-4-4) Surge Test (IEC 61800-5-1, IEC 61000-4-5) Conducted Susceptibility Test (IEC 61800-5-1, IEC 61000-4-6)
Operation/storage	Operation: -10 °C–50 °C (temperature), 90 % (humidity) Storage: -25 °C–70 °C (temperature), 95 % (humidity)
Vibration/shock immunity	International standard: IEC 61800-5-1, IEC 60068-2-6/IEC 61800-5-1, IEC 60068-2-27

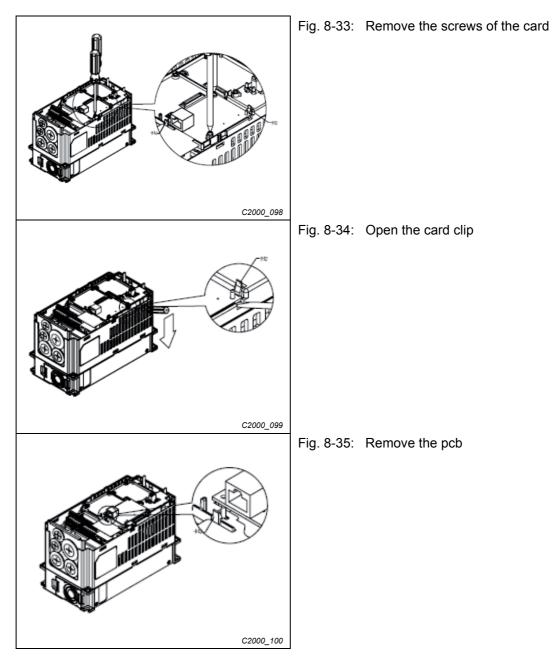
Tab. 8-12: Environmental conditions

8.11.4 Install CMC-MOD01 to VFD-C2000

- (1) Switch off the power supply of the VFD-C2000.
- ② Open the front cover of the VFD-C2000.
- ③ Place the insulation spacer into the positioning pin at Slot 1 (shown in Figure 8-30), and aim the two holes on the PCB at the positioning pin. Press the pin to clip the holes with the PCB (shown in Figure 8-31).
- ④ Screw up at torque 6–8 kg-cm (5.21–6.94 in-lbs) after the PCB is clipped with the holes (shown in Figure 8-32).

8.11.5 Communication parameters for VFD-C2000 connected to Ethernet

When VFD-C2000 is link to Ethernet, please set up the communication parameters base on the table below. Ethernet master will be able to read/write the frequency word and control word of VFD-C2000 after communic-ation parameters setup.


Parameter	Function	Set value (Dec)	Explanation
P00-20	Source of frequency command setting	8	The frequency command is controlled by communication card.
P00-21	Source of operation command setting	5	The operation command is controlled by communication card.
P09-30	Decoding method for communication	0	Decoding method for Delta AC motor drive
P09-75	IP setting	0	Static IP (0)/Dynamic distribution IP (1)
P09-76	IP address – 1	192	IP address 192.168.1.5
P09-77	IP address – 2	168	IP address 192.168.1.5
P09-78	IP address – 3	1	IP address 192.168.1.5
P09-79	IP address – 4	5	IP address 192.168.1.5
P09-80	Netmask – 1	255	Netmask 255.255.255.0
P09-81	Netmask – 2	255	Netmask 255.255.255.0
P09-82	Netmask – 3	255	Netmask 255.255.255.0
P09-83	Netmask – 4	0	Netmask 255.255.255.0
P09-84	Default gateway – 1	192	Default gateway 192.168.1.1
P09-85	Default gateway – 2	168	Default gateway 192.168.1.1
P09-86	Default gateway – 3	1	Default gateway 192.168.1.1
P09-87	Default gateway – 4	1	Default gateway 192.168.1.1

Tab. 8-13: CMC-MOD01 communication parameters

8.11.6 Disconnecting CMC-MOD01 from VFD-C2000

- ① Switch off the power supply of VFD-C2000.
- ② Remove the two screws (shown in Figure 8-33).
- ③ Twist opens the card clip and inserts the slot type screwdriver to the hollow to prize the PCB off the card clip (shown in Figure 8-34).
- ④ Twist opens the other card clip to remove the PCB (shown in Figure 8-35).

8.11.7 Basic registers

BR#	R/W	Content	Explanation
#0	R	Model name	Set up by the system; read only. The model code of CMC- MOD01 = H'0203
#1	R	Firmware version	Displaying the current firmware version in hex, e.g. H'0100 indicates the firmware version V1.00.
#2	R	Release date of the	Displaying the data in decimal form. 10,000 s digit and 1,000 s digit are for "month"; 100 s digit and 10 s digit are for "day".
		VEISION	For 1 digit: 0 = morning; 1 = afternoon.
#11	R/W	Modbus timeout	Pre-defined setting: 500 (ms)
#13	R/W	Keep alive time	Pre-defined setting: 30 (s)

Tab. 8-14: Basic registers

8.11.8 LED indicator & troubleshooting

LED	Status		Indication	How to correct it?
POWER	Green	On	Power supply in normal status	—
FOWER	Green	Off	No power supply	Check the power supply
LINK Green	On	Network connection in normal status	-	
	Flashes	Network in operation	_	
	Off	Network not connected	Check if the network cable is connected	

Tab. 8-15: LED indicators

Abnormality	Cause	How to correct it?
	AC motor drive not powered	Check if AC motor drive is powered, and if the power supply is normal.
POWER LED off	CMC-MOD01 not connected to AC motor drive	Make sure CMC-MOD01 is connected to AC motor drive.
LINK LED off	CMC-MOD01 not connected to network	Make sure the network cable is correctly connected to network.
LINK LED OII	Poor contact to RJ-45 connector	Make sure RJ-45 connector is connected to Ethernet port.
	CMC-MOD01 not connected to network	Make sure CMC-MOD01 is connected to network.
No module found	PC and CMC-MOD01 in different networks and blocked by network firewall.	Search by IP or set up relevant settings by AC motor drive keypad.
	CMC-MOD01 not connected to network	Make sure CMC-MOD01 is connected to the network.
Fail to open CMC-	Incorrect communication setting in DCISoft	Make sure the communication setting in DCISoft is set to Ethernet.
MOD01 setup page	PC and CMC-MOD01 in different networks and blocked by network firewall.	Conduct the setup by AC motor drive keypad.
Able to open CMC- MOD01 setup page but fail to utilize webpage monitoring	Incorrect network setting in CMC-MOD01	Check if the network setting for CMC-MOD01 is correct. For the Intranet setting in your company, please consult your IT staff. For the Internet setting in your home, please refer to the network setting instruction provided by your ISP.
Fail to send e-mail	Incorrect network setting in CMC-MOD01	Check if the network setting for CMC-MOD01 is correct.
Fail to send e-mail	Incorrect mail server setting	Please confirm the IP address for SMTP-Server.

Tab. 8-16: Troubleshooting

8.12 CMC-PD01

8.12.1 Features

- Supports PZD control data exchange.
- Supports PKW polling AC motor drive parameters.
- Supports user diagnosis function.
- Auto-detects baud rates; supports max. 12 Mbps.

8.12.2 Product profile

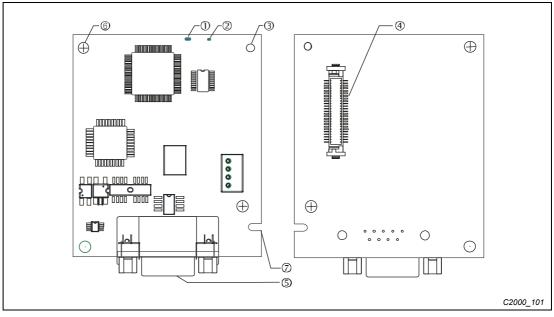


Fig. 8-36: View of the option card CMC-PD01

- ① NET indicator
- ② POWER indicator
- ③ Positioning hole
- ④ AC motor drive connection port
- (5) PROFIBUS DP connection port
- 6 Screw fixing hole
- ⑦ Fool-proof groove

8.12.3 Specifications

Specifications		
Interface	DB9 connector	
Transmission method	High-speed RS485	
Transmission cable	Shielded twisted pair cable	
Electrical isolation	500 V DC	

Tab. 8-17: PROFIBUS DP connector

Specifications		
Message type	Cyclic data exchange	
Module name	CMC-PD01	
GSD document	DELA08DB.GSD	
Company ID	08DB (HEX)	
Serial transmission speed supported (auto-detection)	9.6 kbps; 19.2 kbps; 93.75 kbps; 187.5 kbps; 125 kbps; 250 kbps; 500 kbps; 1.5 Mbps; 3 Mbps; 6 Mbps; 12 Mbps (bit per second)	

Tab. 8-18: Communication specifications

Specifications		
Power supply voltage	5 V DC (supplied by AC motor drive)	
Insulation voltage	500 V DC	
Power consumption	1 W	
Weight	28 g	

Tab. 8-19: Electrical specifications

Specifications	
Noise immunity	ESD (IEC 61800-5-1, IEC 6100-4-2) EFT (IEC 61800-5-1, IEC 6100-4-4) Surge Teat (IEC 61800-5-1, IEC 6100-4-5) Conducted Susceptibility Test (IEC 61800-5-1, IEC 6100-4-6)
Operation/storage	Operation: -10 °C–50 °C (temperature), 90 % (humidity) Storage: -25 °C–70 °C (temperature), 95 % (humidity)
Shock/vibration resistance	International standards: IEC 61131-2, IEC 68-2-6 (TEST Fc)/IEC 61131-2 & IEC 68-2-27 (TEST Ea)

Tab. 8-20: Environmental conditions

8.12.4 Installation

PIN	PIN name	Definition	
1	—	Not defined	
2	—	Not defined	9 5
3	Rxd/Txd-P	Sending/receiving data P (B)	
4	—	Not defined	
5	DGND	Data reference ground	
6	VP	Power voltage – positive	6/1
7	—	Not defined	
8	Rxd/Txd-N	Sending/receiving data N (A)	
9	—	Not defined	C2000_102

Tab. 8-21: PROFIBUS DP connector

8.12.5 LED indicator & troubleshooting

There are 2 LED indicators on CMC-PD01. POWER LED displays the status of the working power. NET LED displays the connection status of the communication.

Green light on Power supply in normal status.	LED sta- tus	Indication	How to correct it?
Off No power Check if the connection between CMC-PD01 and AC motor drive			—
is normal.	Off	No power	Check if the connection between CMC-PD01 and AC motor drive is normal.

Tab. 8-22: POWER LED

Indication	How to correct it?
Normal status	_
CMC-PD01 is not connected to PROFIBUS DP bus.	Connect CMC-PD01 to PROFIBUS DP bus.
Invalid PROFIBUS communication address	Set the PROFIBUS address of CMC-PD01 between 1–125 (decimal)
CMC-PD01 fails to communication with AC motor drive.	Switch off the power and check whether CMC-PD01 is correctly and normally connected to AC motor drive.
	Normal status CMC-PD01 is not connected to PROFIBUS DP bus. Invalid PROFIBUS communication address CMC-PD01 fails to communication with AC

Tab. 8-23: NET LED

8.13 CMC-DN01

8.13.1 Functions

- Based on the high-speed communication interface of Delta HSSP protocol, able to conduct immediate control to AC motor drive.
- Supports Group 2 only connection and polling I/O data exchange.
- For I/O mapping, supports max. 32 words of input and 32 words of output.
- Supports EDS file configuration in DeviceNet configuration software.
- Supports all baud rates on DeviceNet bus: 125 kbps, 250 kbps, 500 kbps and extendable serial transmission speed mode.
- Node address and serial transmission speed can be set up on AC motor drive.
- Power supplied from AC motor drive.

8.13.2 Product profile

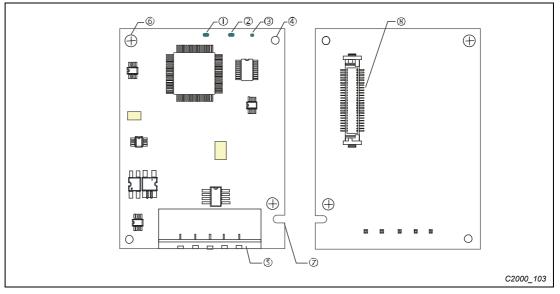


Fig. 8-37: View of the option card CMC-DN01

- ① NS indicator
- MS indicator
- ③ POWER indicator
- ④ Positioning hole
- ⑤ DeviceNet connection port
- 6 Screw fixing hole
- ⑦ Fool-proof groove
- (8) AC motor drive connection port

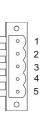
8.13.3 Specifications

Specifications	
Interface	5-PIN open removable connector. Of 5.08 mm PIN interval
Transmission	CAN
Transmission cable	Shielded twisted pair cable (with 2 power cables)
Transmission speed	125 kbps, 250 kbps, 500 kbps and extendable serial transmission speed mode
Network protocol	DeviceNet protocol

Tab. 8-24: DeviceNet connector

Specifications		
50 PIN communication terminal		
SPI communication		
Communicating with AC motor drive		
Transmitting power supply from AC motor drive		
Delta HSSP protocol		

Tab. 8-25: AC motor drive connection port


Specifications		
Power supply voltage	5 V DC (supplied by AC motor drive)	
Insulation voltage	500 V DC	
Communication wire power consumption		
Power consumption	1 W	
Weight	23 g	

Tab. 8-26: Electrical specifications

Specifications		
Noise immunity	ESD (IEC 61800-5-1, IEC 6100-4-2) EFT (IEC 61800-5-1, IEC 6100-4-4) Surge Teat (IEC 61800-5-1, IEC 6100-4-5) Conducted Susceptibility Test (IEC 61800-5-1, IEC 6100-4-6)	
Operation/storage	Operation: -10 °C–50 °C (temperature), 90 % (humidity) Storage: -25 °C–70 °C (temperature), 95 % (humidity)	
Shock/vibration resistance	International standards: IEC 61131-2, IEC 68-2-6 (TEST Fc)/IEC 61131-2 & IEC 68-2-27 (TEST Ea)	

Tab. 8-27: Environmental conditions

PIN	Signal	Color	Definition
1	V+	Red	DC 24 V
2	Н	White	Signal+
3	S	—	Earth
4	L	Blue	Signal–
5	V-	Black	0 V

Tab. 8-28: DeviceNet connector

C2000_104

8.13.4 LED indicator & troubleshooting

There are 3 LED indicators on CMC-DN01. POWER LED displays the status of power supply. MS LED and NS LED are dual-color LED, displaying the connection status of the communication and error messages.

LED status	Indication	How to correct it?
Off	Power supply in abnormal status	Check the power supply of CMC-DN01.
Lights up green	Power supply in normal status	-

Tab. 8-29: POWER LED status

LED sta- tus	Indication	How to correct it?
Off	No power supply or CMC-DN01 has not completed MAC ID test yet.	 Check the power of CMC-DN01 and see if the connection is normal. Make sure at least one or more nodes are on the bus. Check if the serial transmission speed of CMC-DN01 is the same as that of other nodes.
Green light flashes	CMC-DN01 is on-line but has not established connection to the master.	 Configure CMC-DN01 to the scan list of the master. Re-download the configured data to the master.
Green light on	CMC-DN01 is on-line and is normally connected to the master	-
Red light flashes	CMC-DN01 is on-line, but I/O connection is timed-out.	 Check if the network connection is normal. Check if the master operates normally.
Red light on	 The communication is down. MAC ID test failure. No network power supply. CMC-DN01 is off-line. 	 Make sure all the MAC IDs on the network are not repeated. Check if the network installation is normal. Check if the baud rate of CMC-DN01 is con- sistent with that of other nodes. Check if the node address of CMC-DN01 is illegal. Check if the network power supply is normal.
Tab 8 30.	NS LED status	č 1 11,

Tab. 8-30: NS LED status

LED status	Indication	How to correct it?
Off	No power supply or being off-line	Check the power supply of CMC-DN01 and see of the connection is normal.
Green light flashes	Waiting for I/O data	Switch the master PLC to RUN status
Green light on	I/O data are normal	-
Red light flashes	Mapping error	 Reconfigure CMC-DN01 Re-power AC motor drive
		 See the error code displayed on AC motor
Red light on	Hardware error	drive.
itted light off		 Send back to the factory for repair if neces- sary.
Orange light flashes	CMC-DN01 is establishing connection with AC motor drive.	If the flashing lasts for a long time, check if CMC- DN01 and AC motor drive are correctly installed and normally connected to each other.
		,

Tab. 8-31: MS LED status

8.14 CMC-EIP01

8.14.1 Features

- Supports Modbus TCP and Ethernet/IP protocol
- MDI/MDI-X auto-detect
- Baud rate: 10/100 Mbps auto-detect
- AC motor drive keypad/Ethernet configuration
- Virtual serial port

8.14.2 Product profile

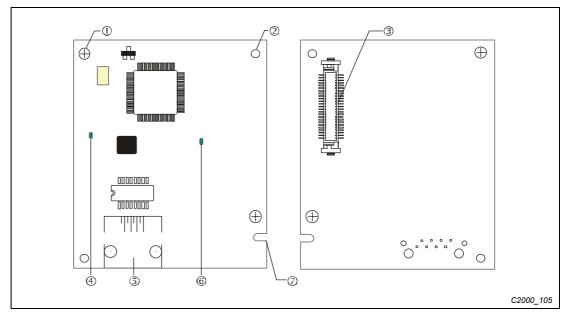


Fig. 8-38: View of the option card CMC-EIP01

- ① Screw fixing hole
- Positioning hole
- ③ AC motor drive connection port
- ④ LINK indicator
- (5) RJ-45 connection port
- 6 POWER indicator
- ⑦ Fool-proof groove

8.14.3 Specifications

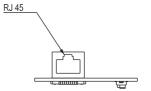
Specifications	
Interface	RJ-45 with Auto MDI/MDIX
Number of ports	1 Port
Transmission method	IEEE 802.3, IEEE 802.3u
Transmission cable	Category 5e shielding 100M
Transmission speed	10/100 Mbps Auto-Detect
Network protocol	ICMP, IP, TCP, UDP, DHCP, HTTP, SMTP, MODBUS OVER TCP/IP, EtherNet/IP, Delta Configuration

Tab. 8-32: Network interface

Specifications	
Weight	25 g
Insulation voltage	500 V DC
Power consumption	0.8 W
Power supply voltage	5 V DC

Tab. 8-33: Electrical specifications

Specifications

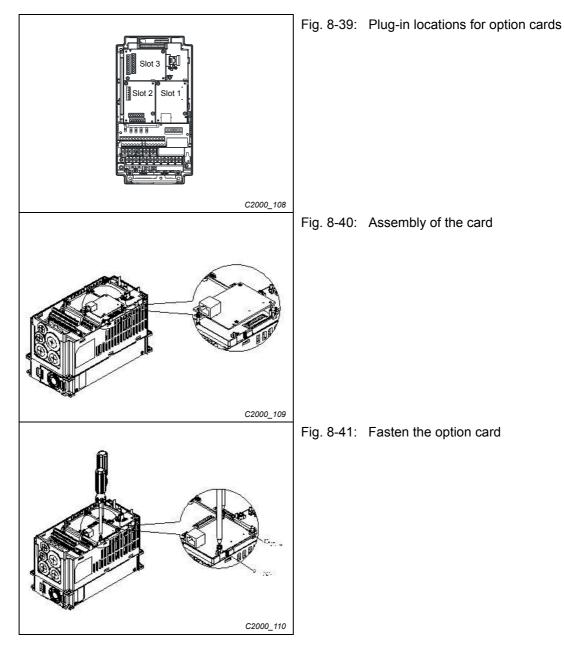

opecifications	
Noise immunity	ESD (IEC 61800-5-1, IEC 61000-4-2) EFT (IEC 61800-5-1, IEC 61000-4-4) Surge Test (IEC 61800-5-1, IEC 61000-4-5) Conducted Susceptibility Test (IEC 61800-5-1, IEC 61000-4-6)
Operation/storage	Operation: -10 °C–50 °C (temperature), 90 % (humidity) Storage: -25 °C–70 °C (temperature), 95 % (humidity)
Vibration/shock immunity	International standard: IEC 61800-5-1, IEC 60068-2-6/IEC 61800-5-1, IEC 60068-2-27

Tab. 8-34: Environmental conditions

8.14.4 Installation

Connecting CMC-EIP01 to Network:

- ① Turn off the power of AC motor drive.
- ② Open the cover of AC motor drive.
- ③ Connect CAT-5e network cable to RJ-45 port on CMC-EIP01 (See Figure right).


C2000_106

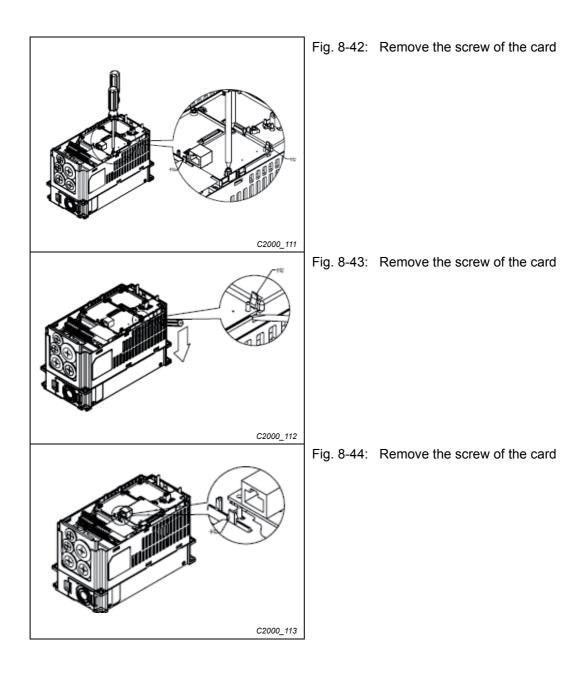
PIN	Signal	Definition
1	Tx+	Positive pole for data transmission
2	Tx-	Negative pole for data transmission
3	Rx+	Positive pole for data receiving
4	—	N/C
5	—	N/C
6	Rx-	Negative pole for data receiving
7	—	N/C
8	—	N/C

Tab. 8-35: RJ-45 PIN definition

8.14.5 Connecting CMC-EIP01 to VFD-C2000

- ① Switch off the power of AC motor drive.
- ② Open the front cover of AC motor drive.
- ③ Place the insulation spacer into the positioning pin at Slot 1 (shown in Figure 8-39), and aim the two holes on the PCB at the positioning pin. Press the pin to clip the holes with the PCB (see Figure 8-40).
- (4) Screw up at torque 6–8 kg-cm (5.21–6.94 in-lbs) after the PCB is clipped with the holes (see Figure 8-41).

8.14.6 Communication parameters for VFD-C2000 connected to Ethernet


When VFD-C2000 is connected to Ethernet network, please set up the communication parameters for it according to the table below. The Ethernet master is only able to read/write the frequency word and control word of VFD-C2000 after the communication parameters are set.

Parame- ter (Dec)	Function	Set value (Dec)	Explanation
P00-20	Source of frequency command setting	8	The frequency command is controlled by communication card.
P00-21	Source of operation command setting	5	The operation command is controlled by communication card.
P09-30	Decoding method for communication	0	The decoding method for Delta AC motor drive
P09-75	IP setting	0	Static IP(0)/Dynamic distribution IP(1)
P09-76	IP address – 1	192	IP address 192.168.1.5
P09-77	IP address – 2	168	IP address 192.168.1.5
P09-78	IP address – 3	1	IP address 192.168.1.5
P09-79	IP address – 4	5	IP address 192.168.1.5
P09-80	Netmask – 1	255	Netmask 255.255.255.0
P09-81	Netmask – 2	255	Netmask 255.255.255.0
P09-82	Netmask – 3	255	Netmask 255.255.255.0
P09-83	Netmask – 4	0	Netmask 255.255.255.0
P09-84	Default gateway – 1	192	Default gateway 192.168.1.1
P09-85	Default gateway – 2	168	Default gateway 192.168.1.1
P09-86	Default gateway – 3	1	Default gateway 192.168.1.1
P09-87	Default gateway – 4	1	Default gateway 192.168.1.1

Tab. 8-36: CMC-EIP01 communication parameters

8.14.7 Disconnecting CMC-EIP01 from VFD-C2000

- ① Switch off the power supply of VFD-C2000.
- (2) Remove the two screws (see Figure 8-42).
- ③ Twist opens the card clip and inserts the slot type screwdriver to the hollow to prize the PCB off the card clip (see Figure 8-43).
- ④ Twist opens the other card clip to remove the PCB (see Figure 8-44).

8.14.8 LED indicator & troubleshooting

There are 2 LED indicators on CMC-EIP01. The POWER LED displays the status of power supply, and the LINK LED displays the connection status of the communication.

LED	Status		Indication	How to correct it?		
POWER	Green	On	Power supply in normal status	—		
POWER	Gleen	Off	No power supply	Check the power supply.		
	Green	On	Network connection in normal status	—		
LINK		Flashes	Network in operation	_		
LINK		Off	Network not connected	Check if the network cable is connected.		

Tab. 8-37: LED indicators

Abnormality	Cause	How to correct it?
Abnormality	Cause	How to correct it?
POWER LED off	AC motor drive not powered	Check if AC motor drive is powered, and if the power supply is normal.
FOWER LED ON	CMC-EIP01 not connected to AC motor drive	Make sure CMC-EIP01 is connected to AC motor drive.
LINK LED off	CMC-EIP01 not connected to network	Make sure the network cable is correctly connected to network.
	Poor contact to RJ-45 connector	Make sure RJ-45 connector is connected to Ethernet port.
No communication	CMC-EIP01 not connected to network	Make sure CMC-EIP01 is connected to network.
card found	PC and CMC-EIP01 in different networks and blocked by network firewall.	Search by IP or set up relevant settings by AC motor drive keypad.
	CMC-EIP01 not connected to network	Make sure CMC-EIP01 is connected to the network.
Fail to open CMC- EIP01 setup page	Incorrect communication setting in DCISoft	Make sure the communication setting in DCISoft is set to Ethernet.
	PC and CMC-EIP01 in different networks and blocked by network firewall.	Conduct the setup by AC motor drive keypad.
Able to open CMC- EIP01 setup page but fail to utilize webpage monitoring	Incorrect network setting in CMC-EIP01	Check if the network setting for CMC- EIP01 is correct. For the Intranet setting in your company, please consult your IT staff. For the Internet setting in your home, please refer to the network setting instruction provided by your ISP.
Fail to send e-mail	Incorrect network setting in CMC-EIP01	Check if the network setting for CMC- EIP01 is correct.
	Incorrect mail server setting	Please confirm the IP address for SMTP- Server.

Tab. 8-38: Troubleshooting

C2000_114

8.15 EMC-COP01

Built-in EMC-COP01 card are available for the VFDXXXC23E/VFDXXXC43E series.

8.15.1 RJ-45 pin definition

Pin	Pin name	Definition
1	CAN_H	CAN_H bus line (dominant high)
2	CAN_L	CAN_L bus line (dominant low)
3	CAN_GND	Ground/0V/V-
7	CAN_GND	Ground/0V/V-

Tab. 8-39: Pin definition

8.15.2 Specifications

Specifications	
Interface	RJ-45
Number of ports	1 Port
Transmission method	CAN
Transmission cable	CAN standard cable
Transmission speed	1 Mbps, 500 kbps, 250 kbps, 125 kbps, 100 kbps, 50 kbps
Communication protocol	CANopen

Tab. 8-40: Specifications

8.15.3 CANopen communication cable

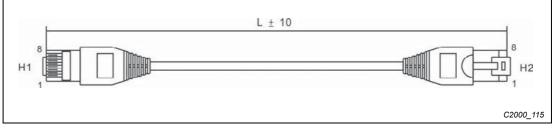


Fig.8-45: Model TAP-CB03, TAP-CB04

Туро	Part No.	L			
Туре	Fart NO.	mm	inch		
1	TAP-CB03	500 ±10	19 ±0.4		
2	TAP-CB04	1000 ±10	39 ±0.4		
T 1 0 11					

Tab. 8-41: Cable types

8.15.4 CANopen dimensions

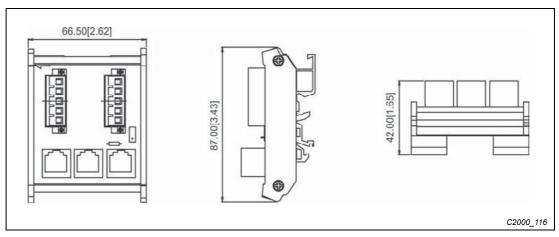


Fig.8-46: Model TAP-CN03

NOTE

For more information on CANopen, please refer to Chapter 15 "CANopen Overview" or the CANopen user's manual which can also be downloaded on Delta website: http://www.delta.com.tw/industrialautomation/.

9 Specifications

9.1 230 V series

Fram	e size			ŀ	٩			В			С	
Model VFDC			007	015	022	037	055	075	110	150	185	220
Applicable motor output (kW)		0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	
Appli	cable r	notor output (HP)	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22
	Heavy duty	Rated output capacity (kVA)	1.9	2.8	4.0	6.4	9.6	12	19	25	28	34
5		Rated output current (A)	4.8	7.1	10	16	24	31	47	62	71	86
t ratinç	He	Carrier frequency (kHz)		2–6 kHz								
Output rating	uty	Rate output capacity (kVA)	2.0	3.2	4.4	6.8	10	13	20	26	30	36
0	Normal duty	Rated output current (A)	5	8	11	17	25	33	49	65	75	90
		Carrier frequency (kHz)	2–15 kHz 2–10 kHz								z	
	Input current (A) heavy duty		6.1	11	15	18.5	26	34	50	68	78	95
Input rating		current (A) al duty	6.4	12	16	20	28	36	52	72	83	99
put	Rated	d voltage/frequency	3-phase AC 200 V–240 V (–15%–10%), 50/60 Hz									
<u>_</u>	Opera	ating voltage range					170–26	5 V AC				
	Frequ	lency tolerance					47–6	3 Hz				
AC d	rive we	eight	2	.6 ±0.3 k	g		5.4 ±	:1 kg		9.	.8 ±1.5 k	g
Cooling method		Natural cooling Fan cooling										
Braking chopper						Bui	lt-in					
DC reactor		Optional										
EMC filter		Optional										
EMC	EMC-COP01		VFDXXC23A: Optional, VFDXXXC23E: Built-in									

Tab. 9-1: Specifications for appliance class 230 V (frame size A to C)

Frame size		D			E		F	
Model VFDC		300	370	450	550	750	900	
Appl	icable	e motor output (kW)	22	30	37	45	55	75
Appl	icable	e motor output (HP)	30	37	45	55	75	90
	duty	Rated output capacity (kVA)	45	55	68	81	96	131
D		Rated output current (A)	114	139	171	204	242	329
Output Rating	Heavy	Carrier frequency (kHz)			2–6 kHz			
putl	uty	Rate output capacity (kVA)	48	58	72	86	102	138
Out	al d	Rated output current (A)	120	146	180	215	255	346
Norm	Normal duty	Carrier frequency (kHz)	2–10 kHz		2–9 kHz			

Tab. 9-2: Specifications for appliance class 230 V (frame size D to F) (1)

Fran	ne size	I	כ		E		F				
	Input current (A) heavy duty	118	136	162	196	233	315				
ting	Input current (A) normal duty	124	143	171	206	245	331				
nput rating	Rated voltage/frequency	3-phase AC 200 V–240 V (–15 %–+10 %), 50/60 Hz									
Inpu	Operating voltage range			170–26	65 V AC						
	Frequency tolerance	47–63 Hz									
AC drive weight		38.5 ±	1.5 kg		J	86.5 ±1.5 kg					
Coo	ling method	Fan cooling									
Brak	king chopper	Optional									
DC I	reactor	Built-in									
EMI filter		Optional									
EMC	C-COP01	VFDXXC23A: Optional, VFDXXXC23E: Built-in									

Tab. 9-2: Specifications for appliance class 230 V (frame size D to F) (2)

9.2 460 V series

Fra	me size			1	4				В			С		D	0
Model VFDC		007	015	022	037	040	055	075	110	150	185	220	300	370	450
	licable motor out (kW)	0.75	1.5	2.2	3.7	4.0	5.5	7.5	11	15	18.5	22	30	37	45
	licable motor out (HP)	1	2	3	5	5	7.5	10	15	20	25	30	40	50	60
	Rated output 全 capacity (kVA)	2.3	3.0	4.5	6.5	7.6	9.6	14	18	24	29	34	45	55	69
	Rated output current (A)	2.9	3.8	5.7	8.1	9.5	11	17	23	30	36	43	57	69	86
Output rating	⊥ Carrier frequency (kHz)						2-	-6 kHz	: (2 kH	z)					
Dutput	Rate output 줔 capacity (kVA)	2.4	3.2	4.8	7.2	8.4	10	14	19	25	30	36	48	58	73
Ŭ	Rated output current (A)	3.0	4.0	6.0	9.0	10.5	12	18	24	32	38	45	60	73	91
	Carrier frequency (kHz)		2–15 kHz (8 kHz)								2–10 kHz (6 kHz)				
	Input current (A) heavy duty	4.1	5.6	8.3	13	14.5	16	19	25	33	38	45	60	70	96
ting	Input current (A) normal duty	4.3	5.9	8.7	14	15.5	17	20	26	35	40	47	63	74	101
Input rating	Rated voltage/ frequency	3-phase AC 380 V–480 V (–15 %–10 %), 50/60 Hz													
<u>_</u>	Operating voltage range		323–528 V AC												
	Frequency tolerance							47–6	3 Hz						
AC	drive weight			2.6 ±0	0.3 kg			5	.4 ±1 k	g	9.8	3 ±1.5	kg	27 ±	:1 kg
Cooling method			ural ling						Fan c	ooling					
Braking chopper				Fi	rame A	A to C	(built-ii	n); Fra	me D	and at	oove (optiona	al)		
DC reactor		Frame A to C (optional); Frame D and above (built-in)													
EM	l filter	VFDXXXC43A Frame A to C: No EMI filter; VFDXXXC43E: Built-in EMI filter VFDXXXC43A/43E Frame D and above: EMI filter is optional													
EM	C-COP01				VFD)	XC43	A (opt	ional);	VFDX	XXC4	3E (bı	uilt-in)			

Tab. 9-3: Specifications for appliance class 460 V (frame size A to D0)

Fra	me	size	C)	I	Ξ		F		(3		Н	
Мо	del \	/FDC	550	750	900	1100	1320	1600	1850	2200	2800	3150	3550	4500
Арр	olica	ble motor output (kW)	55	75	90	110	132	160	185	220	280	315	355	450
Арр	olica	ble motor output (HP)	75	100	125	150	175	215	250	300	375	420	475	600
	rty	Rated output capacity (kVA)	84	114	136	167	197	235	280	348	417	466	517	677
	Heavy duty	Rated output current (A)	105	143	171	209	247	295	352	437	523	585	649	816
rating	Не	Carrier frequency (kHz)	2–6 kHz (2 kHz)											
Output rating	duty	Rate output capacity (kVA)	88	120	143	175	207	247	295	367	438	491	544	720
Ŭ	Vormal di	Rated output current (A)	110	150	180	220	260	310	370	460	550	616	683	866
	Noi	Carrier frequency (kHz)			2–10	kHz (6	kHz)				2–9	kHz (4	kHz)	

Tab. 9-4: Specifications for appliance class 460 V (frame size D to H) (1)

Fra	me size	0)	E	E		F		(G		Н	
	Input current (A) heavy dduty	108	149	159	197	228	285	361	380	469	527	594	816
rating	Input current (A) normal duty	114	157	167	207	240	300	380	400	494	555	625	866
Input	Rated voltage/frequency	3-phase AC 380 V-480 V (-15 % +10 %), 50/60 Hz											
<u>_</u>	Operating voltage range	323–528 V AC											
	Frequency tolerance	47–63 Hz											
AC	drive weight	38.5±	1.5 kg	64.8±	1.5 kg	86	.5 ±1.5	kg	134 :	±4 kg		228 kg	
Cod	oling method	Fan cooling											
Bra	king chopper	Optional											
DC	reactor	Built-in											
EMI Filter		VFDXXXC43E: Built-in EMI filter, VFDXXXC43A/43E Frame D and above: EMI filter is optional											
EMC-COP01		VFDXXC43A (optional); VFDXXXC43E (built-in)											

Tab. 9-4: Specifications for appliance class 460 V (frame size D to H) (2)

NOTES

- The value of the carrier frequency is a factory setting. To increase the carrier frequency, the current needs to be decreased. See derating curve diagram of Pr. 06-55 for more information.
- When the control mode is FOC sensorless, TQC + PG, TQC sensorless, PM + PG and PM sensorless, the current needs to be decreased. For more information see Pr. 06-55.
- When a load is a shock or impact load, use a higher level model.
- For FRAME A, B and C, Model VFDXXXC43A the enclosure type is IP20/NEMA1/UL TYPE1.
- For FRAME D and above, if the last character of the model is A then the enclosure type is IP20 but the wiring terminal is IP00; if the last character of the model is E, the enclosure type is IP20/NEMA1/UL TYPE1.

9.3 General specifications

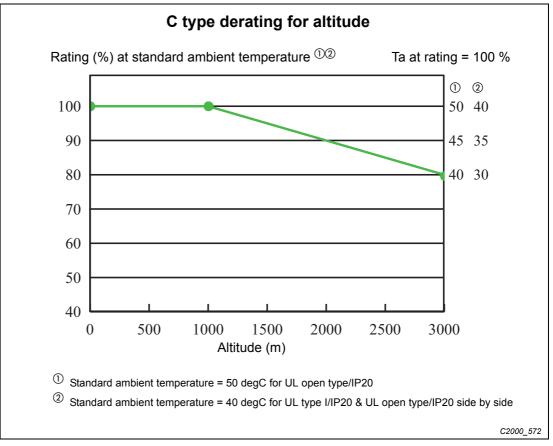
	Control method	1: V/F, 2: SVC, 3: VF + PG, 4: FOC + PG, 5: TQC + PG
	Starting torque	Reach up to 150 % or above at 0.5 Hz; Under FOC+PG mode, starting torque can reach 150 % at 0 Hz.
	V/F curve	4 point adjustable V/F curve and square curve
	Speed response ability	5 Hz (vector control can reach up to 40 Hz)
	Torque limit	Max. 200 % torque current
	Torque accuracy	±5 %
	Max. output frequency	Normal duty: 0.01–600.00 Hz; heavy duty: 0.00–300.00 Hz
tics	Frequency output accuracy	Digital command: ±0.01 %, -10 °C-+40 °C, Analog command: ±0.1 %, 25 ±10 °C
Control characteristics	Output frequency resolution	Digital command: 0.01 Hz; Analog command: 0.03 x max. output frequency/60 Hz (\pm 11 bit)
chara	Overload tolerance	Normal duty: rated output current is 120 % for 60 seconds; Heavy duty: rated output current is 150 % for 60 seconds
trol	Frequency setting signal	+10 V-10, 0-+10 V, 4-20 mA, 0-20 mA, pulse input
Con	Accel./decel. time	0.00-600.00/0.0-6000.0 seconds
-	Main control function	Torque control, droop control, speed/torque control switching, feed for- ward control, zero-servo control, momentary power loss ride thru, speed search, over-torque detection, torque limit, 17-step speed (max), accel/ decel time switch, S-curve accel/decel, 3-wire sequence, auto-tuning (rotational, stationary), dwell, cooling fan on/off switch, slip compensa- tion, torque compensation, JOG frequency, frequency upper/lower limit settings, DC injection braking at start/stop, high slip braking, PID control (with sleep function), energy saving control, MODBUS communication (RS485 RJ45, max. 115.2 kbps), fault restart, parameter copy
	Fan control	Frame A, B is on/off control Frame C and above is PWM control
	Motor protection	Electronic thermal relay protection
Protection characteristics	Over-current protection	Over-current protection for 220 % rated current Current clamp: Normal duty: 170–175 % Heavy duty: 180–185 %
aracte	Over-voltage protection	230: drive will stop when DC-BUS voltage exceeds 410 V 460: drive will stop when DC-BUS voltage exceeds 820 V
с С	Over-temperature protection	Built-in temperature sensor
tectior	Stall prevention	Stall prevention during acceleration, deceleration and running independently
Pro	Restart after instantaneous power failure	Parameter setting up to 20 seconds
	Grounding leakage current protection	Leakage current is higher than 50 % of rated current of the AC motor drive
Certif	ications	CE, UL, GB/T12668-2, GOST-R (certification in progress)

Tab. 9-5: General specifications of C2000 series frequency inverters

9.4 Environment for operation, storage and transportation

humidity, li	pose the in the ba quid and vibration ² every year.	d environment, such environment. The sal	as dust, direct sunlight, corrosive/inflammable gasses, t in the air must be less than					
Installation location		IEC 60364-1/IEC 60664-1 pollution degree 2, indoor use only						
	o "	Storage	–25 °C–+70 °C					
	Surrounding temperature	Transportation	–25 °C–+70 °C					
	temperature	Non-condensation, non-frozen						
		Operation	Max. 95 %					
	Rated humidity	Storage/ Transportation	Max. 95 %					
		No condense water						
Environ-	Air pressure	Operation/Storage	86 to 106 kPa					
ment		Transportation	70 to 106 kPa					
		IEC 721-3-3						
		Operation	Class 3C2; Class 3S2					
	Pollution Level	Storage	Class 2C2; Class 2S2					
		Transportation	Class 1C2; Class 1S2					
		No concentrate						
	Altitude	Operation	If is installed at altitude 0–1000 m, follow normal operation restriction. If it is install at altitude 1000–2000 m, decrease 2 % of rated current or lower 0.5 °C of temperature for every 100 m increase in altitude. Maximum altitude for Corner Grounded is 2000 m.					
Package drop	Storage Transportation	ISTA procedure 1A (a	according to weight) IEC 60068-2-31					
Vibration		1.0 mm, peak to peak value range from 2 Hz to 13.2 Hz; 0.7 G–1.0 G range from 13.2 Hz to 55 Hz; 1.0G range from 55 Hz to 512 Hz. Comply with IEC 60068-2-6						
Impact	IEC/EN 60068-2-2	2-27						
Operation position	Max. allowed offs (under normal ins		10°→,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					

Tab. 9-6: Ambient conditions



9.5 Specification for operation temperature and protection level

Model	Frame	Top cover	Conduit box	Protection level	Operation temperature
	Frame A–C 230 V: 0.75–22 kW	Top cover removed	Standard	IP20/UL open type	–10–50 °C
	460 V: 0.75–30 kW	Standard with top cover	conduit plate	IP20/UL Type1/NEMA1	–10–40 °C
VFDxxxCxxA	Frame D–H 230 V: > 22 kW 460 V: > 30 kW	N/A	No conduit box	IP00/IP20/UL open type: Only the circled area is IP00, other are IP20.	–10—50 °C
	Frame A–C	Top cover removed	Standard	IP20/UL open type	–10–50 °C
VFDxxxCxxE	460 V: 0.75–30 kW	Standard with top cover	conduit plate	IP20/UL type1/NEMA1	–10–40 °C
	Frame D–H 230 V: > 22 kW 460 V: > 30 kW	N/A	Standard conduit box	IP20/UL type1/NEMA1	–10–40 °C

Tab. 9-7: Protection class and operation conditions

9.6 Derating of ambient temperature and altitude

Fig. 9-1: When the altitude is higher than 100 m, the ambient temperature must be reduced.

Protection level	Operating environment
UL type I/IP20	When the is operating at the rated current and the ambient temperature has to be between 10 $^{\circ}C$ -+40 $^{\circ}C$. When the temperature is over 40 $^{\circ}C$, for every increase by 1 $^{\circ}C$, decrease 2 % of the rated current. The maximum allowable temperature is 60 $^{\circ}C$.
UL open type/IP20	When the is operating at the rated current and the ambient temperature has to be between -10 °C $-+50$ °C. When the temperature is over 50 °C, for every increase by 1 °C, decrease 2 % of the rated current. The maximum allowable temperature is 60 °C.
High altitude	If is installed at altitude 0–1000 m, follow normal operation restriction. If it is install at altitude 1000–2000 m, decrease 2 % of rated current or lower 0.5 °C of temperature for every 100 m increase in altitude. Maximum altitude for Corner Grounded is 2000 m. Contact Delta for more information, if you need to use this motor drive at an altitude of 2000 m or higher.

Tab. 9-8: Operating conditions

10 Digital Keypad

10.1 Descriptions of digital keypad

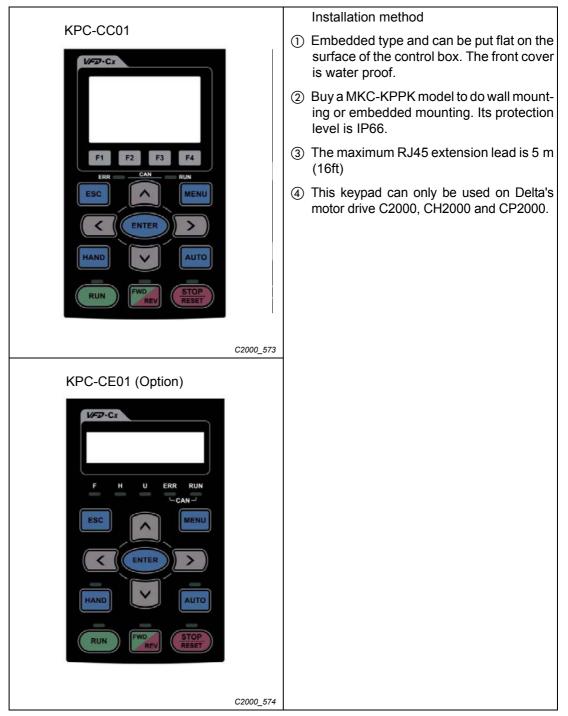


Fig. 10-1: Communication interface RJ-45 (socket), RS485 interface

K	
Key	Description
RUN	 Start operation key It is only valid when the source of operation command is from the keypad. It can operate the by the function setting and the RUN LED will be ON. It can be pressed again and again at stop process. When enabling "HAND" mode, it is only valid when the source of operation command is from the keypad.
STOP RESET	 Stop command key This key has the highest processing priority in any situation. When it receives STOP command, no matter the is in operation or stop status, the needs to execute "STOP" command. The RESET key can be used to reset the drive after the fault occurs. For those faults that can't be reset by the RESET key, see the fault records after pressing MENU key for details.
FWD	 Operation direction key This key is only control the operation direction NOT for activate the drive. FWD: forward, REV: reverse. Refer to the LED descriptions for more details.
ENTER	 ENTER key Press ENTER and go to the next level. If it is the last level then press ENTER to execute the command.
ESC	 ESC key – ESC key function is to leave current menu and return to the last menu. It is also functioned as a return key in the sub-menu.
MENU	Press menu to return to main menu.Menu content:KPC-CE01 does not support function 5–13.1. Parameter setup8. Display setup2. Copy parameter9. Time setup3. Keypad locked10. Language setup4. PLC function11. Startup menu5. Copy PLC12. Main page6. Fault record13. PC Link7. Quick start
	 Direction: Left/Right/Up/Down In the numeric value setting mode, it is used to move the cursor and change the numeric value. In the menu/text selection mode, it is used for item selection.
F1 F2 F3 F4	 Function key The functions keys have factory settings and can be defined by users. The factory settings of F1 and F4 work with the function list below. For example, F1 is JOG function, F4 is a speed setting key for adding/deleting user defined parameters. Other functions must be defined by TPEditor first. TPEditor software V1.30.6 is available for download at: http://www.delta.com.tw/ch/product/em/download/downloadmain.asp?act=3&pid=1&cid=1&tpid=3 Installation Instruction for TPEditor is on page 10-15 of this chapter.
HAND	 HAND key This key is executed by the parameter settings of the source of Hand frequency and hand operation. The factory settings of both source of Hand frequency and hand operation are the digital keypad. Press HAND key at stop status, the setting will switch to hand frequency source and hand operation source. Press HAND key at operation status, it stops the first (display AHSP warning), and switch to hand frequency source and hand operation for KPC-CE01, "H/A" LED will be on; for KPC-CC01, it will display HAND mode/ AUTO mode on the screen.

Tab. 10-1: Descriptions of keypad functions

Key	Description
AUTO	 This key is executed by the parameter settings of the source of AUTO frequency and AUTO operation. The factory setting is the external terminal (source of operation is 4-20 mA). Press Auto key at stop status, the setting will switch to hand frequency source and hand operation source. Press Auto key at operation status, it stops the first (display AHSP warning), and switch to auto frequency source and auto operation source. Successful mode switching for KPC-CE01, "H/A" LED will be off; for KPC-CC01, it will display HAND mode/ AUTO mode on the screen.

Tab. 10-1: Descriptions of keypad functions

LED	Description
RUN	Steady ON: operation indicator of the , including DC brake, zero speed, standby, restart after fault and speed search. Blinking: drive is decelerating to stop or in the status of base block. Steady OFF: drive doesn't execute the operation command
STOP RESET	Steady ON: stop indicator of the . Blinking: drive is in the standby status. Steady OFF: drive doesn't execute "STOP" command.
FWD REV	Operation Direction LED – Green light is on, the drive is running forward. – Red light is on, the drive is running backward. – Twinkling light: the drive is changing direction.
HAND	(Only KPC-CE01 support this function) Setting can be done during operation. HAND LED: When HAND LED is on (HAND mode); when HAND LED is off (AUTO mode).
Αυτο	(Only KPC-CE01 Support this function) Setting can be done during operation. AUTO LED: when AUTO LED is on (AUTO mode); when AUTO LED is off (HAND mode).

Tab. 10-2: Descriptions of LED functions

LED	LED status	Condition/state
I	OFF	CANopen at initial
"N	Blinking	CANopen at pre-operation (refer to following figure)
ANope "RUN"	Single flash	CANopen at stopped (refer to following figure 2)
Q	ON	CANopen at operation status

Tab. 10-3: State of the CANopen® RUN LED

LED	LED status	Condition/state
	OFF	No error
	Single flash	One message fail (refer to following figure 2)
Nope ERR	Double flash	Guarding fail or heartbeat fail (refer to following figure (3)
CANopen "ERR"	Triple flash	SYNC fail (refer to following figure 4
	ON	Bus off

Tab. 10-4: State of the CANopen® ERR LED

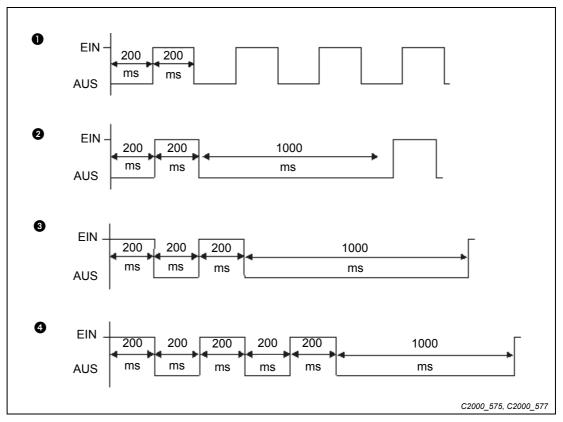


Fig. 10-2: Flashing of the CAN RUN und CAN ERR LED

10.2 Function of digital keypad KPC-CC01

Fig. 10-3: Start screen and main menu selection

NOTES

- Startup page can only display pictures, no flash.
- When power ON, it will display startup page then the main page. The main page displays Delta's default setting F/H/A/U, the display order can be set by Pr. 00-03 (Startup display). When the selected item is U page, use left key and right key to switch between the items, the display order of U page is set by Pr. 00-04 (User display).

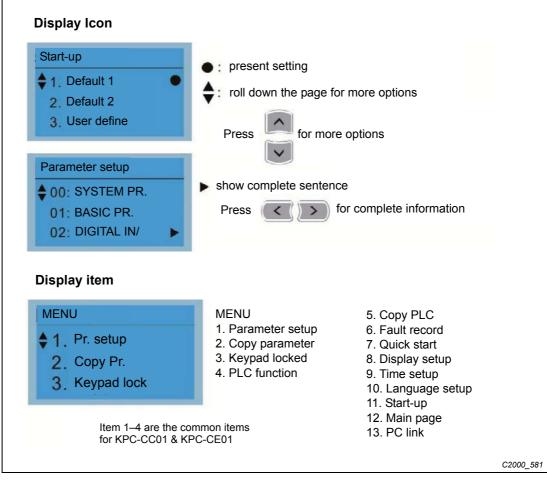


Fig. 10-4: Display symbols and main menu points

1. Parameter setup

Parameter setup	00-SYSTEM PR.	
♦ 00: SYSTEM PR.	♦ 00: Identity Co	Once in the group 00 motor drive parameter; use up/down key to select parameter 20:
01: BASIC PR.	01: Rated current	auto frequency command.
02: DIGITAL IN/	02: Parameter Re	
	00-SYSTEM PR.	When this perspector is calested proce ENTER
	20: Source of F	When this parameter is selected, press ENTER key to go to this parameter's setting menu.
	21: Source of OP	
	22: Stop methods	
Press ever to select.	00-20	Use Up/Down key to choose a setting.
	2	For example: Choose "2 Analogue input", then press the ENTER key.
Press 🙇 to select a parameter	Analog input	
group.	0–8 ADD	
Once a parameter group is selected,	00-20	After pressing the ENTER key, an END will be
press even to go into that group.	END	displayed which means that the parameter set- ting is done.
	Analog input	

Fig. 10-5: Parameter setup

2. Parameter copy

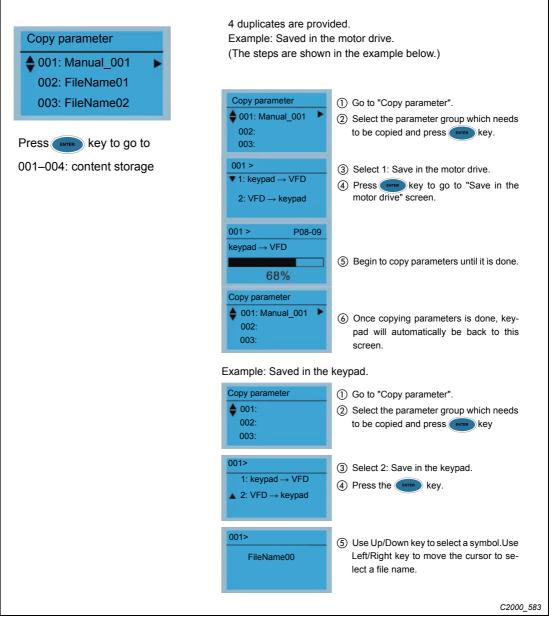


Fig. 10-6: Copy parameter

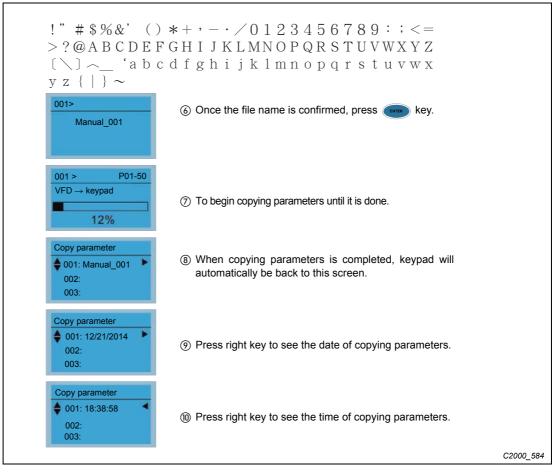


Fig. 10-7: Copy parameter

3. Keypad lock

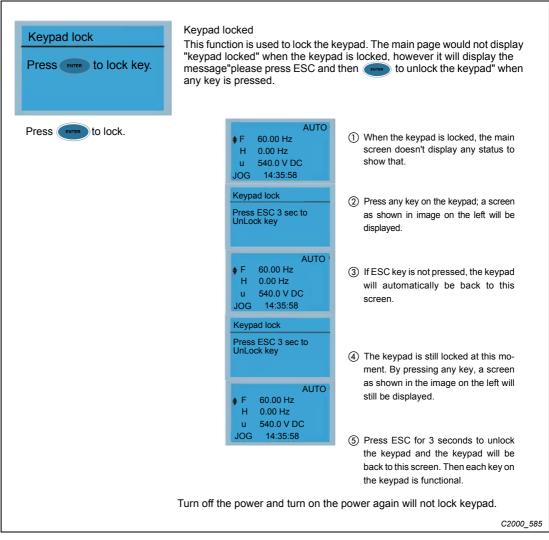


Fig. 10-8: Keypad locked

4. PLC Function

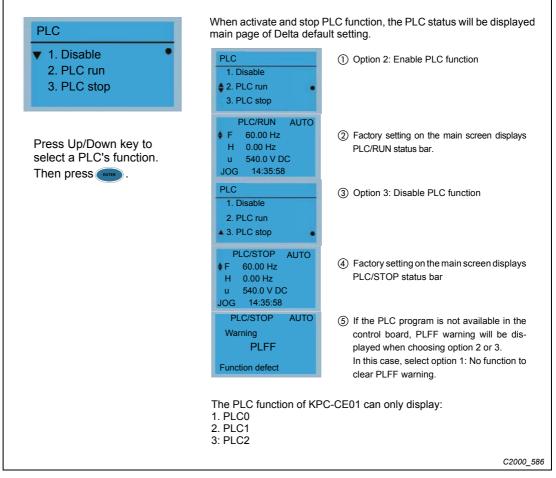


Fig. 10-9: PLC function

5. Copy PLC

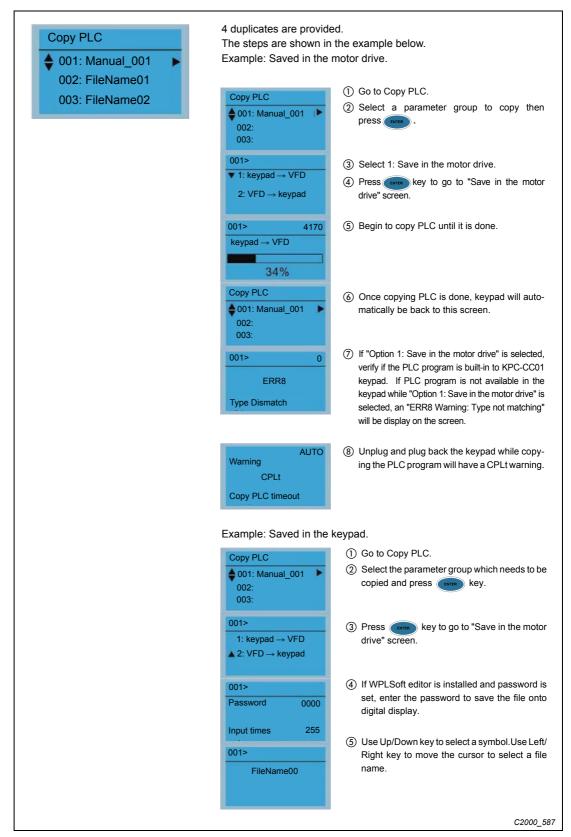


Fig. 10-10: Copy PLC

Fig. 10-11: Copy PLC

6: Fault Record

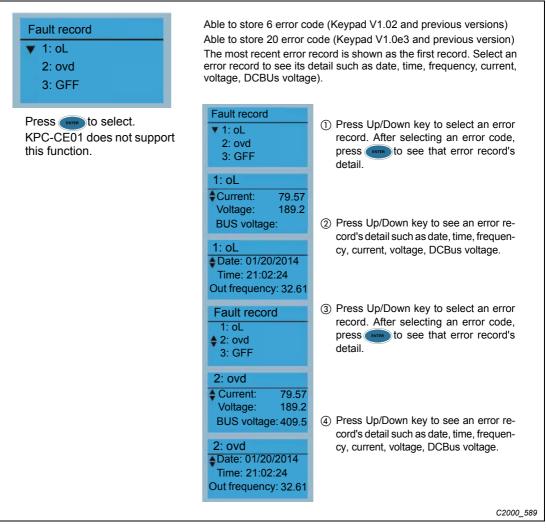


Fig. 10-12: Fault record

NOTE

Fault actions of are record and save to KPC-CC01. When KPC-CC01 is removed and apply to another, the previous fault records will not be deleted. The new fault records of the present will accumulate to KPC-CC01.

7. Quick Start

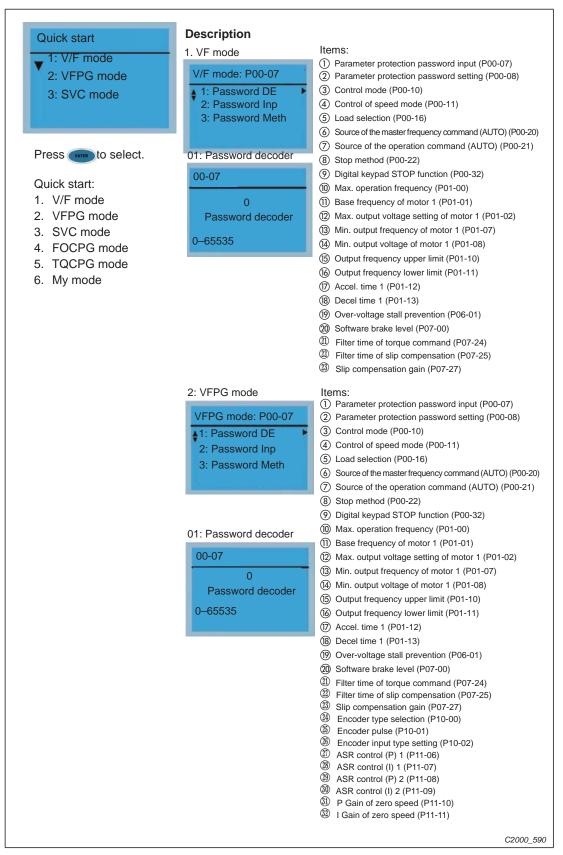


Fig. 10-13: Quick start (1)

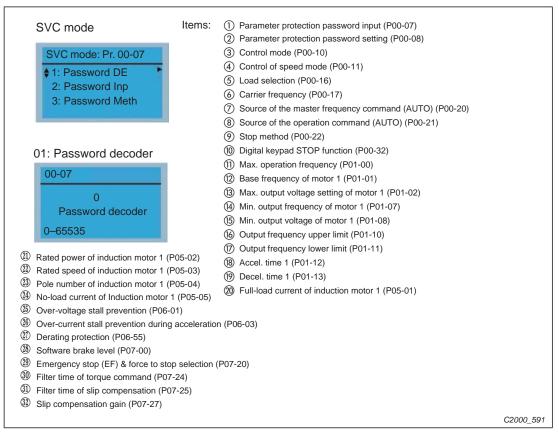


Fig. 10-14: Quick start (2)

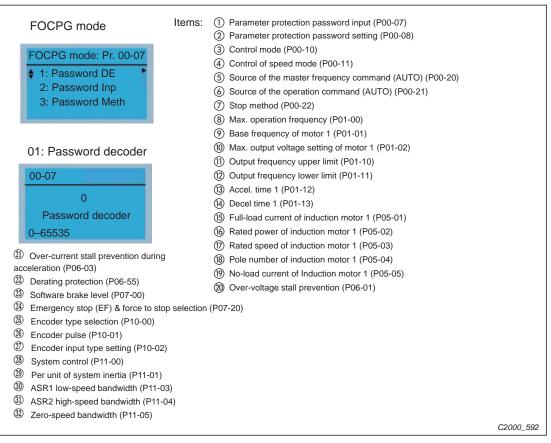


Fig. 10-15: Quick start (3)

٦

TQCPG mode	Items:	
	 Password input (decode) (P00-07) 	
TQCPG mode: Pr. 00-07	2 Password setting (P00-08)	
1: Password DE	③ Control mode (P00-10)	
2: Password Inp	④ Control of speed mode (P00-11)	
3: Password Meth	5 Source of the master frequency command (P00-20)	
	6 Source of the operation command (P00-21)	
	Max. operation frequency (P01-00)	
	8 Base frequency of motor 1 (P01-01)	
01: Password decoder	9 Max. output voltage setting of motor 1 (P01-02)	
00-07	1 Full-load current of induction motor 1 (P05-01)	
00-07	1 Rated power of induction motor 1 (P05-02)	
0	12 Rated speed of induction motor 1 (P05-03)	
Password decoder	13 Pole number of induction motor 1 (P05-04)	
	(4) No-load current of induction motor 1 (P05-05)	
0-65535	(5) Over-voltage stall prevention (P06-01)	
	(6) Software brake level (P07-00)	
	⑦ Encoder type selection (P10-00)	
	18 Encoder pulse (P10-01)	
	(P10-02)	
	20 System control (P11-00)	
	Der unit of system inertia (P11-01)	
	ASR1 low-speed bandwidth (P11-03)	
	ASR2 high-speed bandwidth (P11-04)	
	(24) Zero-speed bandwidth (P11-05)	
	(1) Max. torque command (P11-27)	
	(1) Source of torque offset (P11-28)	
	D Torque offset setting (P11-29)	
	 Source of torque command (P11-33) Torque command (P11-34) 	
	 Speed limit selection (P11-36) Forward speed limit (torque mode) (P11-37) 	
	 Porward speed limit (torque mode) (P11-37) Reverse speed limit (torque mode) (P11-38) 	
		C2000 E02
		C2000_593

Fig. 10-16: Quick start (4)

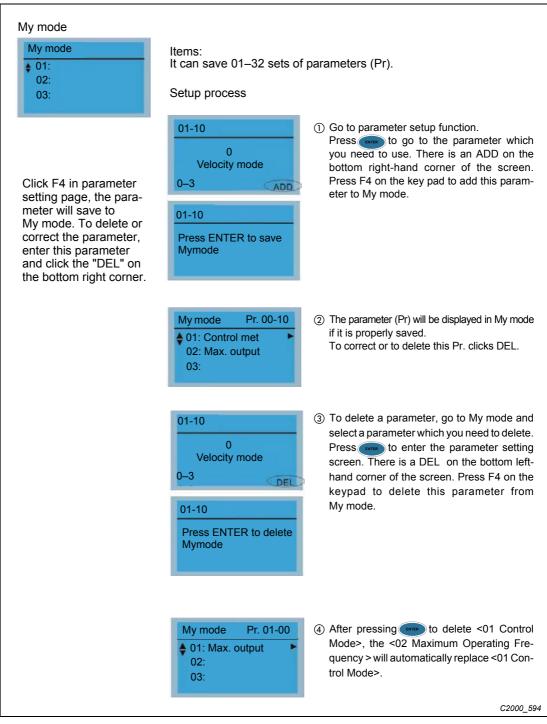


Fig. 10-17: Quick start (5)

8. Display Setup

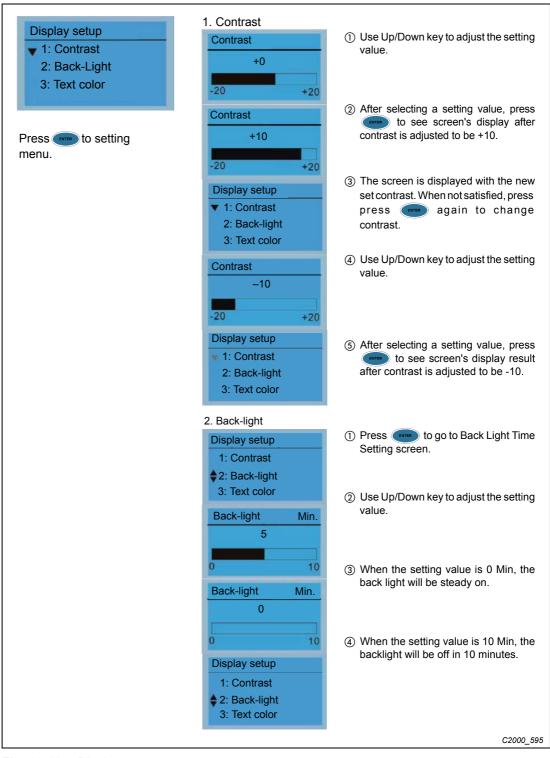


Fig. 10-18: Display setup

9. Time setting

Time setup 2009/01/01 :	Time setup 2014/01/01 00 : 00 :+90	① Use Up/Down key to set up year.
Use left/right key to select year, month, day, hour, minute or second to set up.	Time setup 2014/01/01 00 : 00 : 00	② Use Up/Down key to set up month.
to set up.	Time setup 2014/01/01 00 : 00 : 00	③ Use Up/Down key to set up day.
	Time setup 2014/01/01 21:00:00	④ Use Up/Down key to set up hour.
	Time setup 2014/01/01 21 : 12 : 00	(5) Use Up/Down key to set up minute.
	Time setup 2014/01/01 21 : 12 : 14	⑥ Use Up/Down key to set up second.
	Time setup END	⑦ After setting up, press firm the setup.
		noved, the time setting will be in standby riod, the time needs to be reset.
		C2000_596

Fig. 10-19: Time setting

10. Language setup

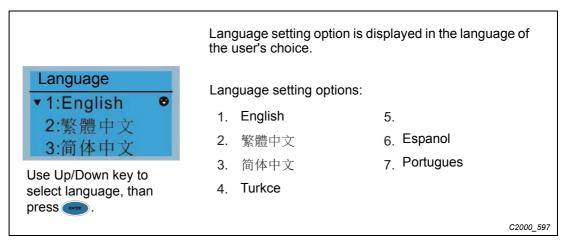


Fig. 10-20: Language setup

11. Start-up

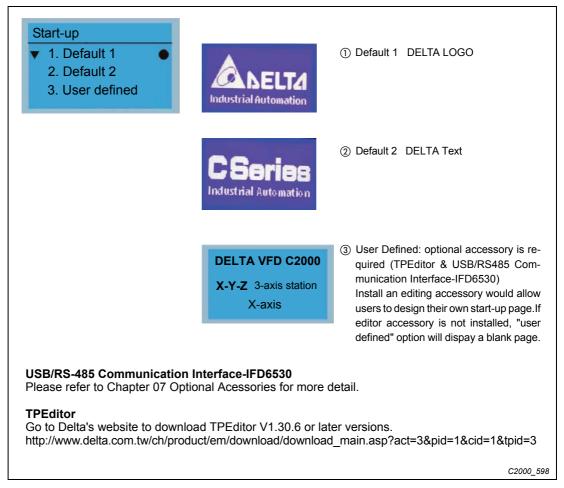
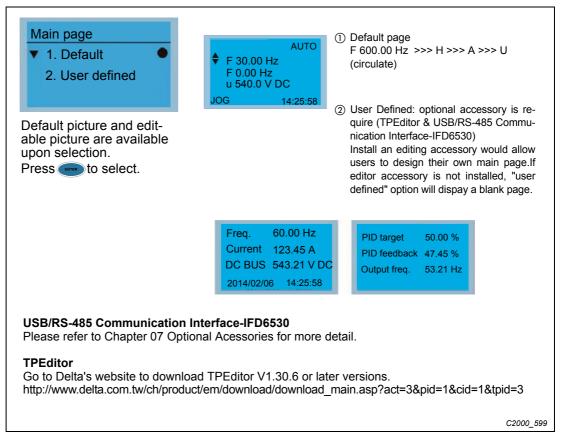



Fig. 10-21: Startup-up

12. Main page

13. PC Link

PC link ▼ 1. TPEditor 2. VFDSoft PC link Waiting	 TPEditor: This function allows users to connect the keypad to a computer then to download and edit user defined pages. Click of the go to <waiting connect="" pc="" to="">.</waiting> 	
0 %		
Barter 118 - Pala 1918 anno Paly (And) Veral) Company Dynamic Dynamic State (日本) 日本	<communication>, then choose "Write to HMI"</communication>	
YYYYMM/DD HH		
Here (B) (Alle) Versily (Complet) (Specify		
	have j	
PC link Receiving 28 %	④ Start downloading pages to edit KPC-CC01.	
PC link Completed 100 %	⑤ Download completed.	
		C2000_600

Fig. 10-23: PC link

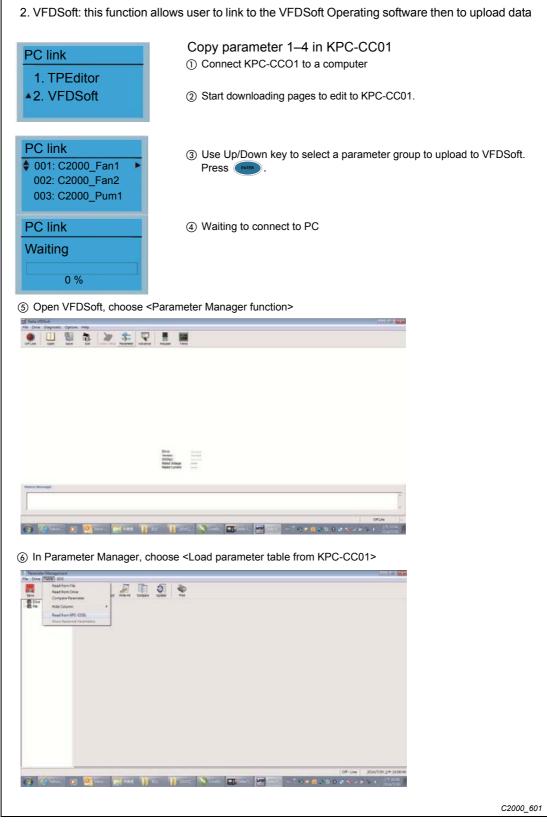


Fig. 10-24: PC link (1)

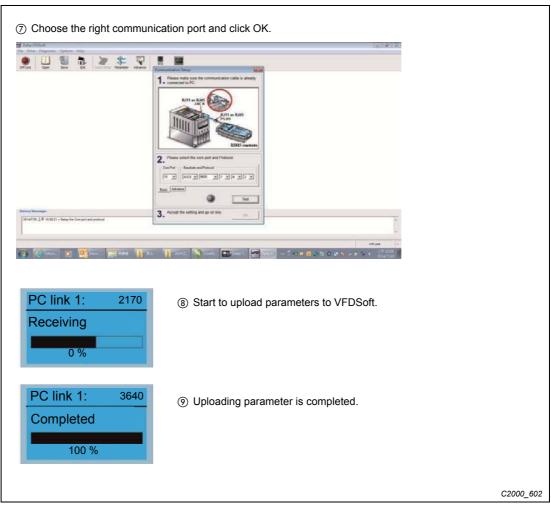
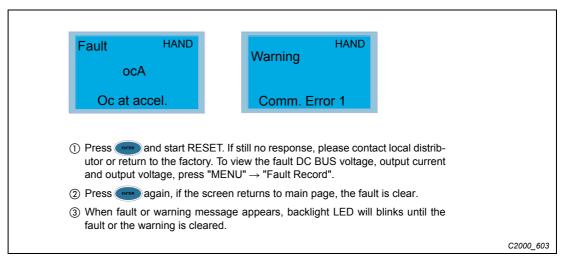


Fig. 10-24: PC link (2)


Before using the user defined starting screen and user defined main screen, the starting screen setup and the main screen setup have to be preset as user defined.

If the user defined page are not downloaded to KPC-CC01, the starting screen and the main screen will be blank.

Other display

When fault occur, the menu will display:

Please refer to paragraph 10.4 for a description of the fault and warning messages.

Optional accessory

Part No.	Description
CBC-K3FT	RJ45 extension lead, 3 feet (approximately 0.9 m)
CBC-K5FT	RJ45 extension lead, 5 feet (approximately 1.5 m)
CBC-K7FT	RJ45 extension lead, 7 feet (approximately 2.1 m)
CBC-K10FT	RJ45 extension lead, 10 feet (approximately 3 m)
CBC-K16FT	RJ45 extension lead, 16 feet (approximately 4.9 m)

Tab. 10-5: RJ45 extension lead for digital keypad

NOTE

When you need to buy communication cables, buy non-shielded, 24 AWG, 4 twisted pair, 100 ohms communication cables.

10.3 TPEditor installation instruction

TPEditor can edit up to 256 HMI (Human-Machine Interface) pages with a total storage capacity of 256kb. Each page can edit 50 normal objects and 10 communication objects.

10.3.1 TPEditor: setup & basic functions

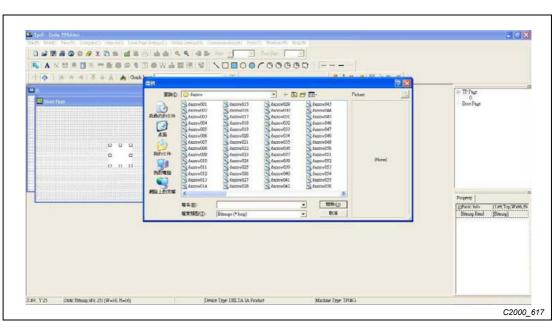
① Run TPEditor version 1.30

HMI <=> PLC		
Set Device Type		
DELTA VFD-C Inverter	1	-
ТР Туре		_
VFD-C KeyPad		•
File Name		
TPEO		
		_

② Go to File(F)→Click on New. The Window below will pop up. At the device type, click on the drop down menu and choose DELTA VFD-C Inverter. At the TP type, click on the drop down menu and choose VFD-C KeyPad. As for File Name, enter TPE0. Now click on OK.

③ You are now at the designing page. Go to Edit (E) → Click on Add a New Page (A) or go to the TP page on the upper right side, right click once on TP page and choose Add to increase one more page for editing. The curent firmware of Keypad is version 1.00 and can support up to 4 pages.

💺 A N 😫 😣 🖪 🛱 🚔 🖲 🕘 🛛 🝚 W 🛓	100070000	30	
小泰 A A A A 存合点 由 Thirline	T	9 à 8 - 0 19 à 8 - 0	
			B Ball B Ball Construction Gen.43
			heer 2

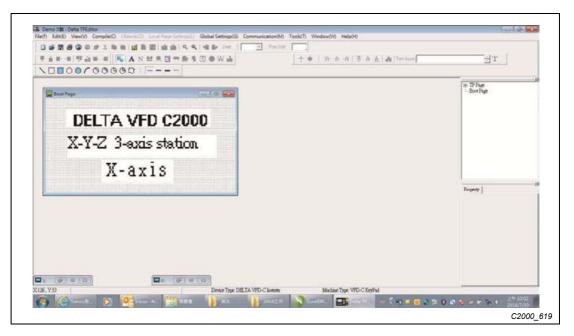

10.3.2 Edit startup page

- 1 Edit startup page **A**.
- Static Text A . Open a blank page, click once on this button A , and then double click on that blank page. The following windows will pop up.

NIAN HR BATROPS DOWN		
Tet la A . A . A Tet last		
		hepiticeseconder and hepitices
The Trap		TF Page Boot Page
<u> </u>	Fine Sting Environment	
5 <u> </u>	Ten Dandos. From Lett to Stagle Alignment Alignment Align Top -	•
		Property (r)Basic lado (11.4h)Ton,Waldh,Hir Proze-Detting Dauge
		Terro Disension - Rown, Lettro Right Nov. Adaptorese Adapt care Vero: Adaptorese Adapt Top Nov. Stageneers (Adapt Top Nov. Stageneers) - (Marce Nov. Nov. Terro Nage

Static Bitmap

Open a blank page, then click once on this button and then double click on that blank page. The following window will pop up. Now choose a image that you need and click open, then that image will appear in the Static Bitmap window

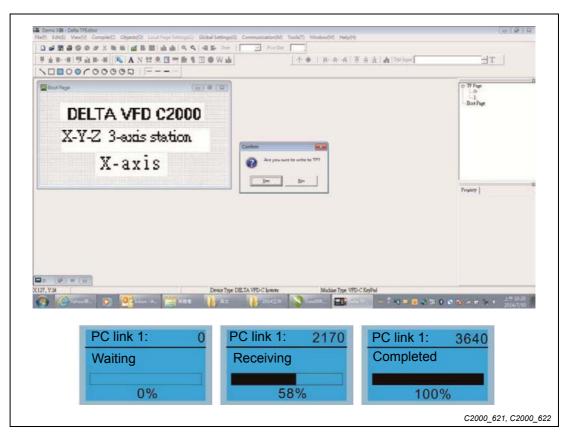

NOTE

Please note that Static Bitmap setting support only images in BMP format.

③ Geometric Bitmap

As shown in the picture on the left side, there are 11 kinds of geometric bitmap to choose. Open a new blank page then click once on a geometric bitmap icon that you need. Then drag that icon and enlarge it to the size that you need on that blank page.

④ Finish editing the keypad starting screen and select Communication>Input User Defined Keypad Starting Screen.


- (5) Downloading setting
 - Go to *Tool > Communication*. Set up communication port and speed of IFD6530.

TP Station Address	1
PC COM Port	COM3 -
Baud Rate	9600 💌

 Only three speed selections are available: 9600 bps, 19200 bps and 38400 bps.

⑦ When a dialogue box displayed on the screen asking to confirm writing or not, press buttons on the keypad to go to MENU, select PC LINK and then press and wait for few seconds. Then select YES on the screen to start downloading.

10.3.3 Edit main page & example of download

 Go to editing page, select *Edit>Add* one page or press the button ADD on the right hand side of the HMI page to increase number of pages to edit. This keypad currently support up to 256 pages.

	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Testile ↑ ● P+ + + + + + + + + Intrapel	T
000010000			
			C RECOV -0 -BooP Inset Edit Delete Open All
			houry
	Deas Type DBLIA VFC	I-C lowers Machine Type VFD-C ReyFul	

② On the bottom right-hand corner of the HMI, click on a page number to edit or go to VIEW >HMI page to start editing main page. As shown in the image, the following objects are available. From left to right: Static Text, ASCII Display, Static Bitmap, Scale, Bar Graph, Button, Clock Display, Multi-state bit map, Units, Numeric Input and 11 geometric bitmaps and lines of different width. The application of Static Text, Static Bitmap, and geometric bitmap is the same as the editing startup page.

AN 🛛 📅 🚍 😚 🗹 \ominus 🖗 🛓 🛝 🗖 🗖 🔿 🔿 🔿 🔿 🗇 🗇 🖓 🖕 👘

Refer Device			Frame Setting Font Setting	No Frame		•
Value Type Value Length	Unsigned 16 Ebs	-	Alignment	Align Left	•	
Integer Number	5	-	Authmetic	and a		
Detimal Number	0		OK	Cancel	1	

③ Numeric/ASCII display: To add a Numeric/ ASCII Display object to a screen, double click on the object to set up Related Devices, Frame Setting, Fonts and Alignment.

lefer Device		
C PLC	Refer Device Name 18 -	
@ VFD	Absolute Addr. 2100	
	012345	OK
Set PLC ID [1]	6789AB	Clear
TP Port COM1 +	CDEF./	Close

Related Device: Choose the VFD Communication Port that you need, if you want to read output frequency (H), set the VFD Communication Port to \$2202. For other values, please refer to ACMD ModBus Comm Address List.

cale Side Normal Direction	•
Value Length 16 Bits - Main Scale 5	
Max Value 100 Sub Scale 2	-1

- Scale Setting On the Tool Bar, click on this Setting. You can also edit Scale Setting in the Property Window on the right hand side of your computer screen.
- Scale Position: Click on the drop down list to choose which position that you need to place a scale.
- Scale Side: Click on the drop down list to choose if you want to number your scale from smaller number to bigger number or from big to small. Click OK to accept this setting or click Cancel to abort.
- Font Setting: Click on the drop down list to choose the Font setting that you need then click OK to accept the setting or click Cancel to abort.
- Value Length: Click on the drop down to choose 16 bits or 32 bits. Then click OK to accept the setting or click Cancel to abort.
- Main Scale & Sub Scale: In order to divide the whole scale into equal parts, key in the numbers of your choices for main scale and sub scale.

- Maximum value & Minimum Value are the numbers on the two ends of a scale. They can be negative numbers. But the values allowed to be input are limited by the length of value. For example, when the length of value is set to **be hexadecimal**, the maximum and the minimum value cannot be input as -4000.
- Follow the Scale setting mentioned above; you will have a scale as shown below.

	0 25 50 L	75 100
ing Direction Setting From Bottom to T	op 💌	⑤ Bar graph setting
Unsigned 💌		
65535	OK	
	Unsigned 16 Bits	ing Direction Setting From Bottom to Top

- Related Device: Choose the VFD Communication Port that you need.
- Direction Setting: Click on the drop down menu to choose one of the following directions: From Bottom to Top, From Top to Bottom, From Left to Right or From Right to Left.
- Maximum Value & Minimum Value: They define the range covered by the maximum value and minimum value. If a value is smaller than or equal to the minimum value, then the bar graph will be blank. If a value is bigger or equal to the maximum value, then the bar graph will be full. If a value is between minimum and maximum value, then the bar graph will be filled proportionally.

6 Button ?: Currently this function only allows the Keypad to switch pages and to set constants, other functions are not yet available. Text input function and Image inserted functions are not yet supported.

Double click on **R** to open set up window.

Button Type 🛛 💽	ge Jump 💌	Page Jump Setting Page No	Frame Setting	Single Frame
Write-in Read Function Key			Font Setting Text Alignment Middle Middle	
Value Length Value Type		Call	Graph Input:	
Cument State Total States		C After Writing C Set	[None]	Bitmap Read Bitmap Clear
Button Text			OK I	Cancel

- <Button Type> allows users set up buttons' functions. <Page Jump> and <Constant Setting> are the only two currently supported functions.
 - [Page Jump] function setting
 - Page Jump setting: After you choose the Page Jump function in the drop down list, you will see this Page Jump Setting Menu.
 - Function Key> allows you to assign functions to the following keys on the KPC-CC01 keypad: F1, F2, F3, F4, Up, Down, Left and Right. Please note that the Up and Down keys are locked by TPEditor. These two keys cannot be programmed. If you want to program Up and Down keys, go to Tool → Function Key Settings (F) → *Re-Define Up/Down Key(R)*.

Communication Settings(C) AutoSave Setup(A)			
Function Key Setting(F)	Re-I	Define Up/Down Key(R)	
Page Size(S) Grid Sotting(G)		N A ROAD THE ROAD	
Language Setting(L)	,		TP Page 0; Root Page

- Button Text

This function allows user to name buttons. For example, key in <Next Page> in the empty space, a button will have the wording <Next Page> displayed on it.

• Constant setting] function

This function is to set up the memory address' value of the VFD or PLC. When pressing the <function button> set up in before, a value will be written to the memory address of the <Constant Setting>. This function can be used as initializing a variable.

		Constant Setting		life a second	
Button Type	Constant Setting	10		Frame Setting	Single Frame 👱
Write-in I [™] Read	\$211A			Font Setting Text Alignment Middle	5x8 • Bitmap Alignment Middle •
Function Key	F3 -			Middle 💌	Middle
Value Length	16 Bits 🔄	= Call		Graph Input:	
Value Type	Unsigned	Before Writing	C Reset		
Cunrent State	0 💌	C After Writing	C Set	[None]	Bitmap Read
Total States	1	User Level	0 •		Bitmap Clear
Button Text				OK	Cancel

⑦ Clock Display Setting 1

The setup window of the Clock Display is shown as the image below. Time, Day or Date can be displayed on the keypad. You can also adjust Frame Setting, Font Setting and Alignment. To adjust time, go to #9 on the Keypad's menu.

	Frame Setting	No Frame	•
	Font Setting	Align Left	•
Time Association	Alignment	5x8	•
TP Time	• Time (Day C Date	
PLC Time	OK	Cancel	

⑧ Multi-state bitmap

The setup window of the multi-state is shown as the image below. This object reads the bit's property value of the PLC. It defines what image or wording is when this bit is 0 or when this bit is 1. Set the initial status to be 0 or 1 to define the displayed image or wording.

Refer Device		
M0	Graph Input:	
G Bit ← Value	Graph inpot.	
Value Type		
Value Length	[None]	Bitmap Read
Total States 2		Bitmap Clear
Total States 2	Text Input	
Device Value >= Ran		Font Setting
	OK	Cancel

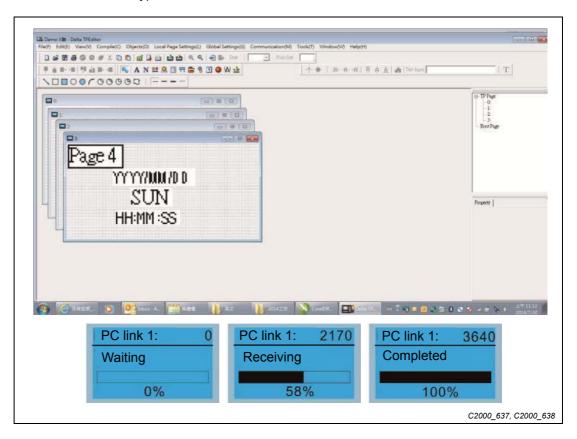
Metrology Type	Time 🗖
Unit Name	ms

④ Unit Measurement 🖗

Click once on this Button: Open a new file and double click on that window, you will see the dialog shown on the left. Choose from the drop down list the Metrology and the Unity Name that you need. As for Metrology, you have the following choices Length, Square Measure, Volume/ Solid Measure, Weight, Speed, Time and Temperature. The unit name changes automatically when you change metrology type.

1 Numeric input setting

This menu allows you to provide parameters or communication ports and to input numbers. Click once on this button . Open a new file and double click on that window, you will see the following:


Refer Device			OutLine Setting		46.5
Write	\$2100		Frame Setting	No Frame	•
🕅 Read			Font Setting	5x8 💌	
Function Key		*	Hori. Alignment	Middle	•
Arithmetic			Vert. Alignment	Middle	•
<u></u>			Call Setting		
Value Type	Unsigned	•	[□ Call		
Value Length	16 Bits	•	-		
Value Setting			C Before Writin	g 🕼 🧟 Reset	
Integer Number	5	-	C After Writing	C Set	
Decimal Number	0	•			
Limit Setting			User Level		
Min Value	0			0 -	
Max Value	65535		OK	Cancel	

- Related Device: There are two blank spaces to fill in, one is <Write> and another one is <Read>. Input the numbers that you want to display and the corresponding numbers of a parameter and that of a communication port. For example, input 012C to Read and Write Parameter Pr. 01-44.
- OutLine Setting: The Frame setting, Font setting, Vertical Alignment and Horizontal Alignment are the same as mentioned before. Click on the drop down menu and choose the setting that you need.
- Function key: The setting here allows you to program keys on the keypad. Press the key on the menu then the corresponding key on the keypad will start to blink, then press Enter to confirm the setting.
- Value Type & Value Length: These two factors influence the range of the Minimum and Maximum Value of the Limit Setting. Please note that the corresponding supporting values for C2000 have to be 16 bits. The 32 bits values are not supported.
- Value Setting: This part is set automatically by the keypad itself.
- Limit Setting: Input the range the security setting here.
- For example, if you set Function Key as F1, Minimum Value as 0 and Maximum Value ias 4, then press F1 on Keypad Then you can press Up and Down key on the keypad to increase or decrease the value. Press Enter Key on the keypad to confirm your setting. You can also go to parameter table 01-44 to verify if your input correctly the value.

Download TP Page

Press Up or Down key on the keypad until you reach #13 PC Link.

Then press \bigcirc on the keypad and you will see the word "Waiting" on keypad's screen. Now choose a page that you have created then go to Communication (M) \rightarrow Write to TP(W) to start downloading the page to the keypad. When you see the word Completed on the keypad's screen, that means the download is done. Then you can press ESC on the keypad to go back to the menu of the keypad.

10.4 Digital keypad KPC-CC01 fault codes and descriptions

Following fault codes and description are for digital keypad KPC-CC01 with version V1.01 and version higher.

LCM display *	Description	Corrective actions
Foult		An error has occurred on keypad's flash memory. ① Press RESET on the keypad to clear errors.
Fault	Keypad flash memory read error	② Verify what kind of error has occurred on keypad's flash memory.
kpdFlash Read Er		③ Shut down the system, wait for ten minutes, and then power on again the system.
		If none of the solution above works, contact your authorized local dealer.
Fault HAND FSEr kpdFlash Save Er	Keypad flash memory save error	 An error has occurred on keypad's flash memory. ① Press RESET on the keypad to clear errors. ② Verify what kind of error has occurred on keypad's flash memory.
		③ Shut down the system, wait for ten minutes, and then power on again the system.
		If none of the solution above works, contact your authorized local dealer.
Fault FPEr kpdFlash Pr Er	Keypad flash memory parameter error	 Errors occurred on parameters of factory setting. It might be caused by firmware update. ① Press RESET on the keypad to clear errors. ② Verify if there's any problem on Flash IC. ③ Shut down the system, wait for ten minutes, and then power on again the system.
		If none of the solution above works, contact your local authorized dealer.
Fault VFDr Read VFD Info Er	Keypad flash memory when read AC drive data error	 Keypad can't read any data sent from VFD. Verify if the keypad is properly connect to the motor drive by a communication cable such as RJ-45. Press RESET on the keypad to clear errors. Shut down the system, wait for ten minutes, and
		then power on again the system.
		If none of the solution above works, contact your local authorized dealer.
Fault HAND		 A Serious error has occurred on keypad's CPU. ① Verify if there's any problems on CPU clock? ② Verify if there's any problem on Flash IC?
		③ Verify if there's any problem on RTC IC?
CPUEr	CPU Error	④ Verify if the communication quality of the RS485 is good?
CPU Error		(5) Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.

Tab. 10-6: Fault code

* The content in this chapter only applies on V1.01 and above of KPC-CC01 keypad.

LCM display *	Description	Corrective actions	
Warning CE01 Comm Command Er	Modbus function code error	 Motor drive doesn't accept the communication command sent from keypad. ① Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. ② Press RESET on the keypad to clear errors. 	
		If none of the solution above works, contact your local authorized dealer.	
Warning HAND CE02 Comm Address Er	Modbus data address error	 Motor drive doesn't accept keypad's communication address. ① Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. 	
		② Press RESET on the keypad to clear errors.	
		If none of the solution above works, contact your local authorized dealer.	
Warning CE03 Comm Data Error		 Motor drive doesn't accept the communication data sent from keypad. ① Verify if the keypad is properly connected to the motor drive on the communication contact by a 	
	Modbus data value error	communication cable such as RJ-45.	
		② Press RESET on the keypad to clear errors.	
		If none of the solution above works, contact your local authorized dealer.	
Warning HAND CE04 Comm Slave Error	Modbus slave drive error	 Motor drive cannot process the communication command sent from keypad. ① Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. 	
		② Press RESET on the keypad to clear errors.	
		③ Shut down the system, wait for ten minutes, and then power on again the system.	
		If none of the solution above works, contact your local authorized dealer.	
Warning HAND CE10 KpdComm Time Out	Modbus transmission time-Out	 Motor drive doesn't respond to the communication command sent from keypad. ① Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. ② Press RESET on the keypad to clear errors. 	
		③ Shut down the system, wait for ten minutes, and then power on again the system.	
		If none of the solution above works, contact your local authorized dealer.	
Warning HAND TPNO	Object not supported by TP Editor	 Keypad's TP Editor uses unsupported object. ① Verify how the TP editor should use that object. Delete unsupported object and unsupported setting. ② Reedit the TP editor and then download it. 	
TP No Object		If none of the solution above works, contact your local authorized dealer.	

Tab. 10-7: Warning code

* The content in this chapter only applies on V1.01 and above of KPC-CC01 keypad.

LCM display *	Description	Corrective actions
File 1 Err 1 Read Only	Parameter and file are read only	 The property of the parameter/file is read-only and cannot be written to. ① Verify the specification on the user manual. If the solution above doesn't work, contact your local authorized dealer.
File 1 Err Write Fail	Fail to write parameter and file	 An error occurred while write to a parameter/file. ① Verify if there's any problem on the Flash IC. ② Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above work, contact your local authorized dealer.
File 1 Err VFD Running	AC drive is in operating status	A setting cannot be made while motor drive is in oper- ation. ① Verify if the drive is not in operation. If the solution above doesn't work, contact your local authorized dealer.
File 1 Err Pr Lock	AC drive parameter is locked	A setting cannot be made because a parameter is locked. ① Verify if the parameter is locked or not. If it is locked, unlock it and try to set up the parameter again. If the solution above doesn't work, contact your local authorized dealer.
File 1 Err Pr Changing	AC drive parameter changing	 A setting cannot be made because a parameter is being modified. ① Verify if the parameter is being modified. If it is not being modified, try to set up that parameter again. If the solution above doesn't work, contact your local authorized dealer.
File 1 Err Fault Code	Fault code	 A setting cannot be made because an error has occurred on the motor drive. ① Verify if there's any error occurred on the motor dive. If there isn't any error, try to make the setting again. If the solution above doesn't work, contact your local authorized dealer.
File 1 Err Warning Code	Warning code	 A setting cannot be made because of a warning message given to the motor drive. ① Verify if there's any warning message given to the motor drive. If the solution above doesn't work, contact your local authorized dealer.

Tab. 10-8: File copy setting fault description (1)

LCM display *	Description	Corrective actions
File 1 Err Type Dismatch	File type dismatch	 Data need to be copied are not same type, so the setting cannot be made. ① Verify if the products' serial numbers need to be copied fall in the category. If they are in the same category, try to make the setting again. If the solution above doesn't work, contact your authorized dealer.
File 1 Err Password Lock	File is locked with password	 A setting cannot be made, because some data are locked. ① Verify if the data are unlocked or able to be unlocked. If the data are unlocked, try to make the setting again. ② Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.
File 1 Err 10 Password Fail	Incorrect password	 A setting cannot be made because the password is incorrect. ① Verify if the password is correct. If the password is correct, try to make the setting again. ② Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.
File 1 Err Version Fail	File version dismatch	 A setting cannot be made, because the version of the data is incorrect. ① Verify if the version of the data matches the motor drive. If it matches, try to make the setting again. If none of the solution above works, contact your local authorized dealer.
File 1 Err VFD Time Out	AC drive copy function time-out	 A setting cannot be made, because data copying time- out expired. ① Redo data copying. ② Verify if copying data is authorized. If it is author- ized, try again to copy data. ③ Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.
File 1 Err Keypad Issue	Other keypad error	This setting cannot be made, due to other keypad issues. (Reserved functions) If such error occurred, contact your local authorized dealer.
File 1 Err VFD Issue	Other AC drive error	This setting cannot be made, due to other motor drive issues. (Reserved functions). If such error occurred, conatct your local authorized dealer.

 * The content in this chapter only applies on V1.01 and above of KPC-CC01 keypad.

11 Summary of Parameter Settings

This chapter provides summary of parameter settings for user to gather the parameter setting ranges, factory settings and set parameters. The parameters can be set, changed and reset by the digital keypad.

NOTE This parameters marked with *r* can be set during operation. For more detail on parameters, please refer to Ch.12 Description of Parameter Settings.

11.1 Drive parameters

NOTE IM: Induction Motor; PM: Permanent Magnet Motor

Pr.	Explanation	Settings	Factory Setting
00-00	Identity Code of the	4: 230 V, 1 HP 5: 460 V, 1 HP 6: 230 V, 2 HP 7: 460 V, 2 HP 8: 230 V, 3 HP 9: 460 V, 3 HP 10: 230 V, 5 HP 11: 460 V, 5 HP 12: 230 V, 7.5 HP 13: 460 V, 7.5 HP 14: 230 V, 10 HP 15: 460 V, 10 HP 16: 230 V, 15 HP 17: 460 V, 20 HP 20: 230 V, 25 HP 21: 460 V, 25 HP 22: 230 V, 30 HP 23: 460 V, 30 HP 24: 230 V, 40 HP 25: 460 V, 40 HP 26: 230 V, 50 HP 27: 460 V, 50 HP 28: 230 V, 60 HP 30: 230 V, 75 HP 31: 460 V, 75 HP 31: 460 V, 75 HP 31: 460 V, 125 HP 32: 230 V, 100 HP 33: 460 V, 100 HP 33: 460 V, 100 HP 34: 230 V, 100 HP 35: 460 V, 125 HP 41: 460 V, 215 HP 43: 460 V, 250 HP 45: 460 V, 300 HP 45: 460 V, 375 HP 41: 460 V, 425 HP 55: 460 V, 000 HP 45: 460 V, 475 HP 55: 460 V, 51 HP 47: 460 V, 475 HP 55: 460 V, 400 HP 93: 460 V, 451 HP 49: 460 V, 451 HP 49: 460 V, 451 HP 49: 460 V, 451 HP 49: 460 V, 451 HP 40: 460 V, 451 HP 41: 460 V, 551 HP 41: 460 V, 455	Read only
00-01	Display Rated Current	Display by models	Read only

Tab. 11-1: Drive Parameters (1)

	Pr.	Explanation	Settings	Factory Setting
	00-02	Parameter Reset	 0: No function 1: Read only 5: Reset KWH display to 0 6: Reset PLC (including CANopen[®] Master Index) 7: Reset CANopen[®] Index (Slave) 8: No function 9: All parameters are reset to factory settings (base frequency is 50 Hz) 10: All parameters are reset to factory settings (base frequency is 60 Hz) 	0
N	00-03	Start-up Display Selection	0: F (frequency command) 1: H (output frequency) 2: U (multi-function display, see Pr.00-04) 3: A (output current)	0
	00-04	Content of Multi-function Display	 Display output current (A) (Unit: Amps) Display counter value (c) (Unit: CNT) Display counter value (c) (Unit: CNT) Display output power angle (n) (Unit: Hz) Display output power angle (n) (Unit: KW) Display actual motor speed rpm (r) (Unit: rpm) Display estimate output torque % (t) (Unit: %) Display estimate output torque % (t) (Unit: %) Display PG feedback (G) (refer to Pr.10-00,10-01) (Unit: PLS) Display AUI in % (1.) (Unit: %) Display AUI in % (1.) (Unit: %) Display AUI in % (3.) (Unit: %) Display AUI in % (3.) (Unit: %) Display the temperature of GBT in °C (i.) (Unit: °C) Display the temperature of Gazacitance in °C (c.) (Unit: °C) The status of digital input (ON/OFF) (i) The status of digital output (ON/OFF) (o) Multi-step speed (S) The corresponding CPU pin status of digital input (d) The corresponding CPU pin status of digital input (d) The corresponding CPU pin status of digital input (d) The corresponding CPU pin status of digital output (0.) Attual motor position (PG2 of PG card) (P.) Pulse input position (PG2 of PG card) (P.) Pulse input position (PG2 of PG card) (C.) Display PL C data D1043 (C) Display PL C data D1043 (C) Display PL card is connected/(q) Stortol Mode display: D= Speed control mode (SPD), 1= torque control mode (TOR) (t.) Present operating carrier frequency of drive (Hz) (J.) Reserved Display etvinated output torque, positive and negative, using Nt-m as unit (t = 00: positive forque; -00: negative torque (C.) PiD offset (o.) (Unit: %) Hardware ID 	3
×	00-05	Coefficient Gain in Actual Output Frequency 1: Drive Parameters (2	0–160.00	1.00

Tab. 11-1: Drive Parameters (2)

	Pr.	Explanation		Setting	gs	Factory Setting
	00-06	Software Version	Read only			#.#
*	00-07	Parameter Protection Password Input	0–65535 0–3: the time:	s of password at	tempts	0
*	00-08	Parameter Protection Password Setting	0 – 65535 0: No passwo correctly (F 1: Parameter	Pr00-07)	ssword is entered	0
	00-09	Reserved				
	00-10	Control Mode	0: Speed mod 1: Point-to-Po 2: Torque mo 3: Home mod	oint position cont de	rol	0
	00-11	Control of Speed Mode	2: SVC(IM Se 3: FOCPG (IM 4: FOCPG (P 5: FOC Sense vector cont 6: PM Sensor vector cont	V/f control+ Ence ensorless vector A FOC vector co M FOC vector co orless (IM field o rol) 'less (PM field o rol) rless (IPM field o	control)	0
	00-12	Point-to-Point Position mode	0: Relative po 1: Absolute p			0
	00-13	Torque Mode Control	1: TQCPG (P	A Torque control M Torque contro orless (IM Senso		0
	00-14	Reserved				
	00-15	Reserved				
*	00-16	Load Selection	0: Normal loa 1: Heavy load	-		0
			Normal load			
		00-17 Carrier Frequency	230 V	460 V	Carrier Frequency	
			1-15 HP	1-20 HP	2–15 KHz	8
			20-50 HP	25-75 HP	2–10 KHz	6
			60-125 HP	100-600 HP	2–9 KHz	4
	00-17		Heavy load			
			230 V	460 V	Carrier Frequency	
			1-15 HP	1-20 HP	2–15 KHz]
			20-50 HP	25-75 HP	2–10 KHz	2
			60-125 HP	100-600 HP	2–9 KHz	
	00-18	Reserved				
	00-19	PLC Command Mask	Bit 1: Frequer Bit 2: Positior		/ PLC force control LC force control	Read only
	00-20	Source of Master Frequency Command (AUTO)	2: External ar 3: External UI 4: Pulse input (Pr.10-16 v 5: Pulse input 6: CANopen [®] 7: Reserved	ial communication nalog input (Pr.02 P/DOWN terminat t without direction) vithout direction)	3-00) al n command ommand (Pr.10-16) card	0

Tab. 11-1: Drive Parameters (3)

	Pr.	Explanation	Settings	Factory Setting
	00-21	Source of the Operation Command (AUTO)	 0: Digital keypad 1: External terminals. Keypad STOP disabled. 2: RS-485 serial communication. Keypad STOP disabled. 3: CANopen[®] communication card 4: Reserved 5: Communication card (no CANopen[®] card) 	0
*	00-22	Stop Method	0: Ramp to stop 1: Coast to stop	0
*	00-23	Control of Motor Direction	0: Enable forward/reverse 1: Reverse disable 2: Forward disable	0
	00-24	Memory of Frequency Command	Read only	Read only
*	00-25	User Defined Characteristics	Bit 0-3: user defined decimal place 0000b: no decimal place 0010b: two decimal place 0011b: three decimal place Bit 4-15: user define on unit 000xh: Hz 001xh: rpm 002xh: % 003xh: kg 004xh: m/s 005xh: kW 006xh: HP 007xh: ppm 008xh: 1/m 008xh: 1/m 008xh: kg/n 00Bxh: kg/h 00Cxh: lb/s 00Dxh: lb/h 00Exh: lb/h 00Exh: lb/h 00Exh: lb/h 00Exh: ft/s 010xh: ft/m 011xh: m 012xh: ft 013xh: degC 014xh: degF 015xh: mbar 016xh: bar 017xh: Pa 018xh: kPa 018xh: kPa 019xh: mWG 01Exh: cps 01Dxh: atm 01Exh: L/s 01Exh: L/s 01Exh: L/s 01Exh: L/s 01Exh: CFM 022xh: m3/h 023xh: GPM 024xh: CFM Xxxxh: Hz	0
	00-26	Max. User Defined Value	0: Disable 0–65535 (when Pr.00-25 set to no decimal place) 0.0–6553.5 (when Pr.00-25 set to 1 decimal place) 0.0–655.35 (when Pr.00-25 set to 2 decimal place) 0.0–65.535 (when Pr.00-25 set to 3 decimal place)	0
	00-27	User Defined Value	Read only	Read only
	00-28	Reserved		

Tab. 11-1: Drive Parameters (4)

	Pr.	Explanation	Settings	Factory
	00-29	LOCAL/REMOTE Selection	 0: Standard HOA function 1: Switching Local/Remote, the drive stops 2: Switching Local/Remote, the drive runs as the REMOTE setting for frequency and operation status 3: Switching Local/Remote, the drive runs as the LOCAL setting for frequency and operation status 4: Switching Local/Remote, the drive runs as LOCAL setting when switch to Local and runs as REMOTE setting when switch to Remote for frequency and operation status. 	Setting 0
	00-30	Source of the Master Frequency Command (HAND)	 0: Digital keypad 1: RS485 serial communication 2: External analog input (Pr.03-00) 3: External UP/DOWN terminal 4: Pulse input without direction command (Pr.10-16 without direction) 5: Pulse input with direction command (Pr.10-16) 6: CANopen[®] communication card 7: Reserved 8: Communication card (no CANopen[®] card) 	0
	00-31	Source of the Operation Command (HAND)	 Digital keypad External terminals. Keypad STOP disabled. RS485 serial communication. Keypad STOP disabled. CANopen[®] communication card Reserved Communication card (not include CANopen[®] card) 	0
×	00-32	Digital Keypad STOP Function	0: STOP key disable 1: STOP key enable	0
	00-33 00-39	Reserved		
~	00-40	Homing mode	 ZYX Homing mode Z pulse setting Home limit Note: Forward run = clockwise (CW) Reverse run = counterclockwise (CCW) 0: Forward run to home. Set PL forward limit as check point. 1: Reverse run (CCW) to home. Set NL reverse limit (CCWL) as check point. 2: Forward run to home. Set ORG: OFF→ON as check point. 3: Reverse to home. Set ORG: OFF→ON as check point. X 4: Forward run and search for Z-pulse as check point. 5: Forward run and search for Z-pulse as check point. 6: Forward run and search for Z-pulse as check point. 7: Reverse run to home. Set ORG: ON→OFF as check point. 8: Define current position as home. Set X to 0, 1, 2, 3, 6, 7 first. Y 0: reverse run to Z pulse 1: continue forward run to Z pulse 2: Ignore Z pulse When home limit is reached, set X to 2, 3, 4, Z 5, 6, 7 first. O: display the error 1: reverse the direction 	0000
N	00-41	Homing by frequency 1	0.00–600.00 Hz	8.00
	Tab. 11-	1: Drive Parameters (5	5)	

	Pr.	Explanation	Settings	Factory Setting
×	00-42	Homing by frequency 2	0.00–600.00 Hz	2.00
	00-43 _ 00-47	Reserved		
×	00-48	Display Filter Time (Current)	0.001-65.535 sec	0.100
×	00-49	Display Filter Time (Keypad)	0.001-65.535 sec	0.100
	00-50	Software Version (date)	Read only	#####
	00-51			
	- 00-61	Reserved		

Tab. 11-1: Drive Parameters (6)

11.2 Basic parameters

	Pr.	Explanation	Settings	Factory Setting
	01-00	Max. Operation Frequency	0.00–600.00 Hz	60.00/ 50.00
	01-01	Output Frequency of Motor 1	0.00–600.00 Hz	60.00/ 50.00
	01-02	Output Voltage of Motor 1	230 V: 0.0–255.0 V 460 V: 0.0–510.0 V	200.0 400.0
	01-03	Mid-point Frequency 1 of Motor 1	0.00–600.00 Hz Motor drive with 250 HP and above: 1.50	3.00
*	01-04	Mid-point Voltage 1 of Motor 1	230 V: 0.0–240.0 V 460 V: 0.0–480.0 V Motor drive with 250 HP and above: 10.0	11.0 22.0
	01-05	Mid-point Frequency 2 of Motor 1	0.00–600.00 Hz	0.50
*	01-06	Mid-point Voltage 2 of Motor 1	230 V: 0.0–240.0 V 460 V: 0.0–480.0 V Frequency inverters with 185 kW or more: 2.0	2.0 4.0
	01-07	Min. Output Frequency of Motor 1	0.00–600.00 Hz	0.00
*	01-08	Min. Output Voltage of Motor 1	230 V: 0.0–240.0 V 460 V: 0.0–480.0 V	0.0 0.0
	01-09	Start-Up Frequency	0.00–600.00 Hz	0.50
*	01-10	Output Frequency Upper Limit	0.00–600.00 Hz	600.00
*	01-11	Output Frequency Lower Limit	0.00–600.00 Hz	0
*	01-12	Accel. Time 1	Pr.01-45=0: 0.00–600.00 second Pr.01-45=1: 0.00–6000.0 second AC drive with power greater than 30 HP: 60.00/60.0	10.00 10.0
*	01-13	Decel Time 1	Pr.01-45=0: 0.00–600.00 second Pr.01-45=1: 0.00–6000.0 second AC drive with power greater than 30 HP: 60.00/60.0	10.00 10.0
*	01-14	Accel Time 2	Pr.01-45=0: 0.00–600.00 second Pr.01-45=1: 0.00–6000.0 second AC drive with power greater than 30 HP: 60.00/60.0	10.00 10.0
~	01-15	Decel Time 2	Pr.01-45=0: 0.00–600.00 second Pr.01-45=1: 0.00–6000.0 second AC drive with power greater than 30 HP: 60.00/60.0	10.00 10.0
*	01-16	Accel Time 3	Pr.01-45=0: 0.00–600.00 second Pr.01-45=1: 0.00–6000.0 second AC drive with power greater than 30 HP: 60.00/60.0	10.00 10.0
*	01-17	Decel Time 3	Pr.01-45=0: 0.00–600.00 second Pr.01-45=1: 0.00–6000.0 second AC drive with power greater than 30 HP: 60.00/60.0	10.00 10.0
~	01-18	Accel Time 4	Pr.01-45=0: 0.00–600.00 second Pr.01-45=1: 0.00–6000.0 second AC drive with power greater than 30 HP: 60.00/60.0	10.00 10.0
~	01-19	Decel Time 4	Pr.01-45=0: 0.00–600.00 second Pr.01-45=1: 0.00–6000.0 second AC drive with power greater than 30 HP: 60.00/60.0	10.00 10.0
*	01-20	JOG Acceleration Time	Pr.01-45=0: 0.00–600.00 second Pr.01-45=1: 0.00–6000.0 second AC drive with power greater than 30 HP: 60.00/60.0	10.00 10.0
*	01-21	JOG Deceleration Time	Pr.01-45=0: 0.00–600.00 second Pr.01-45=1: 0.00–6000.0 second AC drive with power greater than 30 HP: 60.00/60.0	10.00 10.0
*	01-22	JOG Frequency	0.00–600.00 Hz	6.00
*	01-23	1st/4th Accel/decel Frequency	0.00–600.00 Hz	0.00

Tab. 11-2: Basic Parameters (1)

				_
	Pr.	Explanation	Settings	Factory Setting
*	01-24	S-curve Acceleration Begin Time 1	Pr.01-45=0: 0.00–25.00 second Pr.01-45=1: 0.0–250.0 second	0.20 0.2
*	01-25	S-curve Acceleration Arrival Time 2	Pr.01-45=0: 0.00–25.00 second Pr.01-45=1: 0.0–250.0 second	0.20 0.2
*	01-26	S-curve Deceleration Begin Time 1	Pr.01-45=0: 0.00–25.00 second Pr.01-45=1: 0.0–250.0 second	0.20 0.2
~	01-27	S-curve Deceleration Arrival Time 2	Pr.01-45=0: 0.00–25.00 second Pr.01-45=1: 0.0–250.0 second	0.20 0.2
	01-28	Skip Frequency 1 (upper limit)	0.00–600.00 Hz	0.00
	01-29	Skip Frequency 1 (lower limit)	0.00–600.00 Hz	0.00
	01-30	Skip Frequency 2 (upper limit)	0.00–600.00 Hz	0.00
	01-31	Skip Frequency 2 (lower limit)	0.00–600.00 Hz	0.00
	01-32	Skip Frequency 3 (upper limit)	0.00–600.00 Hz	0.00
	01-33	Skip Frequency 3 (lower limit)	0.00–600.00 Hz	0.00
	01-34	Zero-speed Mode	0: Output waiting 1: Zero-speed operation 2: Fmin (Refer to Pr.01-07, 01-41)	0
	01-35	Output Frequency of Motor 2	0.00–600.00 Hz	60.00/ 50.00
	01-36	Output Voltage of Motor 2	230 V: 0.0–255.0 V 460 V: 0.0–510.0 V	200.0 400.0
	01-37	Mid-point Frequency 1 of Motor 2	0.00–600.00 Hz Frequency inverters with 185 kW or more: 1,50	3.00
~	01-38	Mid-point Voltage 1 of Motor 2	230 V: 0.0–240.0 V 460 V: 0.0–480.0 V Frequency inverters with 185 kW or more: 10,0	11.0 22.0
	01-39	Mid-point Frequency 2 of Motor 2	0.00–600.00 Hz	0.50
*	01-40	Mid-point Voltage 2 of Motor 2	230 V: 0.0–240.0 V 460 V: 0.0–480.0 V Frequency inverters with 185 kW or more: 2,0	2.0 4.0
	01-41	Min. Output Frequency of Motor 2	0.00–600.00 Hz	0.00
*	01-42	Min. Output Voltage of Motor 2	230 V: 0.0–240.0 V 460 V: 0.0–480.0 V	0.0 0.0
	01-43	V/f Curve Selection	0: V/f curve determined by Pr. 01-00–01-08 1: Curve to the power of 1.5 2: Curve to the power of 2	0
×	01-44	Optimal Acceleration/ Deceleration Setting	 Linear accel./decel. Auto accel.; linear decel. Linear accel.; auto decel. Auto accel./decel. Linear, stall prevention by auto accel./decel. (limit by Pr. 01-12–01-21) 	0
	01-45	Time Unit for Accel./ Decel. and S Curve	0: Unit: 0.01 sec 1: Unit: 0.1 sec	0
*	01-46	CANopen Quick Stop Time	Pr. 01-45=0: 0.00–600.00 sec Pr. 01-45=1: 0.0–6000.0 sec	1.00

Tab. 11-2: Basic Parameters (2)

11.3 Digital input/output parameters

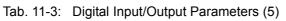
Pr.	Explanation	Settings	Factory Setting
02-00	2-wire/3-wire Operation Control	0: 2-wire mode 1, power on for operation control 1: 2-wire mode 2, power on for operation control 2: 3-wire, power on for operation control	0
02-01	Multi-function Input Command 1 (MI1)	0: No function	1
02-02	Multi-function Input Command 2 (MI2)	1: Multi-step speed command 1/multi-step position command 1	2
02-03	Multi-function Input Command 3 (MI3)	2: Multi-step speed command 2/multi-step position command 2	3
02-04	Multi-function Input Command 4 (MI4)	3: Multi-step speed command 3/multi-step position command 3	4
02-05	Multi-function Input Command 5 (MI5)	4: Multi-step speed command 4/multi-step position command 4	0
02-06	Multi-function Input Command 6 (MI6)	5: Reset	0
02-07	Multi-function Input Command 7 (MI7)	6: JOG command (By KPC-CC01 or external control)	0
02-08	Multi-function Input Command 8 (MI8)	7: Acceleration/deceleration speed inhibit	0
02-26	Input terminal of I/O extension card (MI10)	8: The 1 st , 2 nd acceleration/deceleration time selection	0
02-27	Input terminal of I/O extension card (MI11)	9: The 3 rd , 4 th acceleration/deceleration time selection	0
02-28	Input terminal of I/O extension card (MI12)	10: EF Input (Pr.07-20)	0
02-29	Input terminal of I/O extension card (MI13)	11: B.B input from external (Base Block)	0
02-30	Input terminal of I/O extension card (MI14)	12: Output stop	0

Tab. 11-3: Digital Input/Output Parameters (1)

Pr.	Explanation	Settings	Factory Setting
		13: Cancel the setting of optimal accel. /decel. time	
		14: Switch between motor 1 and motor 2	
		15: Operation speed command from AVI	
		16: Operation speed command from ACI	
		17: Operation speed command from AUI	
		18: Emergency stop (Pr.07-20)	
		19: Digital up command	
		20: Digital down command	
		21: PID function disabled	
		22: Clear counter	
		23: Input the counter value (MI6)	
		24: FWD JOG command	
		25: REV JOG command	
		26: TQC/FOCmodel selection	
		27: ASR1/ASR2 selection	
		28: Emergency stop (EF1)	
		29: Signal confirmation for Y-connection	
		30: Signal confirmation for Δ -connection	
		31: High torque bias (Pr.11-30)	
		32: Middle torque bias (Pr.11-31)	
		33: Low torque bias (Pr.11-32)	
		34: Switch between multi-step position and multi-speed control	
02-31	Input terminal of I/O extension card (MI15)	35: Enable single point position control	0
		36: Enable multi-step position learning function (valid at stop)	
		37: Full position control pulse command input enable	
		38: Disable EEPROM write function	
		39: Torque command direction	
		40: Force coast to stop	
		41: HAND switch	
		42: AUTO switch	
		43: Enable resolution selection (Pr.02-48)	
		44: Reversed direction homing	
		45: Forward direction homing	
		46: Homing (ORG)	
		47: Homing function enable	
		48: Mechanical gear ratio switch	
		49: Drive enable	
		50: Master dEb action input	
		51: Selection for PLC mode bit0	
		52: Selection for PLC mode bit1	
		53: Trigger CANopen quick stop	
		54: Reserved	
		55: Brake release	
		56: Local/Remote Selection	
		57–70: Reserved	

Tab. 11-3: Digital Input/Output Parameters (2)

	Pr.	Explanation	Settings	Factory Setting
*	02-09	UP/DOWN key mode	0: up/down by the accel./decel. time 1: up/down constant speed (Pr. 02-10)	0
×	02-10	Constant speed. The Accel /Decel. Speed of the UP/DOWN Key	0.01–1.00 Hz/ms	0.01
×	02-11	Digital Input Response Time	0.000-30.000 second	0.005
×	02-12	Digital Input Mode Selec- tion	0000h-FFFFh (0: N.O.; 1: N.C.)	0000
*	02-13	Multi-function Output 1 RY1	0: No function	11
×	02-14	Multi-function Output 2 RY2	1: Operation Indication	1
×	02-16	Multi-function Output 3 (MO1)	2: Operation speed attained	0
×	02-17	Multi-function Output 4 (MO2)	3: Desired frequency attained 1 (Pr. 02-22)	0
×	02-36	Output terminal of the I/O extension card (MO10)	4: Desired frequency attained 2 (Pr. 02-24)	0
×	02-37	Output Terminal of I/O Extension Card (MO11)	5: Zero speed (Frequency command)	0
*	02-38	Output Terminal of I/O Extension Card (MO12)	6: Zero speed, include STOP (Frequency command)	0
*	02-39	Output Terminal of I/O Extension Card (MO13)	7: Over torque 1(Pr. 06-06-06-08)	0
*	02-40	Output Terminal of I/O Extension Card (MO14)	8: Over torque 2(Pr. 06-09–06-11)	0
*	02-41	Output Terminal of I/O Extension Card (MO15)	9: Drive is ready	0
*	02-42	Output Terminal of I/O Extension Card (MO16)	10: Low voltage warning (LV) (Pr. 06-00)	0
×	02-43	Output Terminal of I/O Extension Card (MO17)	11: Malfunction indication	0
×	02-44	Output Terminal of I/O Extension Card (MO18)	12: Mechanical brake release(Pr. 02-32)	0
×	02-45	Output Terminal of I/O Extension Card (MO19)	13: Overheat warning (Pr. 06-15)	0


Tab. 11-3: Digital Input/Output Parameters (3)

	Pr.	Explanation	Settings	Factory Setting
			14: Software brake signal indication (Pr.07-00)	
			15: PID feedback error (Pr. 08-13, Pr. 08-14)	
			16: Slip error (oSL)	
			17: Terminal count value attained, does not return to	
			18: Preliminary count value attained, returns to 0	
			19: Base Block	
			20: Warning output	
			21: Over voltage warning	
			22: Over-current stall prevention warning	
			23: Over-voltage stall prevention warning	
			24: Operation mode indication	
			25: Forward command	
			26: Reverse command	
			27: Output when current >= Pr. 02-33	
			28: Output when current < Pr. 02-33	
			29: Output when frequency >= Pr. 02-34	
			30: Output when frequency < Pr. 02-34	
			31: Y-connection for the motor coil	
			32: Δ -connection for the motor coil	
			33: Zero speed (actual output frequency)	
			34: Zero speed include stop (actual output frequency)	
	02-46	Output Terminal of I/O	35: Error output selection 1 (Pr. 06-23)	0
~	02-40	Extension Card (MO20)	36: Error output selection 2 (Pr. 06-24)	0
			37: Error output selection 3 (Pr. 06-25)	
			38: Error output selection 4 (Pr. 06-26)	
			39: Position attained (Pr.10-19)	
			40: Speed attained (including Stop)	
			41: Multi-position attained	
			42: Crane function	
			43: Actual motor speed slower than Pr.02-47	
			44: Low current output (use with Pr.06-71–06-73)	
			45: UVW Output Electromagnetic valve Switch	
			46: Master dEb warning output	
			47: Closed brake output	
			48: Reserved	
			49: Homing action complete	
			50: Output for CANopen [®] control	
			51: Output for RS485 communication	
			52: Output for communication board	
			53–64: Reserved	
			65: Output for both Can & 485 control	
			66: SO logic A	
			67: Analog input level reached	
			68: SO logic B	

Tab. 11-3: Digital Input/Output Parameters (4)

l				Footom
	Pr.	Explanation	Settings	Factory Setting
*	02-18	Multi-function output direction	0000h–FFFFh (0: N.O.; 1: N.C.)	0000
~	02-19	Terminal counting value attained (returns to 0)	0–65500	0
*	02-20	Preliminary counting value attained (not return to 0)	0–65500	0
*	02-21	Digital Output Gain (DFM)	1–166	1
~	02-22	Desired Frequency Attained 1	0.00–600.00 Hz	60.00/ 50.00
*	02-23	The Width of the Desired Frequency Attained 1	0.00–600.00 Hz	2.00
*	02-24	Desired Frequency Attained 2	0.00–600.00 Hz	60.00/ 50.00
*	02-25	The Width of the Desired Frequency Attained 2	0.00–600.00 Hz	2.00
	02-32	Brake Delay Time	0.000–65.000 sec.	0.000
~	02-33	Output Current Level Setting for Multi-function External Terminals	0–100 %	0
*	02-34	Output frequency setting for multi-function output terminal	0.00–600.00 Hz (Motor speed when using PG Card)	0.00
*	02-35	External Operation Control Selection after Reset and Activate	0: Disable 1: Drive runs if run command exists after reset	0
~	02-47	Zero-speed Level of Motor	0–65535 rpm	0
*	02-48	Max. Frequency of Resolution Switch	0.01–600.00 Hz	60.00
*	02-49	Switch the delay time of Max. output frequency	0.000-65.000 sec.	0.000
	02-50	Status of Multi-function Input Terminal	Monitor the status of multi-function input terminals	Read only
	02-51	Status of Multi-function Output Terminal	Monitor the status of multi-function output terminals	Read only
	02-52	Display External Output terminal occupied by PLC	Monitor the status of PLC input terminals	Read only
	02-53	Display Analog Input Terminal occupied by PLC	Monitor the status of PLC output terminals	Read only
	02-54	Display the Frequency Command Executed by External Terminal	Read only	Read only
	02-55	Reserved		
	02-56	Time for test signal "brake released"		
*	02-57	Multi-function output ter- minal: Function 42: Brake Current Checking Point	0–150 %	0
*	02-58	Multi-function output ter- minal: Function 42: Brake Frequency Checking Point	0.00–655.35 Hz	0.00
	02-59 02-69	Reserved		

Pr.	Explanation	Settings	Factory Setting
02-70	IO card types	0 : NO IO card 1 : EMC-BPS01 2 : NO IO card 3 : NO IO card 4 : EMC-D611A 5 : EMC-D42A 6 : EMC-R6AA 7 : NO IO card	Read only

Tab. 11-3: Digital Input/Output Parameters (6)

11.4 Analog input/output parameters

	Pr.	Explanation	Settings	Factory Setting
*	03-00	Analog Input Selection (AVI)	0: No function	1
~	03-01	Analog Input Selection (ACI)	1: Frequency command (speed limit under torque control mode)	0
*			2: Torque command (torque limit under speed mode)	
			3: Torque offset command	
			4: PID target value	
			5: PID feedback signal	
			6: PTC thermistor input value	
	03-02	Analog Input Selection	7: Positive torque limit	0
	03-02	(AUI)	8: Negative torque limit	0
			9: Regenerative torque limit10: Positive/negative torque limit	
			11: PT100 thermistor input value	
			12: Reserved	
			13: PID Offset (%) (h.)	
			14–20: Reserved	
~	03-03	Analog Input Bias (AVI)	-100.0–100.0 %	0
	03-04	Analog Input Bias (ACI)	-100.0–100.0 %	0
~	03-05	Analog Positive Voltage Input Bias (AUI)	-100.0–100.0 %	0
	03-06	Reserved		
~	03-07	Positive/negative Bias Mode (AVI)	0: No bias 1: Lower than or equal to bias	
~	03-08	Positive/negative Bias Mode (ACI)	2: Greater than or equal to bias 3: The absolute value of the bias voltage while	0
~	03-09	Positive/negative Bias Mode (AUI)	serving as the center 4: Serve bias as the center	
	03-10	Analog Frequency Com- mand for Reverse Run	 0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal. 1: Negative frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control. 	0
*	03-11	Analog Input Gain (AVI)	-500.0–500.0 %	100.0
*	03-12	Analog Input Gain (ACI)	-500.0–500.0 %	100.0
~	03-13	Analog Positive Input Gain (AUI)	-500.0–500.0 %	100.0
*	03-14	Analog Negative Input Gain (AUI)	-500.0–500.0 %	100.0
~	03-15	Analog Input Filter Time (AVI)	0.00-20.00 sec.	0.01
*	03-16	Analog Input Filter Time (ACI)	0.00-20.00 sec.	0.01
~	03-17	Analog Input Filter Time (AUI)	0.00–20.00 sec.	0.01
~	03-18	Addition Function of the Analog Input	0: Disable (AVI, ACI, AUI) 1: Enable	0
	03-19	ACI Signal Loss	0: Disable 1: Continue operation at the last frequency 2: Decelerate to 0 Hz 3: Stop immediately and display ACE	0
	03-20	Multi-function Output 1 (AFM1)	0: Output frequency (Hz)	0

Tab. 11-4: Analog Input/Output Parameters (1)

Pr.	Explanation	Settings	Factory Setting
		1: Frequency command (Hz)	
		2: Motor speed (Hz)	
		3: Output current (rms)	
		4: Output voltage	
		5: DC Bus voltage	
		6: Power factor	
		7: Power	
		8: Output torque	
		9: AVI	
		10: ACI	
		11: AUI	
		12: lq current	
03-23	Multi-function Output 2 (AFM2)	13: lq feedback value	0
	(11112)	14: Id current	
		15: Id feedback value	
		16: Vq-axis voltage	
		17: Vd-axis voltage	
		18: Torque command	
		19: PG2 frequency command	
		20: CANopen [®] analog output	
		21: RS485 analog output	
		22: Communication card analog output	
		23: Constant voltage/current output	
		24: Reserved	
		25: CAN & 485 output	
03-21	Gain of Analog Output 1 (AFM1)	0–500.0 %	100.0
03-22	Analog Output 1 when in REV Direction (AFM1)	0: Absolute output voltage 1: Reverse output 0 V; Positive output 0-10 V 2: Reverse output 5-0 V; Positive output 5-10 V	0
03-24	Gain of Analog Output 2 (AFM2)	0–500.0 %	100.0
03-25	Analog Output 2 when in REV Direction (AFM2)	 O: Absolute output voltage Output 0 V in REV direction; output 0-10 V in FWD direction Output 5-0 V in REV direction; output 5-10 V in FWD direction 	0
03-26	Reserved		
03-27	AFM2 Output Bias	-100.00–100.00 %	0.00
03-28	AVI Selection	0: 0-10 V 1: 0-20 mA 2: 4-20 mA	0
03-29	ACI Selection	0: 4-20 mA 1: 0-10 V 2: 0-20 mA	0
03-30	Status of PLC Output Terminal	Monitor the status of PLC output terminals	Read only
03-31	AFM2 0-20 mA Output Selection	0: 0-20 mA Output 1: 4-20 mA Output	0

Tab. 11-4: Analog Input/Output Parameters (2)

AFM1 DC output setting level 0.00-100.00 % 0.00 03-33 AFM2 DC Output Setting Level 0.00-100.00 % 0.00 03-34 Reserved 0.01 0.00-100.00 % 0.01 03-35 AFM1 filter output time 0.00-20.00 Seconds 0.01 03-36 AFM2 filter output time 0.00-20.00 Seconds 0.01 03-37 Reserve 0.01 0.00-20.00 Seconds 0.01 03-43 Reserve 0.01-100.00 % 50% 0.01 03-44 MO by source of AI level 1.00-100.00 % 50% 0.01 03-45 Al upper level -100-100.00 % 50% 0.00 0.00 03-46 Al lower level -100-100.00 % 0.00 0.00 0.00 03-47 Reserve -100-100.00 % 0.00 0.00 0.00 0.00 03-49 Reserve -100-100.00 % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Pr.	Explanation	Settings	Factory Setting
03-33 Level 0.00-100.00 % 0.00 03-34 Reserved 0.01 03-35 AFM1 filter output time 0.00 - 20.00 Seconds 0.01 03-36 AFM2 filter output time 0.00 - 20.00 Seconds 0.01 03-37 Reserve 0.00 - 20.00 Seconds 0.01 03-34 Reserve 0.00 - 20.00 Seconds 0.01 03-43 MO by source of AI level 1.AC1 2.AVI 0 03-44 MO by source of AI level 1.AC1 2.AVI 0 03-45 Al upper level -100-100.00 % 10% 03-46 Al ower level -100-100.00 % 10% 03-47 Reserve C: Regular Curve 1: 3 point curve of AVI a LCI 2: 3 point curve of AVI a LCI 03-50 Selection C: Regular Curve 1: 3 point curve of AVI a AUI 2: 3 point curve of AVI a AUI 03-51 AVI Low Point Pr.03-28+0.00-00.00 W 0.00 0.00 03-53 AVI Proportional Low 0.00-100.00 % 0.00 0.00 03-54	03-32		0.00–100.00 %	<u> </u>
03-36 AFM1 filter output time 0.00 – 20.00 Seconds 0.01 03-36 AFM2 filter output time 0.00 – 20.00 Seconds 0.01 03-37 Reserve 0: AVI 0 03-43 M0 by source of AI level 0: AVI 0 03-44 M0 by source of AI level 0: AVI 0 03-45 AI upper level -100-100.00 % 00% 03-46 AI ower level -100-100.00 % 00% 03-47 0: Regular Curve 10% 03-46 Al ower level -100-100.00 % 00% 03-47 03-49 Reserve 03-50 Analog Input Curve 03-51 AVI Low Point Pr.03-28=0.00-10.00 V .0.0 03-52 AVI Proportional Low 0.00-100.00 % .0.00 .0.0 03-55 AVI Mid Point Pr.03-28=0.00-10.00 V	03-33		0.00–100.00 %	0.00
03-36 AFM2 filter output time 0.00 - 20.00 Seconds 0.01 03-37 Reserve 0.200	03-34	Reserved		
03-37 03-43 Reserve 03-44 MO by source of Al level 0: AVI 1: ACI 1: ACI 2: AUI 0 03-45 Al upper level -100-100.00 % 50% 03-46 Al lover level -100-100.00 % 50% 03-47 Allover level -100-100.00 % 10% 03-49 Reserve 0: Regular Curve 1: 3 point curve of ACI 2: 3 point curve of ACI 3: 3 point curve of ACI 3: 3 point curve of ACI & AUI 5: 3 point curve of ACI & AUI 7: 3 point curve of AVI & ACI & AUI 7: 3 point curve of AVI & ACI & AUI 7: 3 point curve of AVI & ACI & AUI 7: 3 point curve of AVI & ACI & AUI 7: 3 point curve of AVI & ACI & AUI 7: 3 point curve of AVI & ACI & AUI 7: 3 point curve of AVI & AUI 7: 3 point curve of AV	03-35	AFM1 filter output time	0.00 - 20.00 Seconds	0.01
03-43 Reserve 03-44 MO by source of AI level 0: AVI 1: ACI 1: Spint curve of AVI 1: Spint curve of AVI	03-36	AFM2 filter output time	0.00 - 20.00 Seconds	0.01
03-43 MO by source of Al level 0: AVI 1: ACI 2: AUI 0 03-45 Al upper level -100-100.00 % 50% 03-46 Al lower level -100-100.00 % 10% 03-47 Reserve -100-100.00 % 10% 03-49 - - - 10% 03-50 Analog Input Curve Selection 0: Regular Curve 1: 3 point curve of AVI 3: 3 point curve of AVI 3: 3 point curve of AVI 5: 3 point curve of AVI 5: 3 point curve of AVI & ACI 3: 3 point curve of AVI & ACI 7: 3 point curve of AVI & ACI 7: 3 point curve of AVI & ACI 8: 3 point curve of AVI & ACI 7: 3 point curve of AVI 7: 3 point curve of AVI 7: 03:2840, 0.00-20.0	03-37 _	Reserve		
03-44 MO by source of AI level 1. ACI 2. AUI 0 03-45 AI upper level -100-100.00 % 50% 03-46 AI ower level -100-100.00 % 10% 03-47 AI lower level -100-100.00 % 10% 03-49 Reserve -100-100.00 % 10% 03-49 Reserve -100-100.00 % 0 03-50 Analog Input Curve Selection -100-100.00 % ACI 03-50 Avi Low Point Pro3-2840.000-10.00 V Pr.03-2840.000-20.00 mA 0.00 03-51 AVI Low Point Pr.03-2840.000-10.00 V Pr.03-2840.000-20.00 mA 5.00 03-52 AVI Proportional Low Point 0.00-100.00 % 50.00 03-54 AVI Proportional Mid 0.00-100.00 % 50.00 03-55 AVI High Point Pr.03-2840.000-20.00 mA 10.00 03-56 AVI Proportional Mid 0.00-100.00 % 10.00 03-57 ACI Low Point Pr.03-2840.000-20.00 mA 4.00 03-58 ACI Proportional High 0.00-100.00 V 2.00 03-	03-43			
03-46 Al lower level -100-100.00 % 10% 03-47 Reserve 0 Reserve 03-50 Analog Input Curve Selection 0: Regular Curve of AVI 3: 3 point avit avit avit avit avit avit avit avi	03-44	MO by source of AI level	1: ACI	0
03-47 03-49 Reserve 03-50 Analog Input Curve Selection C: Regular Curve of AVI 2: 3 point curve of AVI & ACI 4: 3 point curve of AVI 4: 3 point 4: 3 point 5: 3 point curve of AVI 4: 3 point 5: 3 point curve of AVI 4: 3 point 5: 3 point curve of AVI 4: 3 point 5: 3 point curve of AVI 5: 3 point 5: 3 point 5: 3 point 1: 3 point 2: 3 point 5: 3 point 5: 3 point 1: 3 point 2: 3 point 5: 3 point 5: 3 point 1: 3 point 2: 3 point 5: 3 point 5: 3 point 5: 3 point 1: 3 point 2: 3 point 5: 3 point 5: 3 point 5: 3 point 1: 3 point 2: 3 point 5: 3 point 5: 3 point 5: 3 point 1: 3 point 2: 3 point 5: 3 point 5: 3 point 1: 3 point 2: 3 point 5: 3 point 5: 3 point 1: 3 point 2: 3 point 5: 3 point 1: 3 point 2: 3 point 2: 3 point 2: 3 point 5: 3 point 1: 3 point 2: 3 point	03-45	Al upper level	-100–100.00 %	50%
	03-46	AI lower level	-100–100.00 %	10%
03-49 03-50 Analog Input Curve Selection 0: Regular Curve of AVI 2: 3 point curve of AVI 2: 3 point curve of AVI 3: 3 point curve of AVI & ACI 4: 3 point curve of AVI & AUI 5: 3 point curve of AVI & AUI 5: 3 point curve of AVI & AUI 6: 3 point curve of AVI & AUI 7: 3 point curve of AVI & ACI 4: 3 point curve of AVI & AUI 7: 3 point curve of AVI & AUI 9: 0.00 0.00 03-51 AVI Low Point Pr.03-28+0, 0.00-10.00 V Pr.03-28+0, 0.00-20.00 mA 0.00 03-53 AVI High Point Pr.03-28+0, 0.00-10.00 V Pr.03-28+0, 0.00-20.00 mA 10.00 03-56 AVI Proportional High Point 0.00-100.00 % 100.00 03-57 ACI Low Point Pr.03-29+1, 0.00-10.00 V Pr.03-29+1, 0.00-20.00 mA 4.00 03-58 ACI Proportional Low Point 0.00-100.00 % 20.00 03-60 ACI Proportional Mid Point 0.00-100.00 W Pr.03-29+1, 0.00-20.00 mA 20.00 03-61 ACI High Point Pr.03-29+1, 0.00-20.00 mA 20.00 03-61 ACI Proportional High Point 0.00-100.00 W 0.00 <t< td=""><td>03-47 _</td><td>Reserve</td><td></td><td></td></t<>	03-47 _	Reserve		
03-50 Analog Input Curve Selection 1:3 point curve of AVI 2:3 point curve of AVI 3:3 point curve of AVI & ACI 4:3 point curve of AVI & AUI 6:3 point curve of AVI & AUI 7:3 point curve of AVI & AUI 6:3 point curve of AVI & AUI 7:3 point curve of AVI & AUI 6:3 point curve of AVI & AUI 7:3 point curve of AVI & AUI 6:3 point curve of AVI & AUI 7:3 point curve of AVI & AUI 6:3 point curve of AVI & AUI 7:3 point curve of AVI 7:3 point curve of AVI 7:3 point aUI Voltage Mid 7:3 point aUI Voltage Mid	03-49			
03-51 AVI Low Point Pr.03-28≠0, 0.00-20.00 mA 0.00 03-52 AVI Proportional Low Point 0.00-100.00% 0.00 03-53 AVI Mid Point Pr.03-28≠0, 0.00-10.00 V Pr.03-28≠0, 0.00-20.00 mA 5.00 03-54 AVI Proportional Mid Point 0.00-100.00 % 50.00 03-55 AVI High Point Pr.03-28≠0, 0.00-20.00 mA 10.00 03-56 AVI Proportional High Point 0.00-100.00 % 100.00 03-57 ACI Low Point Pr.03-29=1, 0.00-10.00 V Pr.03-29±1, 0.00-20.00 mA 4.00 03-58 ACI Proportional Low Point 0.00-100.00 % 0.00 03-59 ACI Mid Point Pr.03-29±1, 0.00-20.00 mA 12.00 03-50 ACI Proportional Low Point 0.00-100.00 % 50.00 03-50 ACI Mid Point Pr.03-29±1, 0.00-10.00 V Pr.03-29±1, 0.00-20.00 mA 20.00 03-61 ACI Proportional Mid Point 0.00-100.00 % 50.00 03-62 ACI Proportional High Point 0.00-100.00 % 0.00 03-63 Positive AUI Voltage Low Point 0.00-10.00 V 0.00	03-50		1: 3 point curve of AVI 2: 3 point curve of ACI 3: 3 point curve of AVI & ACI 4: 3 point curve of AUI 5: 3 point curve of AVI & AUI 6: 3 point curve of ACI & AUI	0
03-52 Point 0.00-100.00% 0.00 03-53 AVI Mid Point Pr.03-28=0, 0.00-10.00 V Pr.03-28≠0, 0.00-20.00 mA 5.00 03-54 AVI Proportional Mid Point 0.00-100.00 % 50.00 03-55 AVI High Point Pr.03-28=0, 0.00-10.00 V Pr.03-28#0, 0.00-20.00 mA 10.00 03-55 AVI Proportional High Point 0.00-100.00% 100.00 03-56 AVI Proportional Low Point 0.00-100.00 W 4.00 03-57 ACI Low Point Pr.03-29=1, 0.00-10.00 V Pr.03-29=1, 0.00-20.00 mA 4.00 03-58 ACI Proportional Low Point 0.00-100.00 % 0.00 03-59 ACI I Mid Point Pr.03-29=1, 0.00-10.00 V Pr.03-29=1, 0.00-20.00 mA 12.00 03-60 ACI Proportional Mid Point 0.00-100.00 % 50.00 03-61 ACI High Point Pr.03-29=1, 0.00-10.00 V Pr.03-29=1, 0.00-20.00 mA 20.00 03-61 ACI High Point Pr.03-29=1, 0.00-10.00 V Pr.03-29=1, 0.00-10.00 V 0.00 03-62 ACI Proportional High Point 0.00-100.00 W 0.00 03-63 Posititve AUI Voltage Low Point 0.00-100.0	03-51	AVI Low Point	,	0.00
03-53 AVI Mid Point Pr.03-28≠0, 0.00-20.00 mA 5.00 03-54 AVI Proportional Mid Point 0.00-100.00 % 50.00 03-55 AVI High Point Pr.03-28≠0, 0.00-10.00 V Pr.03-28≠0, 0.00-20.00 mA 10.00 03-56 AVI Proportional High Point 0.00-100.00 % 100.00 03-57 ACI Low Point Pr.03-29=1, 0.00-10.00 V Pr.03-29±1, 0.00-20.00 mA 4.00 03-57 ACI Low Point Pr.03-29=1, 0.00-10.00 V Pr.03-29±1, 0.00-20.00 mA 4.00 03-58 ACI Proportional Low Point 0.00-100.00 % 0.00 03-59 ACI Mid Point Pr.03-29=1, 0.00-10.00 V Pr.03-29±1, 0.00-20.00 mA 12.00 03-60 ACI Proportional Mid Point 0.00-100.00 % 50.00 03-61 ACI High Point Pr.03-29=1, 0.00-10.00 V Pr.03-29±1, 0.00-20.00 mA 20.00 03-61 ACI High Point Pr.03-29=1, 0.00-10.00 V Pr.03-29±1, 0.00-20.00 mA 20.00 03-62 ACI Proportional High Point 0.00-100.00 V 0.00 03-63 Positive AUI Voltage Low Point 0.00-100.00 % 0.00 03-64 Positive AUI Voltage Mid Point <td>03-52</td> <td></td> <td>0.00–100.00%</td> <td>0.00</td>	03-52		0.00–100.00%	0.00
03-54 Point 0.00-100.00 % 50.00 03-55 AVI High Point Pr.03-28=0, 0.00-10.00 V Pr.03-28≠0, 0.00-20.00 mA 100.00 03-56 AVI Proportional High Point 0.00-100.00% 100.00 03-57 ACI Low Point Pr.03-29=1, 0.00-10.00 V Pr.03-29≠1, 0.00-20.00 mA 4.00 03-58 ACI Proportional Low Point 0.00-100.00 % 0.00 03-59 ACI Mid Point Pr.03-29=1, 0.00-10.00 V Pr.03-29=1, 0.00-20.00 mA 12.00 03-60 ACI Proportional Mid Point 0.00-100.00 % 50.00 03-61 ACI High Point Pr.03-29=1, 0.00-10.00 V Pr.03-29=1, 0.00-20.00 mA 20.00 03-61 ACI Proportional Mid Point 0.00-100.00 % 20.00 03-62 ACI Proportional High Point 0.00-100.00 V 20.00 03-63 Positive AUI Voltage Low Point 0.00-100.00 V 0.00 03-64 Positive AUI Voltage Mid Point 0.00-100.00 % 50.00 03-65 Positive AUI Voltage Mid Point 0.00-100.00 % 50.00 03-66 Positive AUI Voltage High Point -100.00-100.00 % 50.00 <td>03-53</td> <td>AVI Mid Point</td> <td></td> <td>5.00</td>	03-53	AVI Mid Point		5.00
03-55 AVI High Point Pr.03-28≠0, 0.00-20.00 mA 10.00 03-56 AVI Proportional High Point 0.00-100.00% 100.00 03-57 ACI Low Point Pr.03-29=1, 0.00-10.00 V Pr.03-29≠1, 0.00-20.00 mA 4.00 03-58 ACI Proportional Low Point 0.00-100.00 % 0.00 03-59 ACI Mid Point Pr.03-29=1, 0.00-10.00 V Pr.03-29≠1, 0.00-20.00 mA 12.00 03-60 ACI Proportional Mid Point 0.00-100.00 % 50.00 03-61 ACI Proportional High Point 0.00-100.00 V Pr.03-29≠1, 0.00-20.00 mA 20.00 03-62 ACI Proportional High Point 0.00-100.00 V Pr.03-29≠1, 0.00-20.00 mA 20.00 03-62 ACI Proportional High Point 0.00-100.00 V 0.00 03-63 Positive AUI Voltage Low Point 0.00-10.00 V 0.00 03-64 Positive AUI Voltage Proportional Low Point 0.00-10.00 V 5.00 03-65 Positive AUI Voltage Mid Point 0.00-10.00 V 5.00 03-66 Positive AUI Voltage Mid Point -100.00-100.00 % 50.00	03-54		0.00–100.00 %	50.00
03-50 Point Prior 0.00-100.00% 100.00 03-57 ACI Low Point Pr.03-29=1, 0.00-10.00 V Pr.03-29=1, 0.00-20.00 mA 4.00 03-58 ACI Proportional Low Point 0.00-100.00 % 0.00 03-59 ACI Mid Point Pr.03-29=1, 0.00-10.00 V Pr.03-29=1, 0.00-20.00 mA 12.00 03-60 ACI Proportional Mid Point 0.00-100.00 % 50.00 03-61 ACI High Point Pr.03-29=1, 0.00-10.00 V Pr.03-29=1, 0.00-20.00 mA 20.00 03-61 ACI Proportional High Point 0.00-100.00 % 100.00 03-62 ACI Proportional High Point 0.00-100.00 % 0.00 03-63 Positive AUI Voltage Low Point 0.00-100.00 % 0.00 03-64 Positive AUI Voltage Mid Point 0.00-100.00 % 0.00 03-65 Positive AUI Voltage Mid Point 0.00-100.00 % 50.00 03-66 Positive AUI Voltage High Proportional Mid Point -100.00-100.00 % 50.00	03-55	AVI High Point		10.00
03-57 ACI LOW Point Pr.03-29≠1, 0.00-20.00 mA 4.00 03-58 ACI Proportional Low Point 0.00-100.00 % 0.00 03-59 ACI Mid Point Pr.03-29=1, 0.00-10.00 V Pr.03-29≠1, 0.00-20.00 mA 12.00 03-60 ACI Proportional Mid Point 0.00-100.00 % 50.00 03-61 ACI High Point Pr.03-29=1, 0.00-10.00 V Pr.03-29≠1, 0.00-20.00 mA 20.00 03-61 ACI High Point Pr.03-29=1, 0.00-10.00 V Pr.03-29≠1, 0.00-20.00 mA 20.00 03-62 ACI Proportional High Point 0.00-100.00 % 100.00 03-63 Positive AUI Voltage Low Point 0.00-100.00 % 0.00 03-64 Positive AUI Voltage Proportional Low Point -100.00-100.00 % 0.00 03-65 Positive AUI Voltage Mid Point 0.00-10.00 V 5.00 03-66 Positive AUI Voltage Mid Proportional Mid Point -100.00-100.00 % 50.00	03-56		0.00–100.00%	100.00
03-58 Point 0.00-100.00 % 0.00 03-59 ACI Mid Point Pr.03-29=1, 0.00-10.00 V Pr.03-29≠1, 0.00-20.00 mA 12.00 03-60 ACI Proportional Mid Point 0.00-100.00 % 50.00 03-61 ACI High Point Pr.03-29=1, 0.00-10.00 V Pr.03-29≠1, 0.00-20.00 mA 20.00 03-61 ACI Proportional High Point 0.00-100.00 % 100.00 03-62 ACI Proportional High Point 0.00-100.00 % 100.00 03-63 Positive AUI Voltage Low Point 0.00-10.00 V 0.00 03-64 Positive AUI Voltage Mid Point 0.00-10.00 V 5.00 03-65 Positive AUI Voltage Mid Point 0.00-10.00 V 5.00 03-66 Positive AUI Voltage High Proportional Mid Point -100.00-100.00 % 50.00	03-57	ACI Low Point	,	4.00
O3-39 ACI Mid Point Pr.03-29#1, 0.00–20.00 mA 12.00 03-60 ACI Proportional Mid Point 0.00–100.00 % 50.00 03-61 ACI High Point Pr.03-29=1, 0.00–10.00 V Pr.03-29#1, 0.00–20.00 mA 20.00 03-61 ACI Proportional High Point 0.00–100.00 % 100.00 03-62 ACI Proportional High Point 0.00–100.00 % 100.00 03-63 Positive AUI Voltage Low Point 0.00–100.00 % 0.00 03-64 Positive AUI Voltage Proportional Low Point -100.00–100.00 % 0.00 03-65 Positive AUI Voltage Mid Point 0.00–10.00 V 5.00 03-66 Positive AUI Voltage Proportional Mid Point -100.00–100.00 % 50.00 03-66 Positive AUI Voltage High Proportional Mid Point -100.00–100.00 % 50.00	03-58		0.00–100.00 %	0.00
O3-60 Point 0.00-100.00 % 50.00 03-61 ACI High Point Pr.03-29=1, 0.00-10.00 V Pr.03-29≠1, 0.00-20.00 mA 20.00 03-62 ACI Proportional High Point 0.00-100.00 % 100.00 03-63 Positive AUI Voltage Low Point 0.00-10.00 V 0.00 03-64 Positive AUI Voltage Proportional Low Point -100.00-100.00 % 0.00 03-65 Positive AUI Voltage Mid Point 0.00-10.00 V 5.00 03-66 Positive AUI Voltage Proportional Mid Point -100.00-100.00 % 50.00 03-66 Positive AUI Voltage High Proportional Mid Point -100.00-100.00 % 10.00	03-59	ACI Mid Point		12.00
03-61 ACI High Point Pr.03-29#1, 0.00-20.00 mA 20.00 03-62 ACI Proportional High Point 0.00-100.00 % 100.00 03-63 Positive AUI Voltage Low Point 0.00-10.00 V 0.00 03-64 Positive AUI Voltage Mid Proportional Low Point -100.00-100.00 % 0.00 03-65 Positive AUI Voltage Mid Point 0.00-10.00 V 5.00 03-66 Positive AUI Voltage Proportional Mid Point -100.00-100.00 % 50.00 03-66 Positive AUI Voltage High Proportional Mid Point 0.00-10.00 V 10.00	03-60		0.00–100.00 %	50.00
O3-62 Point 0.00-100.00 % 100.00 03-63 Positive AUI Voltage Low Point 0.00-10.00 V 0.00 03-64 Positive AUI Voltage Proportional Low Point -100.00-100.00 % 0.00 03-65 Positive AUI Voltage Mid Point 0.00-10.00 V 5.00 03-66 Positive AUI Voltage Proportional Mid Point -100.00-100.00 % 50.00 03-67 Positive AUI Voltage High Positive AUI Voltage High 0.00-10.00 V 10.00	03-61	ACI High Point		20.00
O3-63 Point 0.00-10.00 V 0.00 03-64 Positive AUI Voltage Proportional Low Point -100.00-100.00 % 0.00 03-65 Positive AUI Voltage Mid Point 0.00-10.00 V 5.00 03-66 Positive AUI Voltage Proportional Mid Point -100.00-100.00 % 50.00 03-67 Positive AUI Voltage High Positive AUI Voltage High 0.00-10.00 V 10.00	03-62		0.00-100.00 %	100.00
03-64 Proportional Low Point -100.00-100.00 % 0.00 03-65 Positive AUI Voltage Mid Point 0.00-10.00 V 5.00 03-66 Positive AUI Voltage Proportional Mid Point -100.00-100.00 % 50.00 03-67 Positive AUI Voltage High Positive AUI Voltage High 0.00-10.00 V 10.00	03-63		0.00–10.00 V	0.00
03-65 Point 5.00 03-66 Positive AUI Voltage Proportional Mid Point -100.00–10.00 % 50.00 03-67 Positive AUI Voltage High Positive AUI Voltage High 0.00–10.00 % 10.00	03-64		-100.00–100.00 %	0.00
03-60 Proportional Mid Point -100.00-100.00 % 50.00 03-67 Positive AUI Voltage High 0.00-10.00 V 10.00	03-65	Point	0.00–10.00 V	5.00
	03-66		-100.00–100.00 %	50.00
	03-67		0.00–10.00 V	10.00

 Tab. 11-4:
 Analog Input/Output Parameters (3)

Pr.	Explanation		Settings	Factory Setting
03-68	Positive AUI Voltage Pro- portional High Point	-100.00–100.00 %		100.00
03-69	Negative AUI Voltage Low Point	0.00–10.00 V		0.00
03-70	Negative AUI Voltage Proportional Low Point	-100.00–100.00 %		0.00
03-71	Negative AUI Voltage Mid Point	0.00-10.00 V		-5.00
03-72	Negative AUI Voltage Proportional Mid Point	-100.00–100.00 %		-50.00
03-73	Negative AUI Voltage High Point	0.00-10.00 V		-10.00
03-74	Negative AUI Voltage Proportional High Point	-100.00–100.00 %		-100.00

Tab. 11-4: Analog Input/Output Parameters (4)

11.5 Multi-step speed parameters

	Pr.	Explanation	Settings	Factory Setting
N	04-00	1st Step Speed Frequency	0.00–600.00 Hz	0
×	04-01	2nd Step Speed Frequency	0.00–600.00 Hz	0
×	04-02	3rd Step Speed Frequency	0.00–600.00 Hz	0
×	04-03	4th Step Speed Frequency	0.00–600.00 Hz	0
×	04-04	5th Step Speed Frequency	0.00–600.00 Hz	0
×	04-05	6th Step Speed Frequency	0.00–600.00 Hz	0
×	04-06	7th Step Speed Frequency	0.00–600.00 Hz	0
×	04-07	8th Step Speed Frequency	0.00–600.00 Hz	0
×	04-08	9th Step Speed Frequency	0.00–600.00 Hz	0
×	04-09	10th Step Speed Frequency	0.00–600.00 Hz	0
×	04-10	11th Step Speed Frequency	0.00–600.00 Hz	0
×	04-11	12th Step Speed Frequency	0.00–600.00 Hz	0
×	04-12	13th Step Speed Frequency	0.00–600.00 Hz	0
×	04-13	14th Step Speed Frequency	0.00–600.00 Hz	0
×	04-14	15th Step Speed Frequency	0.00–600.00 Hz	0
×	04-15	Position command 1 (rotation)	-30000–30000	0
×	04-16	Position command 1 (pulse)	-32767–32767	0
×	04-17	Position command 2 (rotation)	-30000–30000	0
×	04-18	Position command 2 (pulse)	-32767–32767	0
×	04-19	Position command 3 (rotation)	-30000–30000	0
×	04-20	Position command 3 (pulse)	-32767–32767	0
×	04-21	Position command 4 (rotation)	-30000–30000	0
×	04-22	Position command 4 (pulse)	-32767–32767	0
×	04-23	Position command 5 (rotation)	-30000–30000	0
×	04-24	Position command 5 (pulse)	-32767–32767	0
×	04-25	Position command 6 (rotation)	-30000–30000	0
×	04-26	Position command 6 (pulse)	-32767–32767	0
×	04-27	Position command 7 (rotation)	-30000–30000	0
×	04-28	Position command 7 (pulse)	-32767–32767	0
×	04-29	Position command 8 (rotation)	-30000–30000	0
×	04-30	Position command 8 (pulse)	-32767–32767	0
×	04-31	Position command 9 (rotation)	-30000-30000	0
*	04-32	Position command 9 (pulse)	-32767-32767	0
N	04-33	Position command 10 (rotation)	-30000-30000	0
×	04-34	Position command 10 (pulse)	-32767-32767	0
×	04-35	Position command 11 (rotation)	-30000-30000	0
×	04-36	Position command 11 (pulse)	-32767-32767	0
×	04-37	Position command 12 (rotation)	-30000-30000	0
*	04-38	Position command 12 (pulse)	-32767-32767	0
×	04-39	Position command 13 (rotation)	-30000-30000	0
×	04-40	Position command 13 (pulse)	-32767-32767	0
×	04-41	Position command 14 (rotation)	-30000-30000	0
×	04-42 Tab 11-5	Position command 14 (pulse)	-32767-32767 ers (1)	0

Tab. 11-5: Multi-step Speed Parameters (1)

	Pr.	Explanation		Settings	Factory Setting
×	04-43	Position command 15 (rotation)	-30000–30000		0
*	04-44	Position command 15 (pulse)	-32767–32767		0
	04-45 _ 04-49	Reserve			
~	04-50	PLC buffer 0	0–65535		0
~	04-51	PLC buffer 1	0–65535		0
*	04-52	PLC buffer 2	0–65535		0
~	04-53	PLC buffer 3	0–65535		0
*	04-54	PLC buffer 4	0–65535		0
*	04-55	PLC buffer 5	0–65535		0
*	04-56	PLC buffer 6	0–65535		0
×	04-57	PLC buffer 7	0–65535		0
*	04-58	PLC buffer 8	0–65535		0
×	04-59	PLC buffer 9	0–65535		0
*	04-60	PLC buffer 10	0–65535		0
×	04-61	PLC buffer 11	0–65535		0
*	04-62	PLC buffer 12	0–65535		0
*	04-63	PLC buffer 13	0–65535		0
*	04-64	PLC buffer 14	0–65535		0
*	04-65	PLC buffer 15	0–65535		0
*	04-66	PLC buffer 16	0–65535		0
*	04-67	PLC buffer 17	0–65535		0
×	04-68	PLC buffer 18	0–65535		0
*	04-69	PLC buffer 19	0–65535		0

Tab. 11-5:	Multi-step Speed Parameters (2)
------------	---------------------------------

11.6 Motor parameters

Motor 1(A)Construction and construction of the formation of the f	0 f.## f.## 710 4 f.## ### ###
US-U1Motor 1(A) $10-120\%$ of drive s rated current#05-02Rated Power of Induction Motor 1(kW)0-655.35 kW#05-03Rated Speed of Induction Motor 1 (rpm)0-65535 1710 (60 Hz 4poles); 1410 (50 Hz 4 poles)1105-04Pole Number of Induction Motor 1 Motor 1 (A)2-201105-05No-load Current of Induction Motor 1 (A)0- Pr.05-01 factory setting#05-06Stator Resistance (Rs) of Induction Motor 10-65.535 Ω #.05-07Rotor Resistance (Rr) of Induction Motor 10-65.535 Ω #.05-08Magnetizing Inductance (Lm) of Induction Motor 10-6553.5 mH#05-09Stator Inductance (Lx) of Induction Motor 10-6553.5 mH#05-10- ReservedReserved#05-13Full-load Current of Induction Motor 2 (A)10-120 %#	4.### 710 4 4.### ####
US-02Motor 1(kW) $0-655.35$ kW##05-03Rated Speed of Induction Motor 1 (rpm) $0-65535$ 1710 (60 Hz 4poles); 1410 (50 Hz 4 poles)1105-04Pole Number of Induction Motor 1 Motor 1 (A) $2-20$ $0-9r.05-01$ factory setting#05-05No-load Current of Induction Motor 1 (A) $0-9r.05-01$ factory setting#05-06Stator Resistance (Rs) of Induction Motor 1 $0-65.535 \Omega$ #.05-07Rotor Resistance (Rr) of Induction Motor 1 $0-65.535 \Omega$ #.05-08Magnetizing Inductance (Lm) of Induction Motor 1 $0-6553.5$ mH#05-09Stator Inductance (Lx) of Induction Motor 1 $0-6553.5$ mH#05-10-Reserved#05-11Full-load Current of Induction Motor 1 $0-6553.5$ mH#05-12Reserved $0-6553.5$ mH#05-13Full-load Current of Induction Motor 2 (A) $10-120 \%$ #	710 4 4.## ### ###
05-03Motor 1 (rpm)1710 (60 Hz 4poles); 1410 (50 Hz 4 poles)105-04Pole Number of Induction Motor 12–2005-05No-load Current of Induction Motor 1 (A)0– Pr.05-01 factory setting#05-06Stator Resistance (Rs) of Induction Motor 10–65.535 Ω #.05-07Rotor Resistance (Rr) of Induction Motor 10–65.535 Ω #.05-08Magnetizing Inductance (Lm) of Induction Motor 10–6553.5 mH#05-09Stator Inductance (Lx) of Induction Motor 10–6553.5 mH#05-10-Reserved0–6553.5 mH#05-11-D–120 %##05-13Full-load Current of Induction Motor 2 (A)10–120 %#	4 #.## ###
05-05No-load Current of Induction Motor 1 (A) $0-Pr.05-01$ factory setting#05-06Stator Resistance (Rs) of Induction Motor 1 $0-65.535 \Omega$ #05-07Rotor Resistance (Rr) of Induction Motor 1 $0-65.535 \Omega$ #05-08Magnetizing Inductance (Lm) of Induction Motor 1 $0-6553.5 \text{ mH}$ #05-09Stator Inductance (Lx) of Induction Motor 1 $0-6553.5 \text{ mH}$ #05-10-0-6553.5 mH#05-10-0-6553.5 mH#05-12Full-load Current of Induction Motor 2 (A) $10-120 \%$ #	£.## ####
US-05Motor 1 (A) $0 = Pr.05-01$ factory setting#05-06Stator Resistance (Rs) of Induction Motor 1 $0 = 65.535 \Omega$ #05-07Rotor Resistance (Rr) of Induction Motor 1 $0 = 65.535 \Omega$ #05-08Magnetizing Inductance (Lm) of Induction Motor 1 $0 = 6553.5 \text{ mH}$ #05-09Stator Inductance (Lx) of Induction 	.### .###
05-00 Motor 1 0-65.535 Ω #. 05-07 Rotor Resistance (Rr) of Induction Motor 1 0-65.535 Ω #. 05-08 Magnetizing Inductance (Lm) of Induction Motor 1 0-6553.5 mH # 05-09 Stator Inductance (Lx) of Induction Motor 1 0-6553.5 mH # 05-09 Stator Inductance (Lx) of Induction Motor 1 0-6553.5 mH # 05-10 - Reserved # 05-12 Full-load Current of Induction Motor 2 (A) 10-120 % #	###
05-07 Motor 1 0-65.535 Ω #. 05-08 Magnetizing Inductance (Lm) of Induction Motor 1 0-6553.5 mH # 05-09 Stator Inductance (Lx) of Induction Motor 1 0-6553.5 mH # 05-10 - Reserved # 05-12 Full-load Current of Induction Motor 2 (A) 10-120 % #	
05-06 Induction Motor 1 0-6553.5 mH 4 05-09 Stator Inductance (Lx) of Induction Motor 1 0-6553.5 mH 4 05-10 - Reserved 4 05-12 Full-load Current of Induction Motor 2 (A) 10-120 % # 05-13 Full-load Current of Induction Motor 2 (A) 10-120 % #	4 <i>4</i>
05-09 Motor 1 0-0553.5 mm # 05-10 - Reserved - <	+.#
- Reserved 05-12 Full-load Current of Induction 05-13 Full-load Current of Induction Notor 2 (A) 10–120 %	#.#
05-12 05-13 Full-load Current of Induction 10–120 % #	
U5-13 Motor 2 (A) 10–120 % #	
Rated Power of Induction	ŧ.##
05-14 Nated Tower of Induction 0–655.35 kW #	ŧ.##
05-15 Rated Speed of Induction Motor 2 (rpm) 0–65535 1710 (60 Hz 4 poles); 1410 (50 Hz 4 poles) 1*	710
05-16 Pole Number of Induction Motor 2 2–20	4
05-17No-load Current of Induction Motor 2 (A)0- Pr.05-01 factory setting#	ŧ.##
05-18 Stator Resistance (Rs) of Induction $0-65.535 \Omega$ #.	###
05-19 Rotor Resistance (Rr) of Induction $0-65.535 \Omega$ #.	###
05-20Magnetizing Inductance (Lm) of Induction Motor 20–6553.5 mH#	#.#
05-21 Stator Inductance (Lx) of Induction 0–6553.5 mH 4	#.#
05-22 Induction Motor 1/2 Selection 1: motor 1 2: motor 2	1
05-23Frequency for Y-connection/Δ-connection /Δ-connection Switch of Induction Motor0.00–600.00 Hz60	0.00
05-24 Y-connection/Δ-connection Switch of Induction Motor 0: Disable 1: Enable	0
$\begin{array}{c} \mbox{05-25} \end{array} \ \ \ \ \ \ \ \ \ \ \ \ \$.200
05-26Accumulative Watt-second of Motor in Low Word (W-sec)Read only#	
05-27Accumulative Watt-second of Motor in High Word (W-sec)Read only#	#.#

Tab. 11-6: Motor Parameters (1)

Pr.	Explanation	Settings	Factory Setting
05-28	Accumulative Watt-hour of Motor (W-Hour)	Read only	#.#
05-29	Accumulative Watt-hour of Motor in Low Word (KW-Hour)	Read only	#.#
05-30	Accumulative Watt-hour of Motor in High Word (KW-Hour)	Read only	#.#
05-31	Accumulative Motor Operation Time (Min)	00–1439	0
05-32	Accumulative Motor Operation Time (day)	00–65535	0
05-33	Induction Motor and Permanent Magnet Motor Selection	0: Induction Motor 1: SPM Permanent Magnet Motor 2: IPM Permanent Magnet Motor	0
05-34	Full-load current of Permanent Magnet Motor	0.00–655.35 Amps	0.00
05-35	Rated Power of Permanent Magnet Motor	0.00–655.35 kW	0.00
05-36	Rated speed of Permanent Magnet Motor	0–65535 rpm	2000
05-37	Pole number of Permanent Magnet Motor	0–65535	10
05-38	Inertia of Permanent Magnet Motor	0.0–6553.5 kg.cm ²	0.0
05-39	Stator Resistance of PM Motor	0.000–65.535 Ω	0.000
05-40	Permanent Magnet Motor Ld	0.00–655.35 mH	0.000
05-41	Permanent Magnet Motor Lq	0.00–655.35 mH	0.000
05-42	PG Offset angle of PM Motor	0.0–360.0°	0.0
05-43	Ke parameter of PM Motor	0–65535 (Unit: V/1000 rpm)	0

Tab. 11-6: Motor Parameters (2)

11.7 Protection parameters

	Explanation	Settings	Factory Setting
06-00	Low Voltage Level	230 V: Frame A to D: 150.0–220.0 VDC Frame E and frames above E: 190.0–220.0 V DC 460 V:	180.0 200.0
		Frame A to D: 300.0–440.0 Vdc Frame E and frames above E: 380.0–440.0 V DC	360.0 400.0
06-01	Over-voltage Stall Prevention	0: Disabled 230 V: 0.0–450.0 Vdc 460 V: 0.0–900.0 Vdc	380.0 760.0
06-02	Selection for Over-voltage Stall Prevention	0: Traditional over-voltage stall prevention 1: Smart over-voltage prevention	0
06-03	Over-current Stall Prevention during Acceleration	Normal Load: 0–160 % (100 %: drive's rated current) Heavy Load: 0–180 % (100 %: drive's rated current)	120 150
06-04	Over-current Stall Prevention during Operation	Normal Load: 0–160 % (100 %: drive's rated current) Heavy Load: 0–180 % (100 %: drive's rated current)	120 150
06-05	Accel./Decel. Time Selection of Stall Prevention at Constant Speed	0: by current accel/decel time 1: by the 1st accel/decel time 2: by the 2nd accel/decel time 3: by the 3rd accel/decel time 4: by the 4th accel/decel time 5: by auto accel/decel	0
06-06	Over-torque Detection Selection (OT1)	 0: No function 1: Continue operation after Over-torque detection during constant speed operation 2: Stop after Over-torque detection during con- stant speed operation 3: Continue operation after Over-torque detection during RUN 4: Stop after Over-torque detection during RUN 	0
06-07	Over-torque Detection Level (OT1)	10-250 % (100 %: drive's rated current)	120
06-08	Over-torque Detection Time (OT1)	0.0-60.0 sec.	0.1
06-09	Over-torque Detection Selection (OT2)	 0: No function 1: Continue operation after Over-torque detection during constant speed operation 2: Stop after Over-torque detection during con- stant speed operation 3: Continue operation after Over-torque detection during RUN 4: Stop after Over-torque detection during RUN 	0
06-10	Over-torque Detection Level (OT2)	10-250 % (100 %: drive's rated current)	120
06-11	Over-torque Detection Time (OT2)	0.0–60.0 sec.	0.1
06-12	Current Limit	0-250 % (100 %: drive's rated current)	170
06-13	Electronic Thermal Relay Selection (Motor 1)	0: Special motor (with external forced cooling)1: Self-cooled motor (so motor with fan on the shaft)2: Disable	2
06-14	Electronic Thermal Characteristic for Motor 1	30.0-600.0 sec.	60.0
06-15	Heat Sink Over-heat (OH) Warning	0.0–110.0 °C	105.0
06-16	Stall Prevention Limit Level	0–100 % (Pr.06-03, Pr.06-04)	50
06-17	Present Fault Record	0: No fault record	0
06-18	Second Most Recent Fault Record	1: Over-current during acceleration (ocA)	0
06-19	Third Most Recent Fault Record	2: Over-current during deceleration (ocd)	0
	06-01 06-02 06-03 06-04 06-04 06-05 06-05 06-07 06-08 06-08 06-09 06-10 06-11 06-12 06-13 06-13 06-13 06-14 06-15 06-14	Normal Sector Action06-01Over-voltage Stall Prevention06-02Selection for Over-voltage Stall Prevention06-03Over-current Stall Prevention during Operation06-04Over-current Stall Prevention at Constant Speed06-05Accel./Decel. Time Selection of Stall Prevention at Constant Speed06-06Over-torque Detection Selection (OT1)06-07Over-torque Detection Level (OT1)06-08Over-torque Detection Time (OT1)06-09Over-torque Detection Level (OT1)06-100Over-torque Detection Level (OT1)06-111Over-torque Detection Level (OT2)06-122Current Limit06-133Electronic Thermal Relay Selection (Motor 1)06-14Electronic Thermal Relay Selection (Motor 1)06-15Heat Sink Over-heat (OH) Warning06-16Stall Prevention Limit Level (OF12)06-17Present Fault Record Of-1706-18Second Most Recent Fault Record06-18Third Most Recent Fault	06-00Low Voltage LevelFrame A to D: 150.0–220.0 VDC Frame E and frames above E: 190.0–220.0 V DC 460 V: Frame E and frames above E: 190.0–220.0 V DC 460 V: Frame E and frames above E: 190.0–220.0 V DC 460 V: Frame E and frames above E: 380.0–440.0 V DC06-01Over-voltage Stall Prevention0-Disabiled 230 V: 0.0–4500 0 Vdc 460 V: 0.0–900.0 Vdc06-02Selection for Over-voltage stall Prevention0: Traditional over-voltage stall prevention 1: Smart over-voltage stall prevention06-03Over-current Stall Prevention during OperationNormal Load: 0–160 % (100 %: drive's rated current) Heavy Load: 0–180 % (100 %: drive's rated current) Heavy Load: 0–180 % (100 %: drive's rated current) Heavy Load: 0–180 % (100 %: drive's rated current) Evor -tore current Stall Prevention at Constant Speed06-04Over-current Stall Prevention at Constant Speed operation Constant Speed operation 2: by the 2nd accel/decel time 2: by the 2nd accel/decel time 2: by the 4th accel/decel time 2: by the 3rd accel/decel time 3: Continue operation after Over-torque detection during constant speed operation 3: Continue operation after Over-torque detection during constant speed operation 3: Continue operation after Over-torque detection during Constant speed operation 3: Continue operation after Over-torque detection during Constant speed operation 4: Stop after Over-torque detection during con- stant speed operation 4: Stop after Over-torque detection during con- stant speed operation 4: Stop after Over-torque detection during Constant speed operation 4: Stop after Over-torque detection during Constant speed operation 4: Stop after Over-torque detection during con- stant speed operation 4: Stop after Over-torque detection during con-

Tab. 11-7: Protection Parameters (1)

Pr.	Explanation	Settings	Factory Setting
06-20	Fourth Most Recent Fault Record	3: Over-current during constant speed (ocn)	0
06-21	Fifth Most Recent Fault Record	4: Ground fault (GFF)	0
		5: IGBT short-circuit (occ)	
		6: Over-current at stop (ocS)	
		7: Over-voltage during acceleration (ovA)	
		8: Over-voltage during deceleration (ovd)	
		9: Over-voltage during constant speed (ovn)	
		10: Over-voltage at stop (ovS)	
		11: Low-voltage during acceleration (LvA)	
		12: Low-voltage during deceleration (Lvd)	
		13: Low-voltage during constant speed (Lvn)	
		14: Stop mid-low voltage (LvS)	
		15: Phase loss protection (OrP)	
		16: IGBT over-heat (oH1)	
		17: Capacitance over-heat (oH2)	
		18: tH1o (TH1 open: IGBT over-heat protection	
		19: tH2o (TH2 open: capacitance over-heat	
		20: Reserved	
		21: Drive over-load (oL)	
		22: Electronics thermal relay 1 (EoL1)	
		23: Electronics thermal relay 2 (EoL2)	
		24: Motor overheat (oH3) (PTC)	
		25: Reserved	
		26: Over-torque 1 (ot1)	
06-22	Sixth Most Recent Fault Record	27: Over-torque 2 (ot2)	0
		28: Low current (uC)	
		29: Home limit error (LMIT) 30: Memory write-in error (cF1)	
		31: Memory read-out error (cF2)	
		32: Reserved	
		33: U-phase current detection error (cd1)	
		34: V-phase current detection error (cd2)	
		35: W-phase current detection error (cd3)	
		36: Clamp current detection error (Hd0)	
		37: Over-current detection error (Hd1)	
		38: Over-voltage detection error (Hd2)	
		39: Ground current detection error (Hd3)	
		40: Auto tuning error (AUE)	
		41: PID feedback loss (AFE)	
		42: PG feedback error (PGF1)	
		43: PG feedback loss (PGF2)	
		44: PG feedback stall (PGF3)	
		45: PG slip error (PGF4)	
		46: PG ref loss (PGr1)	
		47: PG ref loss (PGr2)	
		48: Analog current input loss (ACE)	
		49: External fault input (EF)	
		50: Emergency stop (EF1)	

Tab. 11-7: Protection Parameters (2)

Pr.	Explanation	Settings	Factor Settin
		51: External Base Block (bb)	
		52: Password error (PcodE)	
		53: Reserved	
		54: Communication error (CE1)	
		55: Communication error (CE2)	
		56: Communication error (CE3)	
		57: Communication error (CE4)	
		58: Communication Time-out (CE10)	
		59: PU Time-out (CP10)	
		60: Brake transistor error (bF)	
		61: Y-connection/?-connection switch error (ydc)	
		62: Decel. Energy Backup Error (dEb)	
		63: Slip error (oSL)	
		64: Electromagnet switch error (ryF)	
		65: PG Card Error (PGF5)	
		66-67: Reserved	
		68: Sensorless estimated speed have wrong	
		69: Sensorless estimated speed is over speed	
		70: Sensorless estimated speed deviated	
		71: Reserved	
		72: STO Loss 1	0
		73: External safety gate S1	
		74–75: Reserved	
		76: STO	
06-22	Sixth Most Recent Fault Record	77: STO Loss 2	
		78: STO Loss 3	
		79: U phase over current (Uocc)	
		80: V phase over current (Vocc)	
		81: W phase over current (Wocc)	
		82: U phase output phase loss (OPHL)	
		83: V phase output phase loss (OPHL)	
		84: W phase output phase loss (OPHL)	
		85: PG-02U ABZ hardware disconnection	
		86: PG-02U UVW hardware disconnection	
		87–88: Reserved	
		89: Initial rotor position detection error	
		90: Inner PLC function is forced to stop	
		91–100: Reserved	
		101: CANopen [®] software disconnect1 (CGdE)	
		102: CANopen [®] software disconnect2 (CHbE)	
		103: CANopen [®] synchronous error (CSYE)	
		104: CANopen [®] hardware disconnect (CbFE)	
	105: CANopen [®] index setting error (CldE)		
		106: CANopen [®] slave station number setting	
		107: CANopen memory failure®	
		108–110: Reserved	
		111: Internal communication overtime error(Inr-	
		112: PM sensorless shaft Lock error	

Tab. 11-7: Protection Parameters (3)

Protection parameters

	Pr.	Explanation	Settings	Factory Setting
×	06-23	Fault Output Option 1	0–65535 (refer to bit table for fault code)	0
×	06-24	Fault Output Option 2	0-65535 (refer to bit table for fault code)	0
×	06-25	Fault Output Option 3	0–65535 (refer to bit table for fault code)	0
×	06-26	Fault Output Option 4	0–65535 (refer to bit table for fault code)	0
×	06-27	Electronic Thermal Relay Selection 2 (Motor 2)	0: Special motor (with external forced cooling)1: Self-cooled motor (so motor with fan on the shaft)2: Disable	2
×	06-28	Electronic Thermal Characteristic for Motor 2	30.0-600.0 sec	60.0
×	06-29	PTC Detection Selection	0: Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop 3: No warning	0
×	06-30	PTC Level	0.0–100.0 %	50.0
	06-31	Frequency Command for Malfunction	0.00–655.35 Hz	Read only
	06-32	Output Frequency at Malfunction	0.00–655.35 Hz	Read only
	06-33	Output Voltage at Malfunction	0.0–6553.5 V	Read only
	06-34	DC Voltage at Malfunction	0.0–6553.5 V	Read only
	06-35	Output Current at Malfunction	0.00–655.35 Amp	Read only
	06-36	IGBT Temperature at Malfunction	-3276.7–3276.7 °C	Read only
	06-37	Capacitance Temperature at Malfunction	-3276.7–3276.7 °C	Read only
	06-38	Motor Speed in rpm at Malfunction	-3276.7–3276.7 rpm	Read only
	06-39	Torque Command at Malfunction	-3276.7–3276.7	Read only
	06-40	Status of Multi-function Input Terminal at Malfunction	0000h-FFFFh	Read only
	06-41	Status of Multi-function Out- put Terminal at Malfunction	0000h-FFFFh	Read only
	06-42	Drive Status at Malfunction	0000h-FFFFh	Read only
	06-43	Reserved		
×	06-44	STO Latch Selection	0 : STO Latch 1 : STO No Latch	0
×	06-45	Treatment to Output Phase Loss Detection (OPHL)	0: Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop 3: No warning	3
×	06-46	Capture time at loss of output phase	0.000-65.535 sec	0.500
×	06-47	Current detection level of output phase loss	0.00–655.35 %	1.00
×	06-48	DC Brake Time of Output Phase Loss	0.000-65.535 sec	0.000
	06-49	Reserved		
×	06-50	Time for Input Phase Loss Detection	0.00-600.00 sec	0.20
	06-51	Reserved		
×	06-52	Ripple of Input Phase Loss	230 V Series: 0.0–160.0 Vdc 460 V Series: 0.0–320.0 Vdc	30.0 / 60.0
×	06-53	Treatment for the detected Input Phase Loss (OrP)	0: warn and ramp to stop 1: warn and coast to stop	0
	06-54	Reserved		
		7. Drotostian Daramatara		

Tab. 11-7: Protection Parameters (4)

	Pr.	Explanation	Settings	Factory Setting
	06-55	Derating Protection	 0: constant rated current and limit carrier wave by load current and temperature 1: constant carrier frequency and limit load current by setting carrier wave 2: constant rated current(same as setting 0), but close current limit 	0
×	06-56	PT100 Detected Level 1	0.000–10.000 V	5.000
×	06-57	PT100 Detected Level 2	0.000–10.000 V	7.000
×	06-58	PT100 Level 1 Frequency Protect	0.00–600.00 Hz	0.00
×	06-59	PT100 activation level delay time	0–6000 sec	60
×	06-60	Software Detection GFF Current Level	0.0–6553.5 %	60.0
×	06-61	Software Detection GFF Filter Time	0.00–655.35 sec	0.10
	06-62	Reserved		
	06-63	Fault Record 1 (Day)	0–65535 days	Read only
	06-64	Fault Record 1 (Min)	0–1439 min	Read only
	06-65	Fault Record 2 (Day)	0–65535 days	Read only
	06-66	Fault Record 2 (Min)	0–1439 min	Read only
	06-67	Fault Record 3 (Day)	0–65535 days	Read only
	06-68	Fault Record 3 (Min)	0–1439 min	Read only
	06-69	Fault Record 4 (Day)	0–65535 days	Read only
	06-70	Fault Record 4 (Min)	0–1439 min	Read only
×	06-71	Low Current Setting Level	0.0 – 6553.5 %	0.0
×	06-72	Low Current Detection Time	0.00 – 655.35 sec	0.00
×	06-73	Treatment for low current	 0 : No function 1 : Warn and coast to stop 2 : Warn and ramp to stop by 2nd deceleration time 3 : Warn and operation continue 	0

Tab. 11-7: Protection Parameters (5)

11.8 Special parameters

	Pr.	Explanation	Settings	Factory Setting
*	07-00	Software Brake Level	230 V: 350.0–450.0 Vdc 460 V: 700.0–900.0 Vdc	380.0 760.0
×	07-01	DC Brake Current Level	0–100 %	0
×	07-02	DC Brake Time at RUN	0.0-60.0 sec.	0.0
×	07-03	DC Brake Time at Stop	0.0-60.0 sec.	0.0
×	07-04	DC Brake frequency at Stop	0.00–600.00 Hz	0.00
×	07-05	Voltage Incrasing Gain	1–200 %	100
*	07-06	Restart after Momentary Power Loss	0: Stop operation 1: Speed search for last frequency command 2: Speed search for minimum output frequency	0
~	07-07	Maximum Power Loss Duration	0.0–20.0 sec.	2.0
×	07-08	Base Block Time	0.1–5.0 sec.	0.5
*	07-09	Current Limit for Speed Search	20–200 %	100
×	07-10	Treatment to Restart After Fault	0: Stop operation1: Speed search starts with current speed2: Speed search starts with minimum output frequency	0
~	07-11	Number of Times of Auto Restart After Fault	0–10	0
*	07-12	Speed Search during Start-up	0: Disable 1: Speed search for maximum output frequency 2: Speed search for start-up motor frequency 3: Speed search for minimum output frequency	0
~	07-13	Decel. Time to Momentary Power Loss	0: Disable 1–6: Auto decel. time	0
~	07-14	DEB Return Time	0.0–25.0 sec	0.0
×	07-15	Dwell Time at Accel.	0.00-600.00 sec	0.00
×	07-16	Dwell Frequency at Accel.	0.00–600.00 Hz	0.00
*	07-17	Dwell Time at Decel.	0.00–600.00 sec	0.00
×	07-18	Dwell Frequency at Decel.	0.00–600.00 Hz	0.00
N	07-19	Fan Cooling Control	 0: Fan always ON 1: 1 minute after the stops, fan will be OFF 2: When the runs, the fan is ON. When the stops, the fan is OFF 3: Fan turns ON when preliminary IGBT temperature (around 60°C) is attained. 4: Fan always OFF 	0
*	07-20	Emergency Stop (EF) & Force to Stop Selection	0: Coast stop 1: By deceleration Time 1 2: By deceleration Time 2 3: By deceleration Time 3 4: By deceleration Time 4 5: System Deceleration 6: Automatic Deceleration	0
~	07-21	Auto Energy-saving Operation	0: Disable 1: Enable	0
*	07-22	Energy-saving Gain	10–1000 %	100
*	07-23	Auto Voltage Regulation (AVR) Function	0: Enable AVR 1: Disable AVR 2: Disable AVR during deceleration	0
*	07-24	Filter Time of Torque Compensation (V/F and SVC control mode)	0.001–10.000 sec	0.020

Tab. 11-8: Special Parameters (1)

	Pr.	Explanation	Settings	Factory Setting
*	07-25	Filter Time of Slip Compen- sation (V/F and SVC control mode)	0.001–10.000 sec	0.100
*	07-26	Torque Compensation Gain (V/F and SVC control mode)	0–10 (Default: 1 in SVC mode)	0
*	07-27	Slip Compensation Gain (V/F and SVC control mode)	0.00–10.00	0.00
*	07-28	Reserved		
*	07-29	Slip Deviation Level	0.0–100.0 %	0
~	07-30	Detection Time of Slip Deviation	0.0-10.0 sec	1.0
*	07-31	Over Slip Treatment	0: Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop 3: No warning	0
~	07-32	Motor Hunting Gain	0–10000	1000
*	07-33	Autorestart internal of Fault	0.0–6000.0 sec	60.0
<i>′</i>				

Tab. 11-8: Special Parameters (2)

11.9 High-function PID parameters

	Pr.	Explanation	Settings	Factory Setting
*	08-00	Input Terminal for PID Feedback	 No function Negative PID feedback: on analogue input acc. To setting 5 of Pr. 03-00 to Pr.03-02. Negative PID feedback from PG card (Pr.10-02, skip direction) Negative PID feedback from PG card (Pr.10-02) Positive PID feedback from external terminal AVI (Pr.03-00) Positive PID feedback from PG card (Pr.10-02, skip direction) Positive PID feedback from PG card (Pr.10-02, skip direction) Positive PID feedback from PG card (Pr.10-02) Negative PID feedback from PG card (Pr.10-02) Negative PID feedback from communication protocol Positive PID feedback from communication protocol 	0
×	08-01	Proportional Gain (P)	0.0–500.0 %	1.0
×	08-02	Integral Time (I)	0.00-100.00 sec	1.00
×	08-03	Derivative Control (D)	0.00-1.00 sec	0.00
×	08-04	Upper Limit of Integral Control	0.0–100.0 %	100.0
~	08-05	PID Output Frequency Limit	0.0–110.0 %	100.0
~	08-06	PID feedback value by communication protocol	-200.00–200.00 %	0.00
×	08-07	PID Delay Time	0.0–35.0 sec	0.0
×	08-08	Feedback Signal Detection Time	0.0-3600.0 sec	0.0
*	08-09	Feedback Signal Fault Treatment	0: Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop 3: Warn and operate at last frequency	0
×	08-10	Sleep Frequency	0.00–600.00 Hz	0.00
×	08-11	Wake-up Frequency	0.00–600.00 Hz	0.00
~	08-12	Sleep Time	0.0-6000.0 sec	0.0
×	08-13	PID Deviation Level	1.0–50.0 %	10.0
×	08-14	PID Deviation Time	0.1–300.0 sec	5.0
*	08-15	Filter Time for PID Feedback	0.1–300.0 sec	5.0
~	08-16	PID Compensation Selection	0: Parameter setting 1: The PID interference value will be adjusted via the analog input.	0
×	08-17	PID Compensation	-100.0–+100.0 %	0
	08-18	Setting of Sleep Mode Function	0: Follow PID output command 1: Follow PID feedback signal	0
*	08-19	Wakeup Integral Limit	0.0–200.0 %	50.0
	08-20	PID Mode Selection	0: Serial connection 1: Parallel connection	0
	08-21	Enable PID to Change Operation Direction	0: Operation direction can be changed 1: Operation direction can not be changed	0
*	08-22	Wakeup Delay Time	0.00-600.00 Seconds	0.00
*	08-23	PID Control Flag	Bit 0 = 1, PID reverse running must follow the setting of Pr. 00-23. Bit 0 = 0, PID reverse running follow PID's calculated value.	0

Tab. 11-9: High-function PID Parameters

11.10 Communication parameters

	Pr.	Explanation	Settings	Factory Setting
*	09-00	COM1 Communication Address	1–254	1
*	09-01	COM1 Transmission Speed	4.8–115.2 Kbps	9.6
×	09-02	COM1 Transmission Fault Treatment	0: Warn and continue operation 1: Warn and ramp to stop 2: Warn and coast to stop 3: No warning and continue operation	3
*	09-03	COM1 Time-out Detection	0.0-100.0 sec.	0.0
×	09-04	COM1 Communication Proto- col	1: 7N2 (ASCII) 2: 7E1 (ASCII) 3: 7O1 (ASCII) 4: 7E2 (ASCII) 5: 7O2 (ASCII) 6: 8N1 (ASCII) 7: 8N2 (ASCII) 8: 8E1 (ASCII) 9: 8O1 (ASCII) 10: 8E2 (ASCII) 11: 8O2 (ASCII) 12: 8N1 (RTU) 13: 8N2 (RTU) 14: 8E1 (RTU) 15: 8O1 (RTU) 16: 8E2 (RTU) 17: 8O2 (RTU)	1
	09-05 	Reserved		
*	09-09	Response Delay Time	0.0–200.0 ms	2.0
	09-10	Main Frequency of the Communication	0.00–600.00 Hz	60.00
*	09-11	Block Transfer 1	0–65535	0
*	09-12	Block Transfer 2	0–65535	0
*	09-13	Block Transfer 3	0–65535	0
×	09-14	Block Transfer 4	0–65535	0
×	09-15	Block Transfer 5	0–65535	0
*	09-16	Block Transfer 6	0–65535	0
*	09-17	Block Transfer 7	0–65535	0
*	09-18	Block Transfer 8	0–65535	0
*	09-19	Block Transfer 9	0–65535	0
*	09-20	Block Transfer 10	0–65535	0
N	09-21	Block Transfer 11	0-65535	0
N	09-22	Block Transfer 12	0-65535	0
<i>N</i>	09-23	Block Transfer 13	0-65535	0
<i>N</i>	09-24	Block Transfer 14	0-65535	0
<i>N</i>	09-25	Block Transfer 15	0-65535	0
*	09-26	Block Transfer 16	0–65535	0
	09-27 	Reserved		
	09-30	Communication Decoding Method	0: Decoding Method 1 1: Decoding Method 2	1

 Tab. 11-10:
 Communication Parameters (1)

Pr.	Explanation	Settings	Factory Setting
09-31	Internal Communication Protocol	0: Modbus 485 -1: Internal Communication Slave 1 -2: Internal Communication Slave 2 -3: Internal Communication Slave 3 -4: Internal Communication Slave 4 -5: Internal Communication Slave 5 -6: Internal Communication Slave 6 -7: Internal Communication Slave 7 -8: Internal Communication Slave 8 -9: Reserved -10: Internal Communication Master -11: Reserve -12: Internal PLC Control	0
09-32	Reserved		
09-33	PLC command force to 0	0–65535	0
09-34	Reserved		
09-35	PLC Address	1–254	2
09-36	CANopen [®] Slave Address	0: Disable 1–127	0
09-37	CANopen [®] Speed	0: 1 M 1: 500 k 2: 250 k 3: 125 k 4: 100k (Delta only) 5: 50 k	0
09-38	CANopen [®] Frequency Gain	1.00–2.00	1.00
09-39	CANopen [®] Warning Record	bit 0: CANopen Guarding Time out bit 1: CANopen Heartbeat Time out bit 2: CANopen SYNC Time out bit 3: CANopen SDO Time out bit 4: CANopen SDO buffer overflow bit 5: Can Bus Off bit 6: Error protocol of CANopen bit 8: The setting values of CANopen indexs are fail bit 9: The setting value of CANopen address is fail bit10: The checksum value of CANopen indexs is fail	0
09-40	CANopen [®] Decoding Method	0: Delta defined decoding method 1: CANopen DS402 Standard	1
09-41	CANopen [®] Communication Status	0: Node Reset State 1: Com Reset State 2: Boot up State 3: Pre Operation State 4: Operation State 5: Stop State	Read On
09-42	CANopen [®] Control Status	 0: Not ready for use state 1: Inhibit start state 2: Ready to switch on state 3: Switched on state 4: Enable operation state 7: Quick Stop Active state 13: Err Reaction Activation state 14: Error state 	Read Or
09-43	Reset CANopen [®] Index	bit0: reset address 20XX to 0. bit1: reset address 264X to 0 bit2: reset address 26AX to 0 bit3: reset address 60XX to 0	65535
09-44	Reserved		
09-45	CANopen [®] Master Function	0: Disable 1: Enable	0

Tab. 11-10: Communication Parameters (2)

	Pr.	Explanation	Settings	Factory Setting
Ī	09-46	CANopen [®] Master Address	1–127	100
	09-47	Reserved		
	_ 09-59	Reserved		
	09-60	Identifications for Communication Card	0: No communication card 1: DeviceNet Slave 2: Profibus-DP Slave 3: CANopen [®] Slave/Master 4: Modbus-TCP Slave 5: Ethernet/IP Slave 6–8: Reserved	##
	09-61	Firmware Version of Commu- nication Card	Read only	##
	09-62	Product Code	Read only	##
- Į	09-63	Error Code	Read only	##
	09-64 _ 09-69	Reserved		
*	09-70	Address of Communication Card	DeviceNet: 0-63 Profibus-DP: 1-125	1
N	09-71	Setting of DeviceNet Speed	Standard DeviceNet: 0: 125 Kbps 1: 250 Kbps 2: 500 Kbps Non standard DeviceNet: (Delta Only) 0: 10 Kbps 1: 20 Kbps 2: 50 Kbps 3: 100 Kbps 4: 125 Kbps 5: 250 Kbps 6: 500 Kbps 7: 800 Kbps 8: 1 Mbps	2
N	09-72	Other Setting of DeviceNet Speed	 0: Disable In this mode, baud rate can only be 0,1,2,3 in standard DeviceNet speed 1: Enable In this mode, the baud rate of DeviceNet can be same as CANopen[®] (0-8). 	0
1	09-73	Reserved		
	09-74	Reserved		
*	09-75	IP Configuration of the Communication Card	0: Static IP 1: Dynamic IP (DHCP)	0
*	09-76	IP Address 1 of the Communication Card	0–255	0
*	09-77	IP Address 2 of the Communication Card	0–255	0
*	09-78	IP Address 3 of the Communication Card	0–255	0
*	09-79	IP Address 4 of the Communication Card	0–255	0
*	09-80	Address Mask 1 of the Communication Card	0–255	0
*	09-81	Address Mask 2 of the Communication Card	0–255	0
*	09-82	Address Mask 3 of the Communication Card	0–255	0
*	09-83	Address Mask 4 of the Communication Card	0–255	0
*	09-84	Getway Address 1 of the Communication Card	0-255	0

Tab. 11-10:	Communication	Parameters (3)	
-------------	---------------	----------------	--

	Pr.	Explanation	Settings	Factory Setting
*	09-85	Getway Address 2 of the Communication Card	0–255	0
~	09-86	Getway Address 3 of the Communication Card	0–255	0
~	09-87	Getway Address 4 of the Communication Card	0–255	0
~	09-88	Password for Communication Card (Low word)	0–255	0
×	09-89	Password for Communication Card (High word)	0–255	0
~	09-90	Reset Communication Card	0: No function 1: Reset, return to factory setting	0
×	09-91	Additional Setting for Commu- nication Card	 Bit 0: Enable IP filter Bit 1: Enable to write internet parameters (1bit). This bit will change to disable when it fin- ishes saving the internet parameter updates. Bit 2: Enable login password (1bit). When enter login password, this bit will be enabled. After updating the parameters of communication card, this bit will change to disable. 	0
	09-92	Status of Communication Card	Bit 0: password enable When the communication card is set with pass- word, this bit is enabled. When the password is clear, this bit is disabled.	0

Tab. 11-10: Communication Parameters (4)

11.11 Speed feedback control parameters

NOTE IM: Induction Motor; PM: Permanent Magnet Motor

Pr.	Explanation	Settings	Factor Setting
10-00	Encoder Type Selection	0: Disable 1: ABZ 2: ABZ (Delta Encoder for Delta servo motor) 3: Resolver 4: ABZ/UVW 5: MI8 single phase pulse input	0
10-01	Encoder Pulse	1–20000	600
10-02	Encoder Input Type Setting	 Disable Phase A leads in a forward run command and phase B leads in a reverse run com- mand Phase B leads in a forward run command and phase A leads in a reverse run com- mand Phase A is a pulse input and phase B is a direction input. (low input=reverse direction, high input=forward direction) Phase A is a pulse input and phase B is a direction input. (low input=rorward direction, high input=reverse direction) Single-phase input 	0
10-03	Output Setting for Frequency Division (denominator)	1–255	1
10-04	Electrical Gear at Load Side A1	1–65535	100
10-05	Electrical Gear at Motor Side B1	1–65535	100
10-06	Electrical Gear at Load Side A2	1–65535	100
10-07	Electrical Gear at Motor Side B2	1–65535	100
10-08	Treatment for Encoder/Speed Observer Feedback Fault	0: Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop	2
10-09	Detection Time of Encoder/Speed Observer Feedback Fault	0.0–10.0 sec 0: No function	1.0
10-10	Encoder/Speed Observer Stall Level	0–120 % 0: No function	115
10-11	Detection Time of Encoder/Speed Observer Stall	0.0 – 2.0 sec	0.1
10-12	Treatment for Encoder/Speed Observer Stall	0: Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop	2
10-13	Encoder/Speed Observer Slip Range	0–50 % (0: disable)	50
10-14	Detection Time of Encoder/Speed Observer Slip	0.0-10.0 sec	0.5
10-15	Treatment for Encoder/Speed Observer Stall and Slip Error	0: Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop	2

Tab. 11-11: Speed Feedback Control Parameters (1)

	Pr.	Explanation	Settings	Factory Setting
×	10-16	Pulse Input Type Setting	 Disable Phase A leads in a forward run command and phase B leads in a reverse run com- mand Phase B leads in a forward run command and phase A leads in a reverse run com- mand Phase A is a pulse input and phase B is a direction input. (L=reverse direction, H=for- ward direction). Phase A is a pulse input and phase B is a direction input. (L=forward direction, H=reverse direction). 	0
*	10-17	Electrical Gear A	1–65535	100
*	10-18	Electrical Gear B	1–65535	100
*	10-19	Positioning for Encoder Position	0–65535 pulse	0
*	10-20	Range for Encoder Position Attained	0–65535 pulse	10
~	10-21	Filter Time (PG2)	0–65.535 sec	0.100
	10-22	Speed Mode (PG2)	0: Electronic Frequency 1: Mechanical Frequency (base on pole pair)	0
	10-23	Reserved		
*	10-24	FOC&TQC Function Control	0–65535	0
*	10-25	FOC Bandwidth of Speed Observer	1.0–100.0 Hz	40.0
*	10-26	FOC Minimum Stator Frequency	0.0–10.0 % fN	2.0
*	10-27	FOC Low-pass Filter Time Constant	1–1000 ms	50
*	10-28	FOC Excitation Current Rise Time	33–100 % Tr	100
*	10-29	Top Limit of Frequency Deviation	0.00–100.00 Hz	20.00
	10-30	Resolver Pole Pair	1–50	1
~	10-31	I/F Mode, current command	0–150 % Irated (Rated current % of motor)	40
*	10-32	PM Sensorless Obeserver Bandwith for High Speed Zone	0.00–600.00 Hz	5.00
	10-33	Reserved		
*	10-34	PM Sensorless Observer Low-pass Filter Gain	0.00–655.35 Hz	1.00
*	10-35	AMR (Kp)	0.00–3.00	2.00
*	10-36	AMR (Ki)	0.00–3.00	0.20
*	10-37	PM Sensorless Control Word	0000–FFFFh	0000
~	10-38 10-39	Reserved Frequency when switch from I/F Mode to PM sensorless mode.	0.00–600.00 Hz	20.00
*	10-40	Frequency when switch from PM sensorless observer mode to V/F mode.	0.00–600.00 Hz	20.00
*	10-41	I/F mode, low pass-filter time	0.0–6.0 sec	0.2
~	10-42	Initial Angle Detection Time	0–50 ms	5
	10-43	PG card version	0–655.35	Read only
	10-44			
	_ 10-48	Reserved		
	10-49	Zero voltage time while start up	00.000-60.000 sec	00.000
	10-50	Reverse angle limit (Electrical angle)	0.00–30.00 degree	10.00
	10-51	Injection Frequency	0–2000 Hz	500
	10-52	Injection Magnitude	0.0–200.0 V	15/30
	Tah 11_1	11: Speed Feedback Control	Parameters (2)	

Tab. 11-11: Speed Feedback Control Parameters (2)

11.12 Advanced parameters

NOTE IM: Induction Motor; PM: Permanent Magnet Motor

Pr.	Explanation	Settings	Factor Settin
11-00	System Control	bit 0: Auto tuning for ASR and APR bit 1: Inertia estimate (only for FOCPG mode) bit 2: Zero servo bit 3: Dead Time compensation closed Bit 7: Selection to save or not save the frequency Bit 8: Maximum speed of point to point	0
11-01	Dor Unit of System Inortia	position control 1–65535 (256=1PU)	400
11-01	Per Unit of System Inertia ASR1/ASR2 Switch Frequency	5.00–600.00 Hz	400 7.00
11-02	ASR1 Low-speed Bandwidth	1–40 Hz (IM)/1–100 Hz (PM)	10
11-03	ASR2 High-speed Bandwidth	1–40 Hz (IM)/1–100 Hz (PM)	10
11-04	Zero-speed Bandwidth	1–40 Hz (IM)/1–100 Hz (PM)	10
11-06	ASR Control (P) 1	0–40 Hz (IM)/1–100 Hz (PM)	10
11-07	ASR Control (I) 1	0.000–10.000 sec	0.100
11-08	ASR Control (P) 2	0–40 Hz (IM)/0–100 Hz (PM)	10
11-09	ASR Control (I) 2	0.000–10.000 sec	0.100
11-10	P Gain of Zero Speed	0–40 Hz (IM)/0–100 Hz (PM)	10
11-11	I Gain of Zero Speed	0.000–10.000 sec	0.100
11-12	Gain for ASR Speed Feed Forward	0–150 %	0
11-13	PDFF Gain	0–200 %	30
11-14	Low-pass Filter Time of ASR Output	0.000-0.350 sec	0.008
11-15	Notch Filter Depth	0–20 db	0
11-16	Notch Filter Frequency	0.00–200.00 Hz	0.0
11-17	Forward Motor Torque Limit	0–500 %	500
11-18	Forward Regenerative Torque Limit	0–500 %	500
11-19	Reverse Motor Torque Limit	0–500 %	500
11-20	Reverse Regenerative Torque Limit	0–500 %	500
11-21	Gain Value of Flux Weakening Curve for Motor 1	0–200 %	90
11-22	Gain Value of Flux Weakening Curve for Motor 2	0–200 %	90
11-23	Speed Response of Flux Weakening Area	0–150 %	65
11-24	APR Gain	0.00–40.00 Hz (IM)/0–100.00 Hz (PM)	10.00
11-25	Gain Value of APR Feed Forward	0–100	30
11-26	APR Curve Time	0.00–655.35 sec	3.00
11-27	Max. Torque Command	0–500 %	100
11-28	Source of Torque Offset	0: No function 1: Analog signal input (Pr.03-00–03-02) 2: Pr.11-29 3: Control by external terminal (Pr.11-30–11-32)	0
44.00	T 011 10 11	100, 100, 0	
11-29	Torque Offset Setting	-100–100 %	0.0

Tab. 11-12: Advanced Parameters (1)

	Pr.	Explanation	Settings	Factory Setting
×	11-30	High Torque Offset	-100–100 %	30.0
×	11-31	Middle Torque Offset	-100–100 %	20.0
×	11-32	Low Torque Offset	-100–100 %	10.0
N	11-33	Source of Torque Command	0: Digital keypad 1: RS-485 communication (Pr.11-34) 2: Analog input (Pr.03-00) 3: CANopen [®] 4: Reserved 5: Communication extension card	0
×	11-34	Torque Command	-100.0–+100.0 % (Pr.11-27*11-34)	0
×	11-35	Filter Time of Torque Command	0.000-1.000 sec	0.000
	11-36	Speed Limit Selection	 Set by Pr.11-37 (Forward speed limit) and Pr.11-38 (Reverse speed limit) Set by Pr.11-37,11-38 and Pr.00-20 (Source of Master Frequency Command) Set by Pr.00-20 (Source of Master Frequency Command). 	0
×	11-37	Forward Speed Limit (torque mode)	0–120 %	10
×	11-38	Reverse Speed Limit (torque mode)	0–120 %	10
	11-39	Zero Torque Command Mode	0: Torque mode 1: Speed mode	0
N	11-40	Command Source of Point-to- Point Position Control	0: External terminal 1: Reserved 2: RS485 3: CAN 4: PLC 5: Communication card	0
	11-41	Reserved		
×	11-42	System Control Flags	0000–FFFFh	0000
×	11-43	Max. Frequency of Point- to- Point Position Control	0.00–600.00 Hz	10.00
×	11-44	Accel. Time of Point-to Point Position Control	0.00-655.35 sec	1.00
×	11-45	Decel. Time of Point-to Point Position Control	0.00-655.35 sec	3.00

Tab. 11-12: Advanced Parameters (2)

12 Description of Parameter Settings

12.1 Drive parameters

NOTE *i* This parameter can be set during operation.

00-00	Identity cod	e of the AC motor drive	
			Factory setting: #.#
	Settings	Read only	
00-01	Display AC	motor drive rated current	

Factory setting: #.#

- Settings Read only
- Pr. 00-00 displays the identity code of the AC motor drive. Using the following table to check if Pr. 00-01 setting is the rated current of the AC motor drive. Pr. 00-01 corresponds to the identity code Pr. 00-00.
- The factory setting is the rated current for normal duty. Please set Pr. 00-16 to 1 to display the rated current for the heavy duty.

				230 V s	eries					
Frame		ļ	4			В			С	
kW	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22
HP	1.0	2.0	3.0	5.0	7.5	10	15	20	25	30
Pr. 00-00	4	6	8	10	12	14	16	18	20	22
Rated current for heavy duty (A)	4.8	7.1	10	16	24	31	47	62	71	86
Rated current for normal duty (A)	5	8	11	17	25	33	49	65	75	90

Frame	[)		Е		F
kW	30	37	45	50	75	90
HP	40	50	60	75	100	125
Pr. 00-00	24	26	28	30	32	34
Rated current for heavy duty (A)	114	139	171	204	242	329
Rated current for normal duty (A)	120	146	180	215	255	346

Tab. 12-1: Rated current of the frequency inverters (200 V series)

				40	60 V se	ries						
Frame			ļ	4				В			С	
kW	0.75	1.5	2.2	3.7	4.0	5.5	7.5	11	15	18.5	22	30
HP	1	2	3	5	5	7.5	10	15	20	25	30	40
Pr. 00-00	5	7	9	11	93	13	15	17	19	21	23	25
Rated current for heavy duty (A)	2.9	3.8	5.7	8.1	9.5	11	17	23	30	36	43	57
Rated current for normal duty (A)	3.0	4.0	6.0	9.0	10.5	12	18	24	32	38	45	60

Frame	F	0)		-		-		G		н	
Frame	L	0	_	,		=			<u> </u>	9		п	j .
kW	37	45	55	75	90	110	132	160	185	220	280	315	355
HP	50	60	75	100	125	150	175	215	250	300	375	425	475
Pr. 00-00	27	29	31	33	35	37	39	41	43	45	47	49	51
Rated current for heavy duty (A)	69	86	105	143	171	209	247	295	352	437	523	585	649
Rated current for normal duty (A)	73	91	110	150	180	220	260	310	370	460	550	616	683

Tab. 12-2:Rated current of the frequency inverters (400 V series)

00-02 Parameter reset

Factory setting: 0

Settings	0: No Function
	1: Write protection for parameters
	5: Reset KWH display to 0
	6: Reset PLC (including CANopen master Index)
	7: Reset CANopen Index (Slave)
	8: Reserve
	9: All parameters are reset to factory settings (base frequency is 50 Hz)
	10: All parameters are reset to factory settings (base frequency is 60 Hz)

- When it is set to 1, all parameters are read only except Pr. 00-02–00-08 and it can be used with password setting for password protection. It needs to set Pr. 00-02 to 0 before changing other parameter settings.
- When it is set to 9 or 10: all parameters are reset to factory settings. If password is set in Pr. 00-08, input the password set in Pr. 00-07 to reset to factory settings.
- When it is set to 5, KWH display value can be reset to 0 even when the drive is operating. Pr. 05-26, 05-27, 05-28, 05-29, 05-30 reset to 0.
- When it is set to 6: clear internal PLC program (includes the related settings of PLC internal CANopen master)
- When it is set to 7: reset the related settings of CANopen slave.
- When it is set to 6, 7, 9, 10, please re-power the motor drive after setting.

	Factory settin
Settings	0: Display the frequency command (F)
	1: Display the actual output frequency (H)
	2: Display user define (U)
	3: Output current (A)
•	meter determines the start-up display page after power is applied to the dined choice display according to the setting in Pr. 00-04.
N Conten	t of multi-function display
	Factory settin
Settings	0: Display output current (A) (Unit: Amps)
	1: Display counter value (c) (Unit: CNT)
	2: Display actual output frequency (H.) (Unit: Hz)
	3: Display DC-BUS voltage (v) (Unit: Vdc)
	4: Display output voltage (E) (Unit: Vac)
	5: Display output power angle (n) (Unit: deg)
	6: Display output power in kW (P) (Unit: Kw)
	7: Display actual motor speed rpm (r = 00: positive speed; -00 negative spe
	(Unit: rpm)
	8: Display estimate output torque % (t = 00: positive torque; -00 negative
	torque) (t) ⁽⁵⁾ (Unit: %)
	9: Display PG feedback (G) (refer to Note 1) (Unit: PLS)
	10: Display PID feedback (b) (Unit: %)
	11: Display AVI in % (1.), 0–10 V/4-20 mA/0-20 mA corresponds to 0–10 (Refer to Note 2) (Unit: %)
	12: Display ACI in % (2.), 4–20 mA/0–10 V/0-20 mA corresponds to 0–
	100 % (Refer to Note 2) (Unit: %)
	13: Display AUI in % (3.), -10 V–10 V corresponds to -100–100 % (Refer to Note 2) (Unit: %)
	14: Display the temperature of IGBT (i.) (Unit: °C)
	15: Display the temperature of capacitance (c.) (Unit: °C)
	16: The status of digital input (ON/OFF) refer to Pr. 02-12 (i) (Refer to Note
	17: Display digital output status ON/OFF (Pr. 02-18) (o) (refer to Note 4)
	18: Display the multi-step speed that is executing (S)
	19: The corresponding CPU pin status of digital input (d) (refer to Note 3
	20: The corresponding CPU pin status of digital output (d) (refer to Note
	21: Actual motor position (PG1 of PG card). When the motor direction
	changes or the drive stops, the counter will start from 0 (display valu
	restarts counting from 0) (Max. 65535) (P.)
	22: Pulse input frequency (PG2 of PG card) (S.)
	23: Pulse input position (PG2 of PG card) (max. 65535) (q.)
	24: Position command tracing error (E.)
	25: Overload counting (0.00–100.00 %) (o.) (Refer to Note 6) (Unit: %)
	26: GFF Ground Fault (G.) (Unit: %)
	27: DC Bus voltage ripple (r.) (Unit: %)
	28: Display PLC register D1043 data (C) display in hexadecimal
	29: Display PM motor pole section (EMC-PG01U application) (4.)

 30: Display output of user defined (U)
 31: H page x 00-05 Display user Gain(K)
32: Number of actual motor revolution during operation (PG card plug in and Z phase signal input) (Z.)
 33: Motor actual position during operation (when PG card is connected) (q)
 34: Operation speed of fan (F.) (Unit: %)
35: Control Mode display: 0= Speed control mode (SPD), 1= torque control mode (TQR) (t.)
36: Present operating carrier frequency of drive (Hz) (J.)
 37: Reserved
 38: Display drive status (6.) (Refer to Note 7)
39: Display of estimated output torque, positive and negative (t = 00: positive torque; -00 negative torque) (C.) (unit: Nm)
 40: Torque command (L.) (Unit: %)
41: KWH display (J) (Unit: KWH)
 42: PID reference (h.) (Unit: %)
 43: PID offset (o.) (Unit: %)
 44: PID output frequency (b.) (Unit: Hz)
 45: Hardware ID

- This parameter determines the start-up display page after power is applied to the drive. User defined choice display according to the setting in Pr. 00-04.
- When Pr. 10-01 is set to 1000 and Pr. 10-02 is set to 1/2, the display range for PG feedback will be from 0 to 4000. When Pr. 10-01 is set to 1000 and Pr. 10-02 is set to 3/4/5, the display range for PG feedback will be from 0 to 1000. Home position: If it has Z phase, Z phase will be regarded as home position. Otherwise, home position will be the encoder start up position.
- It can display negative values when setting analog input bias (Pr. 03-03-03-10).
 Example: assume that AVI input voltage is 0V, Pr. 03-03 is 10.0 % and Pr. 03-07 is 4 (Serve bias as the center).
- Example: If REV, MI1 and MI6 are ON, the following table shows the status of the terminals.
 0: OFF, 1: ON

Terminal	MI15	MI14	MI13	MI12	MI11	MI10	MI8	MI7	MI6	MI5	MI4	MI3	MI2	MI1	REV	FWD
Status	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0

MI10-MI15 are the terminals for extension cards (Pr. 02-26-02-31).

If REV, MI1 and MI6 are ON, the value is 0000 0000 1000 0110 in binary and 0086h in HEX. When Pr. 00-04 is set to "16" or "19", it will display "0086h" with LED U is ON on the keypad KPC-CE01. The setting 16 is the status of digital input by Pr. 02-12 setting and the setting 19 is the corresponding CPU pin status of digital input, the FWD/ REV action and the three-wire MI are not controlled by Pr. 02-12. User can set to 16 to monitor digital input status and then set to 19 to check if the wire is normal.

Assume that RY1: Pr. 02-13 is set to 9 (Drive ready). After applying the power to the , if there is no other abnormal status, the contact will be ON. The display status will be shown as follows. N.O. switch status:

Terminal	Reserved			Reserved			Reserved		MO2 MO1 Re- served RY2 RY1								
Status	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Assume that RY1: Pr. 02-13 is set to 9 (Drive ready). After applying the power to the AC motor drive, if there is no other abnormal status, the contact will be ON. The display status will be shown as follows.

N.O. switch statusAt the meanwhile, if Pr. 00-04 is set to 17 or 20, it will display in hexadecimal "0001h" with LED U is ON on the keypad. The setting 17 is the status of digital output by Pr. 02-18 setting and the setting 20 is the corresponding CPU pin status of digital output. User can set 17 to monitor the digital output status and then set to 20 to check if the wire is normal.

- ⁽⁵⁾ Setting 8: 100 % means the motor rated torque. Motor rated torque = (motor rated power $x60/2\pi$)/motor rated speed
- ⁽⁶⁾ If Pr. 00-04 = 25, when display value reaches 100.00 %, the drive will show "oL" as an overload warning.
- ⑦ If Pr. 00-04 = 38,
 - Bit 0: The drive is running forward.
 - Bit 1: The drive is running backward.
 - Bit 2: The drive is ready.
 - Bit 3: Errors occurred on the drive.
 - Bit 4: The drive is running.
 - Bit 5: Warnings on the drive.

00-05 X Coefficient gain in actual output frequency

Factory setting: 0

Settings 0–160.00

This parameter is to set coefficient gain in actual output frequency. Set Pr. 00-04= 31 to display the calculation result on the screen (calculation = output frequency * Pr. 00-05).

00-06 Software version

Settings Read only

00-07

✓ Parameter protection password Input

Factory setting: 0

Factory setting: #.#

Settings	1–9998, 10000–65535
Display	0–3 (the times of password attempts)

■ This parameter allows user to enter their password (which is set in Pr. 00-08) to unlock the parameter protection and to make changes to the parameter.

- Pr. 00-07 and Pr. 00-08 are used to prevent the personal mis-operation.
- When the user have forgotten the password, clear the setting by input 9999 and press ENTER key, then input 9999 again and press Enter within 10 seconds. After decoding, all the settings will return to factory setting.

00-08

✓ Parameter protection password setting

	Factory setting: 0
Settings	1–9998, 10000–65535
	0: No password protection/password is entered correctly (Pr. 00-07)
	1: Password has been set

- To set a password to protect your parameter settings. In the first time, password can be set directly. After setting, the value of 00-08 will become 1, which means password protection is activated. When the password is set, if any parameter setting needs to be changed, be sure to enter correct password in 00-07, and then the password will be inactivated temporarily with 00-08 changing to 0. At this time, parameters setting can be changed. After setting, re-power the motor drive, and password will be activated again.
- To cancel the password protection, after entering correct password in 00-07, 00-08 also needs to be set as 0 again to inactive password protection permanently. If not, password protection will be active after motor drive re-power.
- The keypad copy function will work normally only when the password protection is inactivated temporarily or permanently, and password set in 00-08 will not be copied to keypad. So when copying parameters from keypad to motor drive, the password need to be set manually again in the motor drive to active password protection.

Password Decode Flow Chart

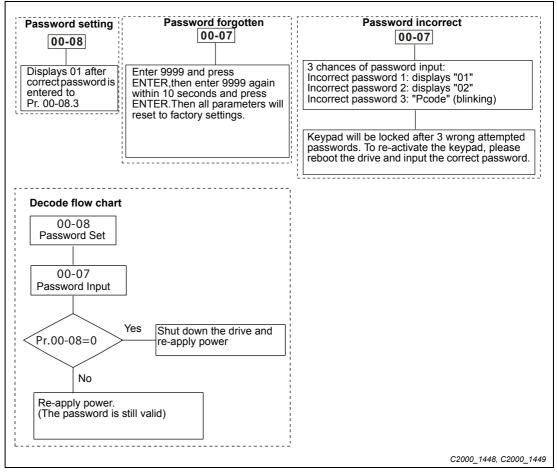


Fig. 12-1: Password decode flow chart

 00-09
 Reserved

 00-10
 ✓ Control mode

 Factory setting: 0

 Settings
 0: Speed mode

 1: Point-to-point position control

 2: Torque mode

 3: Home mode

 This parameter determines the control mode of C2000 series AC motor drive.

00-11 Control of Speed Mode

Factory setting: 0

Settings	0: VF (IM V/f control)			
	1: VFPG (IM V/f control+ encoder)			
	2: SVC (IM sensorless vector control)			
	3: FOCPG (IM FOC vector control+ encoder)			
	4: FOCPG (PM FOC vector control + encoder)			
	5: FOC Sensorless (IM field oriented sensorless vector control)			
	6: PM Sensorless (PM field oriented sensorless vector control)			
7: IPM Sensorless (Interior PM field oriented sensorless vector cor				

- This parameter determines the control method of the AC motor drive:
- 0: (IM V/f control): user can design proportion of V/f as required and can control multiple motors simultaneously.
- 1: (IM V/f control + encoder): user can use optional PG card with encoder for the closedloop speed control.
- 2: (IM Sensorless vector control): get the optimal control by the auto-tuning of motor parameters.
- 3: (IM FOC vector control+ encoder): besides torque increases, the speed control will be more accurate (1:1000).
- 4: (PM FOC vector control + encoder): besides torque increases, the speed control will be more accurate (1:1000).
- 5: FOC Sensorless: IM field oriented sensorless vector control
- 6: PM Sensorless (PM field oriented sensorless vector control)
- 7: IPM Sensorless (Interior PM field oriented sensorless vector control)

■ When 00-10 = 0, and set Pr. 00-11 to 0, the V/F control diagram is shown as follows:

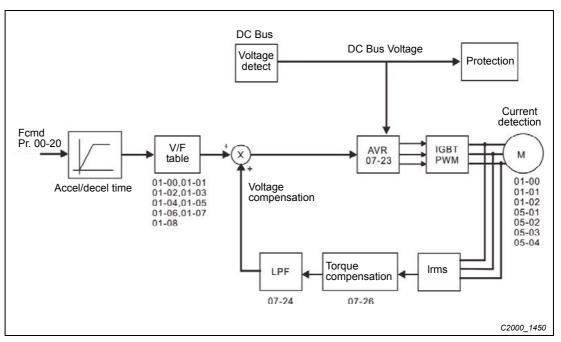


Fig. 12-2: V/F control diagramm

■ When 00-10 = 0, and set Pr. 00-11 to 1, the V/F control + encoder diagram is shown as follows:

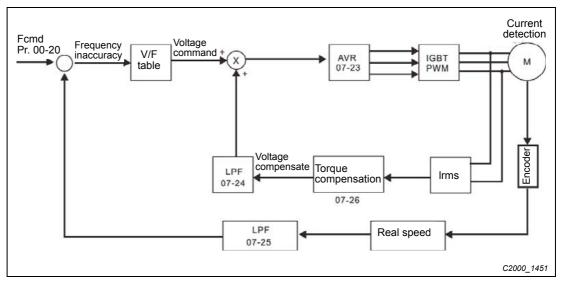
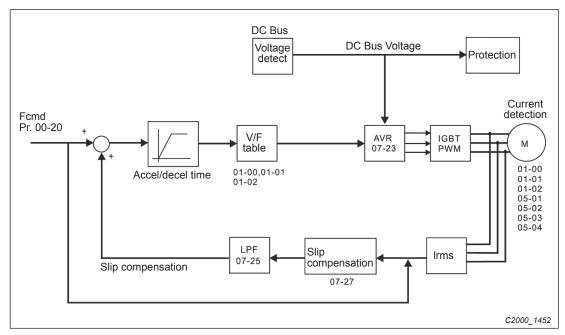
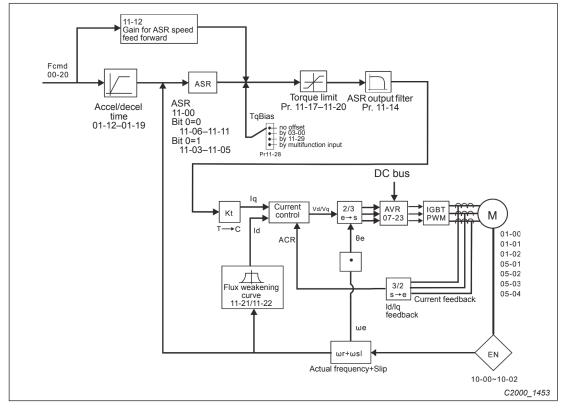
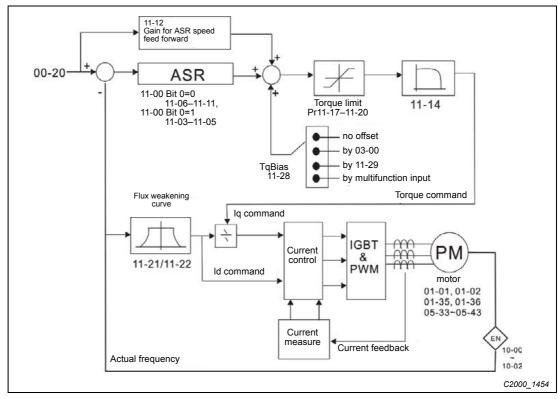



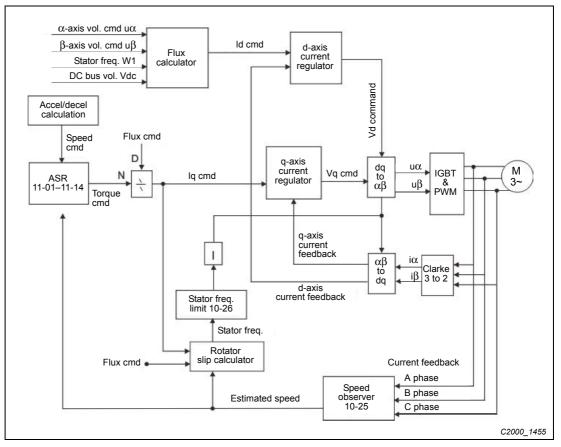
Fig. 12-3: V/F control and encoder diagram

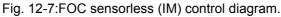
■ When 00-10 = 0, and set Pr. 00-11 to 2, the sensorless vector control diagram is shown as follows:

Fig. 12-4: Sensorless vector control diagramm

■ When 00-10 = 0, and set Pr. 00-11 to 3, the IM FOCPG control diagram is shown as follows:

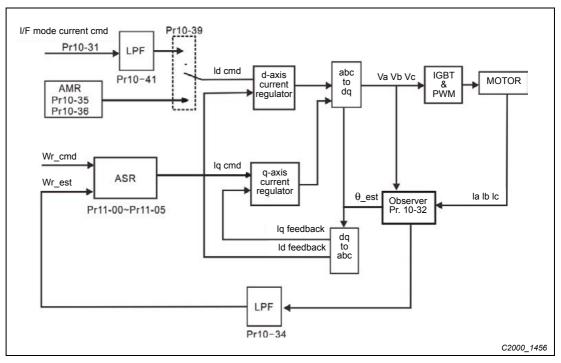




Fig. 12-5: IM FOCPG control diagram



■ When 00-10 = 0, and set Pr. 00-11 to 4, the PM FOCPG control diagram is shown as follows:

Fig. 12-6: PM FOCPG control diagram



When 00-10 = 0, and set Pr. 00-11 to 6, PM FOC sensorless control diagram is shown as follows:

When 00-10 = 0, and set Pr. 00-11 to 7, IPM FOC sensorless control diagram is shown as follows:

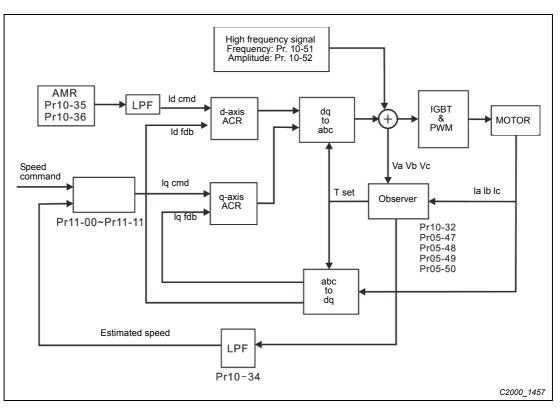


Fig. 12-9: IPM FOC sensorless control diagram

.

00-12 Point to point position control

Drive parameters

Factory setting: 0

Settings	0: Incremental Type	
	1: Absolute Type	

■ Pr. 00-12 = 0 is incremental type P2P; Pr. 00-12 = 1 is absolute type P2P

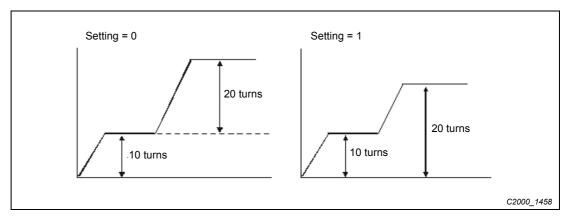


Fig. 12-10:Incremental and absolute type point to point control

00-13 Control of torque mode

		Factory setting: 0
Settings	0: TQCPG (IM Torque control + encoder)	
	1: TQCPG (PM Torque control + encoder)	
	2: TQC Sensorless (IM sensorless torque control)	

■ TQCPG (Pr. 00-13=0) control diagram is shown in the following:

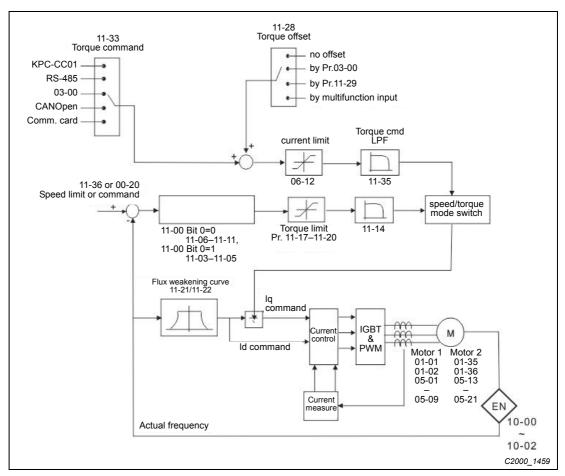


Fig. 12-11: TQCPG control diagram

- 10-28 α -axis vol. cmd u α Exciting β -axis vol. cmd u β Flux Fast ld cmd current Vd cmd d-axis Calculator Flux Stator freq. W1 Establish current DC Bus vol. Vdc regulator Flux cmd Torque 11-36 or 00-20 cmd Speed limit or command uα IGBT q-axis dq to la cmd Vg cmd M P current uβ & PWM LPF 3– Controller αβ regulator Estimated Torque 11-01~11-14 speed Current Low-pass Filter 1 PI Controller iα αβ Clarke 11-01~11-14 10-24 to dq iβ 3 to 2 Stator freq limit 10-26 Current feedback Stator freq. A phase Speed Rotator 1*m B phase observer 10-25 m slip calculator w C phase C2000_1460
- TQC Sensorless (Pr. 00-13 = 2) control diagram is shown in the following:

00-14	Reserved
00-15	Reserved
00-16	Load selection

		Factory setting: 0
Settings	0: Normal load	
	1: Heavy load	

- Normal duty: over load ability is 160 % rated output current in 3 second. Please refer to Pr. 00-17 for the setting of carrier. Refer to chapter 9 (specifications) or Pr. 00-01 for the rated current.
- Heavy duty: over load ability is 180 % rated output current in 3 second. Please refer to Pr. 00-17 for the setting of carrier wave. Refer to chapter 9 (specifications) or Pr. 00-01 for the rated current.
- Pr. 00-01 changes as the setting of Pr. 00-16 changes. The default setting and maximum setting range of Pr. 06-03, 06-04 will change as the setting of Pr. 00-16 changes.
- In Normal Duty, the default setting of 06-03, 06-04 is 120 %, maximum setting range is 160 %. When DC voltage is higher than 700 V DC (460 V series) or 350 V (230 V series), then the maximum setting range will be 145 %
- In Heavy Duty, the default setting of 06-03, 06-04 is 150 %, maximum setting range is 180 %. When DC voltage is higher than 700 V DC (460 V series) or 350 V (230 V series), then the maximum setting range will be 165 %

00-17 Carrier frequency

Factory setting: Table below

Settings 2–15 kHz

■ This parameter determinates the PWM carrier frequency of the AC motor drive.

230 V series							
Models	0.75-11 kW	15-37 kW	45-90 kW				
Setting range	02–15 kHz	02–10 kHz	02–09 kHz				
Normal duty factory setting	8 kHz	6 kHz	4 kHz				
Heavy duty factory setting		2 kHz					

460 V series							
Models	0.75-15 kW	18.5-55 kW	75-450 kW				
Setting range	02–15 kHz	02–10 kHz	02–09 kHz				
Normal duty factory setting	8 kHz	6 kHz	4 kHz				
Heavy duty factory setting		2 kHz					

Tab. 12-3: Adjustment of the PWM carrier frequency

Carrier frequency	Acoutic noise	Electromagnetic noise or leakage current	Heat dissipation	Current wave
1 kHz	Significant	Minimal	Minimal	
8 kHz		↑	1	
15 kHz	Minimal	Significant	Significant	

Tab. 12-4: Impact of the PWM carrier frequency

- From the table, we see that the PWM carrier frequency has a significant influence on the electromagnetic noise, AC motor drive heat dissipation, and motor acoustic noise. Therefore, if the surrounding noise is greater than the motor noise, lower the carrier frequency is good to reduce the temperature rise. Although it is quiet operation in the higher carrier frequency, the entire wiring and interference resistance should be considerate.
- When the carrier frequency is higher than the factory setting, it needs to protect by decreasing the carrier frequency. See Pr. 06-55 for the related setting and details.

00-18 Reserved

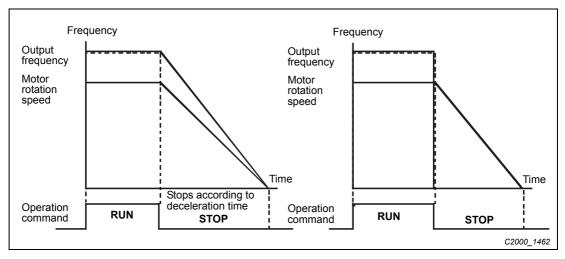
PLC comm	and mask
	Factory setting: Read only
Settings	Bit 0: Control command by PLC force control
Gettings	Bit 1: Frequency command by PLC force control
	Bit 2: Position command by PLC force control
	Bit 3: Torque command by PLC force control
	Bit 5. Torque command by FEC force control
This parar	meter determines if frequency command or control command is occupied by PLC
•	
Source of t	he master frequency command (AUTO)
Sottings	0: Digital keypad
Settings	1: RS-485 serial communication
	2: External analog input (Pr. 03-00) 3: External UP/DOWN terminal
	4: Pulse input without direction command (Pr. 10-16 without direction)
	5: Pulse input with direction command (Pr.10-16)
	6: CANopen communication card
	7: Reserved
	8: Communication card (no CANopen card)
It is used	to set the source of the master frequency in AUTO mode.
	and 00-21 are for the settings of frequency source and operation source in AUTO
	00-30 and 00-31 are for the settings of frequency source and operation source
in HAND	mode. The AUTO/HAND mode can be switched by the keypad KPC-CC01 or
multi-func	tion input terminal (MI).
	ry setting of frequency source or operation source is for AUTO mode. It will return
	mode whenever power on again after power off. If there is multi-function input
	sed to switch AUTO/HAND mode. The highest priority is the multi-function input
	When the external terminal is OFF, the drive won't receive any operation signal
Source of t	he operation command (AUTO)
	Factory setting: 0
Settings	0: Digital keypad
	1: External terminals. Keypad STOP disabled.
	2: RS-485 serial communication. Keypad STOP disabled.
	3: CANopen card
	Settings This parar Source of t Settings It is used Pr. 00-20 mode. Pr. in HAND multi-func The factor to AUTO terminal u terminal. and can't Source of t

4: Reserved

5: Communication card (not includes CANopen card)

■ It is used to set the source of the operation frequency in AUTO mode.

When the operation command is controlled by the keypad KPC-CC01, keys RUN, STOP and JOG (F1) are valid.



Factory setting: 0

00-22 × Stop method

		r dotory setting. o
Settings	0: Ramp to stop	
	1: Coast to stop	

The parameter determines how the motor is stopped when the AC motor drive receives a valid stop command.

- Ramp to stop: the AC motor drive decelerates from the setting of deceleration time to 0 or minimum output frequency (Pr. 01-07) and then stop.
- **Coast to stop:** the AC motor drive stops the output instantly upon a STOP command and the motor free runs until it comes to a complete standstill.
 - (1) It is recommended to use "ramp to stop" for safety of personnel or to prevent material from being wasted in applications where the motor has to stop after the drive is stopped. The deceleration time has to be set accordingly.
 - (2) If the motor free running is allowed or the load inertia is large, it is recommended to select "coast to stop". For example, blowers, punching machines and pumps.

00-23 × Control of motor direction

Factory setting: 0

Settings	0: Enable forward/reverse		
	1: Disable reverse		
	2: Disable forward		

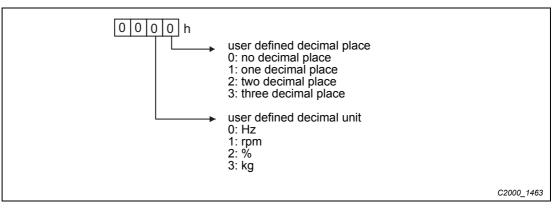
This parameter enables the AC motor drive to run in the forward/reverse direction. It may be used to prevent a motor from running in a direction that would consequently injure the user or damage the equipment.

00-24 Memory of frequency command

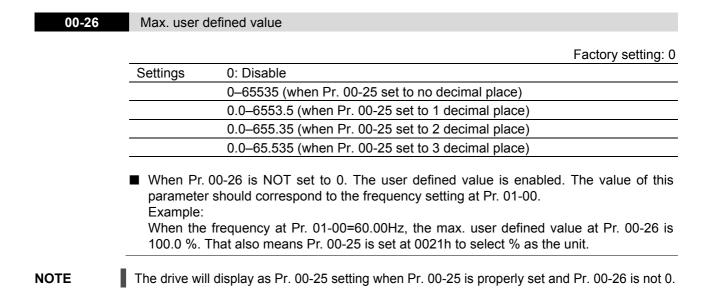
Factory setting: Read only

Settings Read only

■ If keypad is the source of frequency command, when Lv or fault occurs the present frequency command will be saved in this parameter.


00-25 N User defined characteristics

		Factory setting: 0
Settings	Bit 0–3: user defined decimal place	
	0000b: no decimal place	
	0001b: one decimal place	
	0010b: two decimal place	
	0011b: three decimal place	
	Bit 4–15: user defined unit	
	000xh: Hz	
	001xh: rpm	
	002xh: %	
	003xh: kg	
	004xh: m/s	
	005xh: kW	
	006xh: HP	
	007xh: ppm	
	008xh: 1/m	
	009xh: kg/s	
	00Axh: kg/m	
	00Bxh: kg/h	
	00Cxh: lb/s	
	00Dxh: lb/m	
	00Exh: lb/h	
	00Fxh: ft/s	
	010xh: ft/m	
	011xh: m	
	012xh: ft	
	013xh: degC	
	014xh: degF	
	015xh: mbar	
	016xh: bar	
	017xh: Pa	
	018xh: kPa	
	019xh: mWG	
	01Axh: inWG	
	01Bxh: ftWG	
	01Cxh: psi	
	01Dxh: atm	
	01Exh: L/s	
	01Fxh: L/m	
	020xh: L/h	



021xh: m3/s	
022xh: m3/h	
023xh: GPM	
024xh: CFM	
xxxxh: Hz	

- Bit 0–3: Control F page, unit of user defined value (Pr. 00-04 = d10, PID feedback) and the decimal point of Pr. 00-26 which supports up to 3 decimal points.
- Bit 4–15: Control F page, unit of user defined value (Pr. 00-04 = d10, PID feedback) and the display units of Pr. 00-26.

00-27 User defined value

Settings

Read only

■ Pr. 00-27 will show user defined value when Pr. 00-26 is not set to 0.

- User defined function is valid when:
 - 1. Pr. 00-20 is set to digital keypad control
 - 2. RS-285 communication input control.
 - 3. PID function enable

00-28 Reserved

00-29 LOCAL/REMOTE selection

Factory setting: 0

Settings	0: Standard HOA function
	1: Switching Local/Remote, the drive stops
	Switching Local/Remote, the drive runs as the REMOTE setting for fre- quency and operation status
	 Switching Local/Remote, the drive runs as the LOCAL setting for fre- quency and operation status
	4: Switching Local/Remote, the drive runs as LOCAL setting when switch to Local and runs as REMOTE setting when switch to Remote for frequency and operation status.

- The factory setting of Pr. 00-29 is 0 (standard Hand-Off-Auto function). The AUTO frequency and source of operation can be set by Pr. 00-20 and Pr. 00-21, and the HAND frequency and source of operation can be set by Pr. 00-30 and Pr. 00-31. AUTO/HAND mode can be selected or switched by using digital keypad (KPC-CC01) or setting multi-function input terminal MI = 41, 42.
- When external terminal MI is set to 41 and 42 (AUTO/HAND mode), the settings Pr. 00-29 = 1,2,3,4 will be disabled. The external terminal has the highest priority among all command, Pr. 00-29 will always function as Pr. 00-29 = 0, standard HOA mode.
- When Pr. 00-29 is not set to 0, Local/Remote function is enabled, the top right corner of digital keypad (KPC-CC01) will display "LOC" or "REM" (the display is available when KPC-CC01 is installed with firmware version higher than version 1.021). The LOCAL frequency and source of operation can be set by Pr. 00-20 and Pr. 00-21, and the REMOTE frequency and source of operation can be set by Pr. 00-30 and Pr. 00-31. Local/Remote function can be selected or switched by using digital keypad (KPC-CC01) or setting external terminal MI = 56. The AUTO key of the digital keypad now controls for the REMOTE function and HAND key now controls for the LOCAL function.
- When MI is set to 56 for LOC/REM selection, if Pr. 00-29 is set to 0, then the external terminal is disabled.
- When MI is set to 56 for LOC/REM selection, if Pr. 00-29 is not set to 0, the external terminal has the highest priority of command and the ATUO/HAND keys will be disabled.

00-30

Source of the master frequency command (HAND)

Factory setting: 0

1: RS-485 serial communication
2: External analog input (Pr. 03-00)
3: External UP/DOWN terminal
4: Pulse input without direction command (Pr. 10-16 without direction)
5: Pulse input with direction command (Pr. 10-16)
6: CANopen communication card
7: Reserved
8: Communication card (no CANopen card)

■ It is used to set the source of the master frequency in HAND mode.

00-31

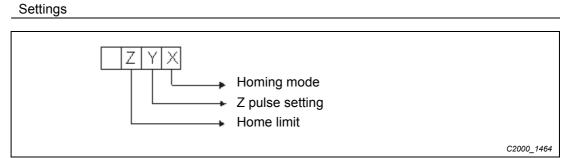
Source of the operation command (HAND)

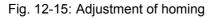
Factory setting: 0

0: Digital keypad
1: External terminals. Keypad STOP disabled.
2: RS-485 serial communication. Keypad STOP disabled.
3: CANopen communication card
4: Reserved
5: Communication card (not include CANopen card

- It is used to set the source of the operation frequency in HAND mode.
- Pr. 00-20 and 00-21 are for the settings of frequency source and operation source in AUTO mode. Pr. 00-30 and 00-31 are for the settings of frequency source and operation source in HAND mode. The AUTO/HAND mode can be switched by the keypad KPC-CC01 or multi-function input terminal (MI).
- The factory setting of frequency source or operation source is for AUTO mode. It will return to AUTO mode whenever power on again after power off. If there is multi-function input terminal used to switch AUTO/HAND mode. The highest priority is the multi-function input terminal. When the external terminal is OFF, the drive won't receive any operation signal and can't execute JOG.

00-32	💉 Digital	Keypad STOP Function	
			Factory setting: 0
	Settings	0: STOP key disable	
		1: STOP key enable	
		1: STOP key enable	

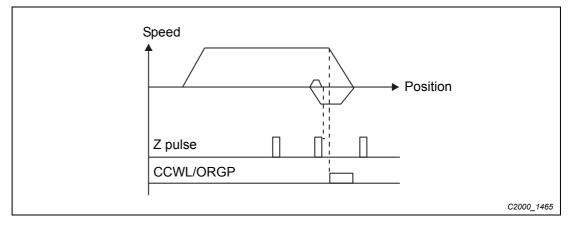

■ This parameter works when the source of operation command is not digital keypad (Pr. 00-21 ≠ 0). When Pr. 00-21 = 0, the stop key will not follow the setting of this parameter.

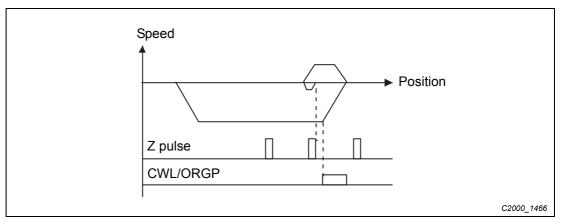

00-33	
_	Reserved
00-39	

00-40 H

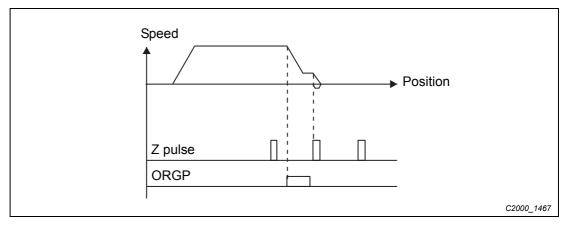
Homing mode

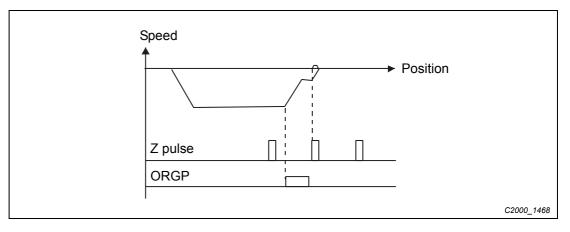
Factory setting: 0000h

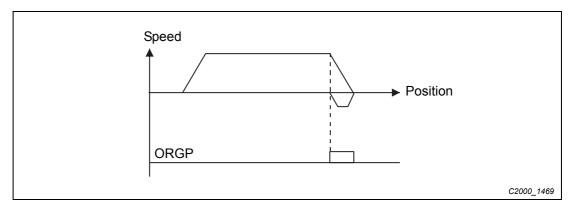


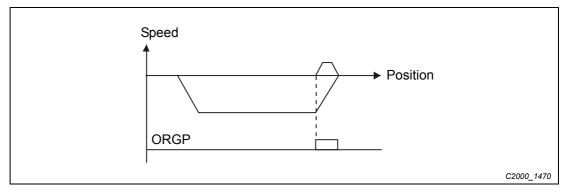

Х	0: Forward run to home. Set PL forward limit as check point.
	1: Reverse run (CCW) to home. Set NL reverse limit (CCWL) as check point
	2: Forward run to home. Set ORG: OFF \rightarrow ON as check point.
	3: Reverse to home. Set ORG: OFF \rightarrow ON as check point.
	4: Forward run and search for Z-pulse as check point.
	5: Forward run and search for Z-pulse as check point.
	6: Forward run to home. Set ORG: ON \rightarrow OFF as check point.
	7: Reverse run to home. Set ORG: ON \rightarrow OFF as check point.
	8: Define current position as home.
Y	Set X to 0, 1, 2, 3, 6, 7
	0: reverse run to Z pulse
	1: continue forward run to Z pulse
	2: Ignore Z pulse
Z	When home limit is reached, set X to 2, 3, 4, 5, 6, 7 first.
	0: display error
	1: reverse the direction

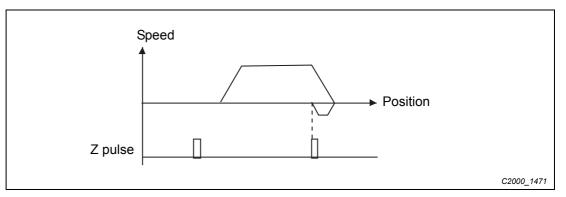
■ Homing action is control by Pr. 00-40, 00-41, 00-42 and 02-01–02-08.

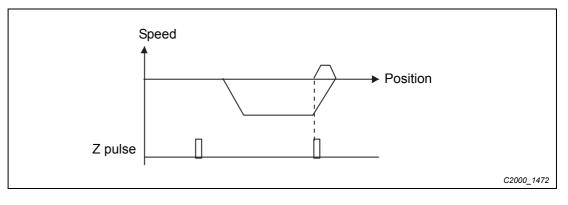

1. When Y = 0, X = 0 or Y = 0, X = 2

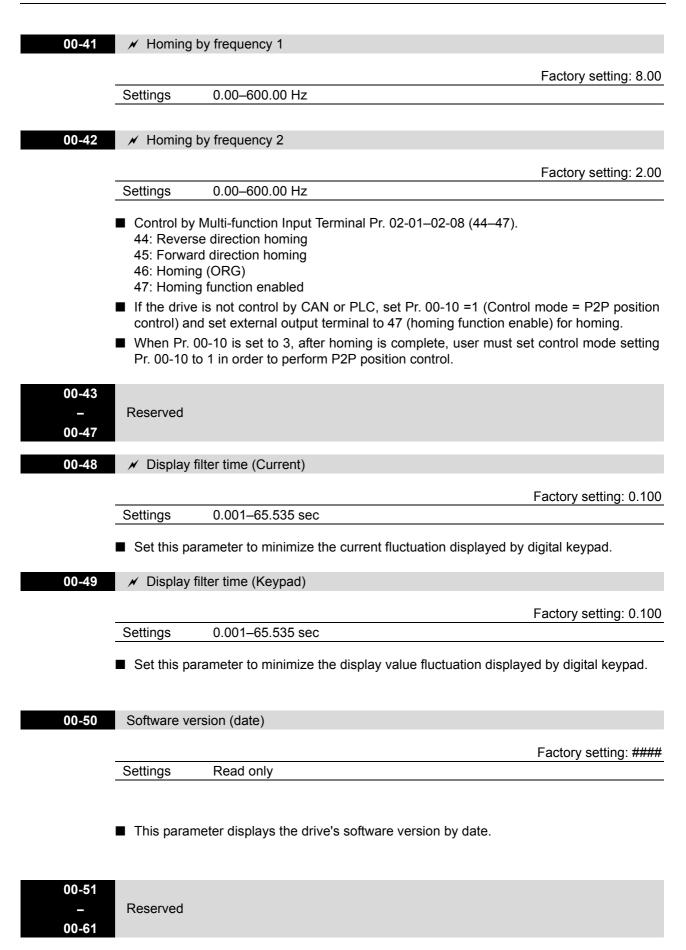

2. When Y = 0, X = 1 or Y = 0, X = 3


3. When Y = 1, X = 2


4. When Y = 1, X = 3


5. When Y = 2, X = 2


6. When Y = 2, X = 3


7. When Y = 2, X = 4

8. When Y = 2, X = 5

12.2 Group 1: Basic parameters

NOTE This parameters marked with \checkmark can be set during operation.

01-00	Maximum Output Frequency
01-00	Maximum Output Frequency
	Factory setting: 60.00/ 50.00
	Settings 00.00–600.00 Hz
	This parameter determines the AC motor drive's Maximum Output Frequency. All the AC motor drive frequency command sources (analog inputs 0 to +10 V, 4 to 20 mA, 0 to 20 mA and ±10 V) are scaled to correspond to the output frequency range.
01-01	Output Frequency of Motor 1 (base frequency and motor rated frequency)
01-35	Output Frequency of Motor 2 (base frequency and motor rated frequency)
	Factory setting: 60.00/ 50.00
	Settings 0.00–600.00 Hz
	This value should be set according to the rated frequency of the motor as indicated on the motor nameplate. If the motor is 60 Hz, the setting should be 60 Hz. If the motor is 50 Hz, it should be set to 50 Hz.
01-02	Output Voltage of Motor 1 (base frequency and motor rated frequency)
01-36	Output Voltage of Motor 2 (base frequency and motor rated frequency)
	Factory setting: 200.0/ 400.0
	Settings 230 V series: 0.0–255.0 V 460 V series: 0.0–510.0 V
	■ This value should be set according to the rated voltage of the motor as indicated on the motor nameplate. If the motor is 220 V, the setting should be 220.0. If the motor is 200 V, it should be set to 200.0.
	■ There are many motor types in the market and the power system for each country is also difference. The economic and convenience method to solve this problem is to install the AC motor drive. There is no problem to use with the different voltage and frequency and also can amplify the original characteristic and life of the motor.
01-03	Mid-point Frequency 1 of Motor 1
	Factory setting: 3.00 Motor drive with 250HP and above: 1.50
	Settings 0.00–600.00 Hz

01-04	💉 Mid-poin	t Voltage 1 of Motor 1	
			Factory setting: 11.0/22.0
			Motor drive with 250HP
	Settings	230 V series: 0.0–240.0 V	and above: 10.0
	Settings	460 V series: 0.0–480.0 V	
01-37	Mid-point Fr	equency 1 of Motor 2	
			Factory setting: 3.00
			Motor drive with 250HP
			and above: 1.50
	Settings	0.00–600.00 Hz	
01-38	Mid noin	t Voltage 1 of Motor 2	
01-38		t Voltage 1 of Motor 2	
			Factory setting: 11.0/22.0
			Motor drive with 250HP and above: 10.0
	Settings	230 V series: 0.0–240.0 V	
	J	460 V series: 0.0–480.0 V	
01-05	Mid-point Fr	equency 2 of Motor 1	
			Factory setting: 0.50
	Settings	0.00–600.00 Hz	
01-06	💉 Mid-poin	t Voltage 2 of Motor 1	
			Factory setting: 2.0/4.0
			Motor drive with 250HP
	Sottingo	230 V series: 0.0–240.0 V	and above: 2.0
	Settings	460 V series: 0.0–480.0 V	
		· · · · · ·	
01-39	Mid-point Fr	equency 2 of Motor 2	
			Factory setting: 0.50
	Settings	0.00–600.00 Hz	

40 N Mid-point	Voltage 2 of Motor 2	
		Factory setting: 2.0/4.0 Motor drive with 250HP and above: 2.0
Settings	230 V series: 0.0–240.0 V 460 V series: 0.0–480.0 V	
7 Min. Output I	Frequency of Motor 1	
		Factory setting: 0.00
Settings	0.00–600.00 Hz	
V Min Outr	out Voltage of Motor 1	
		Factory setting: 0.0/0.0
Settings	230 V series: 0.0–240.0 V 460 V series: 0.0–480.0 V	
Min. Output I	Frequency of Motor 2	
		Factory setting: 0.00
Settings	0.00–600.00 Hz	
💉 Min. Outp	out Voltage of Motor 2	
		Factory setting: 0.0/0.0
Settings	230 V series: 0.0–240.0 V 460 V series: 0.0–480.0 V	
attention to		llowable loading characteristics. Pay special ic balance, and bearing lubricity, if the loading motor.
damage, c		gh voltage at low frequency may cause motor er-current protection. Therefore, please use t motor damage.
Pr. 02-01–		motor 2. When multi-function input terminals set to 14 and enabled, the AC motor drive will
■ The V/f cu	irve for the motor 1 is shown as fol	lows. The V/f curve for the motor 2 can be

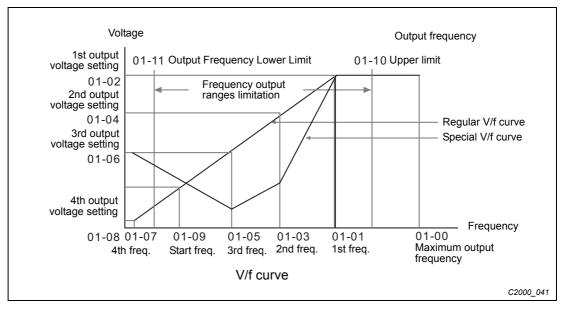


Fig. 12-16:Voltage/frequency ratio

Common settings of V/f curve

General purpose

Motor spec. 60 Hz	Pr.	Setting
V	01-00	60.0
220	01-01	60.0
	01-02	220.0
	01-03 01-05	1.50
10 F	01-04 01-06	10.0
	01-07	1.50
C2000_042	01-08	10.0

Fan and hydraulic	machinery
-------------------	-----------

Motor spec. 60 Hz	Pr.	Setting
V	01-00	60.0
220	01-01	60.0
	01-02	220.0
50	01-03 01-05	30.0
10 1.5 30 60.0	01-04 01-06	50.0
	01-07	1.50
C2000_044	01-08	10.0

Motor spec. 50 Hz	Pr.	Setting
V	01-00	50.0
220	01-01	50.0
	01-02	220.0
	01-03 01-05	1.30
10 1.3 50.0	01-04 01-06	10.0
	01-07	1.30
C2000_043	01-08	10.0

Motor spec. 50 Hz	Pr.	Setting
V	01-00	50.0
220	01-01	50.0
	01-02	220.0
50	01-03 01-05	25.0
10 1.3 25 50.0 F	01-04 01-06	50.0
	01-07	1.30
C2000_045	01-08	10.0

High starting torque

Motor spec. 60 Hz	Pr.	Setting	Motor spec. 50 Hz	Pr.
′ ♠	01.00	60.0	V	01.00
	01.01	60.0	220	01.01
	01.02	220.0		01.02
23	01.03 01.05	3.00	23	01.03 01.05
1.5 3 60.0	01.04 01.06	23.0	¹⁴ 1.3 2.2 50.0	01.04 01.06
	01.07	1.50		01.07
C2000_046	01.08	18.0	C2000_047	01.08

01-09 Start-Up Frequency

Settings

Factory setting: 0.50

■ When start frequency is higher than the min. output frequency, drives' output will be from start frequency to the setting frequency. Please refer to the following diagram for details.

Fcmd = frequency command,
 Fstart = start frequency (Pr. 01-09),
 fstart = actual start frequency of drive,
 Fmin = 4th output frequency setting (Pr. 01-07/Pr. 01-41),
 Flow = output frequency lower limit (Pr. 01-11)

0.0-600.00 Hz

- Fcmd>Fmin and Fcmd<Fstart: If Flow<Fcmd, drive will run with Fcmd directly. If Flow>=Fcmd, drive will run with Fcmd firstly, then, accelerate to Flow according to acceleration time.
- The drive's output will stop immediately when output frequency has reach to Fmin during deceleration.

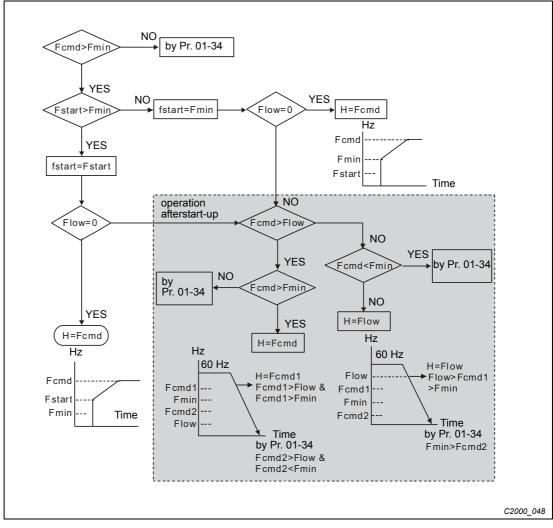
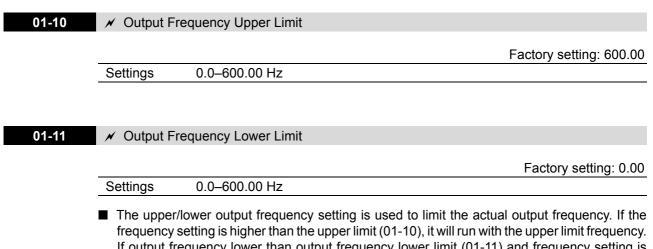



Fig. 12-17: Start-up frequency flowchart

If output frequency lower than output frequency lower limit (01-11) and frequency setting is higher than min. frequency (01-07), it will run with lower limit frequency. The upper limit frequency should be set to be higher than the lower limit frequency. Pr. 01-10 setting must be \geq Pr. 01-11 setting.

- Upper output frequency will limit the max. Output frequency of drive. If frequency setting is higher than Pr. 01-10, the output frequency will be limited by Pr. 01-10 setting.
- When the drive starts the function of slip compensation (Pr. 07-27) or PID feedback control, drive output frequency may exceed frequency command but still be limited by this setting.
- Related parameters: Pr. 01-00 Max. Operation Frequency and Pr. 01-11 Output Frequency Lower Limit

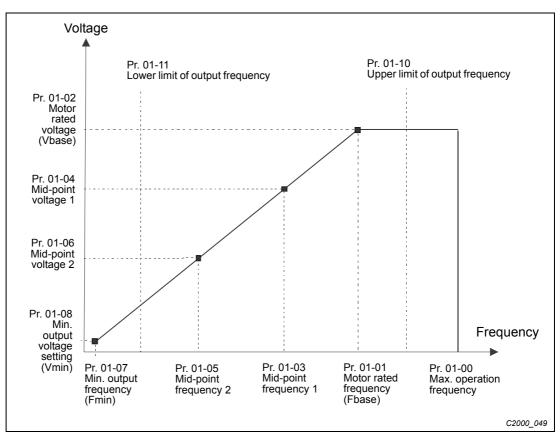
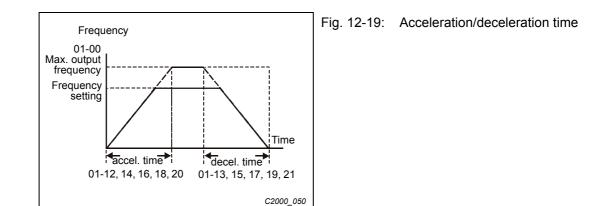


Fig. 12-18:Limit value ratio for output frequency

- Lower output frequency will limit the min. output frequency of drive. When drive frequency command or feedback control frequency is lower than this setting, drive output frequency will limit by the lower limit of frequency.
- When the drive starts, it will operate from min. output frequency (Pr. 01-07) and accelerate to the setting frequency. It won't limit by lower output frequency setting.
- The setting of output frequency upper/lower limit is used to prevent personal misoperation, overheat due to too low operation frequency or damage due to too high speed.
- If the output frequency upper limit setting is 50 Hz and frequency setting is 60 Hz, max. output frequency will be 50 Hz.
- If the output frequency lower limit setting is 10 Hz and min. operation frequency setting (Pr. 01-07) is 1.5 Hz, it will operate by 10 Hz when the frequency command is greater than Pr. 01-07 and less than 10 Hz. If the frequency command is less than Pr. 01-07, the drive will be in ready status and no output.
- If the frequency output upper limit is 60 Hz and frequency setting is also 60 Hz, only frequency command will be limit in 60 Hz. Actual frequency output may exceed 60 Hz after slip compensation.



01-12	✓ Acceleration Time 1
01-13	✓ Deceleration Time 1
01-14	✓ Acceleration Time 2
01-15	✓ Deceleration Time 2
01-16	✓ Acceleration Time 3
01-17	✓ Deceleration Time 3
01-18	✓ Acceleration Time 4
01-19	✓ Deceleration Time 4
01-20	✓ JOG Acceleration Time
01-21	✓ JOG Deceleration Time

Factory setting: 10.00/10.0 Factory setting for AC drive with power greater than 30HP: 60.00/60.0

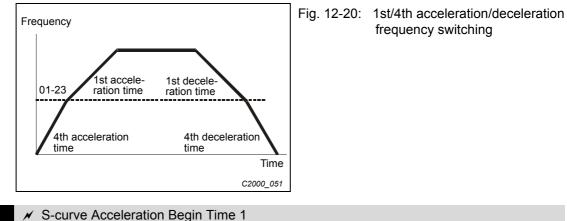
Settings	Pr. 01-45 = 0: 0.00–600.00 seconds
	Pr. 01-45 = 1: 0.00–6000.00 seconds

- The Acceleration Time is used to determine the time required for the AC motor drive to ramp from 0 Hz to Maximum Output Frequency (Pr. 01-00).
- The Deceleration Time is used to determine the time require for the AC motor drive to decelerate from the Maximum Output Frequency (Pr. 01-00) down to 0 Hz.
- The Acceleration/Deceleration Time is invalid when using Pr. 01-44 Optimal Acceleration/ Deceleration Setting.
- The Acceleration/Deceleration Time 1, 2, 3, 4 are selected according to the Multi-function Input Terminals settings. The factory settings are Accel./Decel. time 1.
- When enabling torque limits and stalls prevention function, actual accel./decel. time will be longer than the above action time.
- Please note that it may trigger the protection function (Pr. 06-03 Over-current Stall Prevention during Acceleration or Pr. 06-01 Over-voltage Stall Prevention) when the setting of accel./decel. time is too short.
- Please note that it may cause motor damage or drive protection enabled due to over current during acceleration when the setting of acceleration time is too short.
- Please note that it may cause motor damage or drive protection enabled due to over current during deceleration or over-voltage when the setting of deceleration time is too short.
- It can use suitable brake resistor (see Chapter 06 Accessories) to decelerate in a short time and prevent over-voltage.
- When enabling Pr. 01-24–Pr. 01-27, the actual accel./decel. time will be longer than the setting.

01-22 × JOG Frequency

Factory setting: 6.00

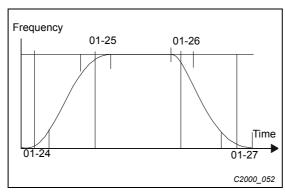
Settings 0.00–600.00 Hz

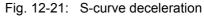

- Both external terminal JOG and key "F1" on the keypad KPC-CC01 can be used. When the jog command is ON, the AC motor drive will accelerate from 0 Hz to jog frequency (Pr. 01-22). When the jog command is OFF, the AC motor drive will decelerate from Jog Frequency to zero. The Jog Accel./Decel. time (Pr. 01-20, Pr. 01-21) is the time that accelerates from 0.0 Hz to Pr. 01-22 JOG Frequency.
- The JOG command can't be executed when the AC motor drive is running. In the same way, when the JOG command is executing, other operation commands are invalid except forward/ reverse commands and STOP key on the digital keypad.
- It does not support JOG function in the optional keypad KPC-CE01.

01-23 / 1st/4th Acceleration/Deceleration Frequency

		Factory setting: 0.00
Settings	0.00–600.00 Hz	

- The transition from acceleration/deceleration time 1 to acceleration/deceleration time 4, may also be enabled by the external terminals. The external terminal has priority over Pr. 01-23.
- When using this function, please set S-curve acceleration time as 0 if 4th acceleration time is set too short.




01-24	✓ S-curve Acceleration Begin Time 1
01-25	✓ S-curve Acceleration Arrival Time 2
01-26	✓ S-curve Deceleration Begin Time 1
01-27	✓ S-curve Deceleration Arrival Time 2

Factory setting: 0.20/0.2

Settings	Pr. 01-45 = 0: 0.00–25.00 seconds
	Pr. 01-45 = 1: 0.00–250.0 seconds

- It is used to give the smoothest transition between speed changes. The accel./decel. curve can adjust the S-curve of the accel./decel. When it is enabled, the drive will have different accel./decel. curve by the accel./decel. time.
- The S-curve function is disabled when accel./decel. time is set to 0.
- When Pr. 01-12, 01-14, 01-16, 01-18 ≥ Pr. 01-24 and Pr. 01-25, The Actual Accel. Time = Pr. 01-12, 01-14, 01-16, 01-18 + (Pr. 01-24 + Pr. 01-25)/2
- When Pr. 01-13, 01-15, 01-17, 01-19 ≥ Pr. 01-26 and Pr. 01-27, The Actual Decel. Time = Pr. 01-13, 01-15, 01-17, 01-19 + (Pr. 01-26 + Pr. 01-27)/2

01-28	Skip Frequency 1 (upper limit)
01-29	Skip Frequency 1 (lower limit)
01-30	Skip Frequency 2 (upper limit)
01-31	Skip Frequency 2 (lower limit)
01-32	Skip Frequency 3 (upper limit)
01-33	Skip Frequency 3 (lower limit)

Factory setting: 0.00

- These parameters are used to set the skip frequency of the AC drive. But the frequency output is continuous. There is no limit for the setting of these six parameters and can be used as required.
- The skip frequencies are useful when a motor has vibration at a specific frequency bandwidth. By skipping this frequency, the vibration will be avoided. It offers 3 zones for use.
- These parameters are used to set the skip frequency of the AC drive. But the frequency output is continuous. The limit of these six parameters is 01-28 ≥ 01-29 ≥ 01-30 ≥ 01-31 ≥ 01-32 ≥ 01-33. This function will be invalid when setting to 0.0.
- The setting of frequency command (F) can be set within the range of skip frequencies. In this moment, the output frequency (H) will be limited by these settings.
- When accelerating/decelerating, the output frequency will still pass the range of skip frequencies.

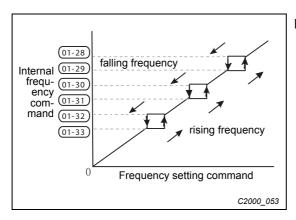


Fig. 12-22: Skip frequency adjustment

01-34 Zero-speed Mode

Factory setting: 0

Settings	0: Output waiting
	1: Zero-speed operation
	2: Fmin (Refer to Pr. 01-07, 01-41)

- When the frequency is less than Fmin (Pr. 01-07 or Pr. 01-41), it will operate by this parameter.
- When it is set to 0, the AC motor drive will be in waiting mode without voltage output from terminals U/V/W.
- When setting 1, it will execute DC brake by Vmin (Pr. 01-08 and Pr. 01-42) in V/f, FOC Sensorless, and SVC modes. It executes zero-speed operation in VFPG and FOCPG mode.
- When it is set to 2, the AC motor drive will run by Fmin (Pr. 01-07, Pr. 01-41) and Vmin (Pr. 01-08, Pr. 01-42) in V/F, VFPG, SVC, FOC Sensorless and FOCPG modes.
- In V/F, VFPG, SVC and FOC Sensorless modes

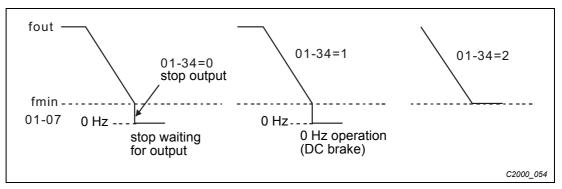


Fig. 12-23:Zero-speed process

■ In FOCPG mode, when Pr. 01-34 is set to 2, it will act according Pr. 01-34 setting.

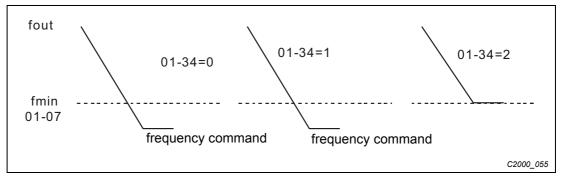


Fig. 12-24: Regelung der Stillstandsdrehzahl im FOCPG-Betrieb

01-43 V/f Curve Selection Factory setting: 0

Settings	0: V/f curve determined by group 01
	1: 1.5 power curve
	2: Square curve

- When setting to 0, refer to Pr. 01-01–01-08 for motor 1 V/f curve. For motor 2, please refer to Pr. 01-35–01-42.
- When setting to 1 or 2, 2nd and 3rd voltage frequency setting are invalid.
- If motor load is variable torque load (torque is in direct proportion to speed, such as the load of fan or pump), it can decrease input voltage to reduce flux loss and iron loss of the motor at low speed with low load torque to raise the entire efficiency.
- When setting higher power V/f curve, it is lower torque at low frequency and is not suitable for rapid acceleration/deceleration. It is recommended Not to use this parameter for the rapid acceleration/deceleration.

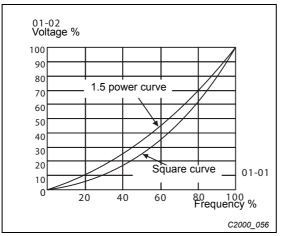


Fig. 12-25: V/f curve progression

💉 Optimal	Acceleration/Deceleration Setting
	Factory setting: 0
Settings	 0: Linear accel./decel. 1: Auto accel., linear decel. 2: Linear accel., auto decel. 3: Auto accel./decel. (auto calculate the accel./decel. time by actual load) 4: Stall prevention by auto accel./decel. (limited by 01-12 to 01-21)
■ Setting 0 12–01-19.	Linear accel./decel.: it will accelerate/decelerate according to the setting of Pr. 01-
vibration a	I" automatic accelleration, linear decelleration: it can reduce the mechanical and prevent the complicated auto-tuning processes. It won't stall during accelera- no need to use brake resistor. In addition, it can improve the operation efficiency energy.
detect the current to	Auto accel./decel. (auto calculate the accel./decel. time by actual load): it can auto e load torque and accelerate from the fastest acceleration time and smoothest start the setting frequency. In the deceleration, it can auto detect the load re-generation the motor smoothly with the fastest decel. time.
decelerati	Stall prevention by auto accel./decel. (limited by 01-12 to 01-21): if the acceleration/ ion is in the reasonable range, it will accelerate/decelerate by Pr. 01-12–01-19. If the cel. time is too short, the actual accel./decel. time is greater than the setting of

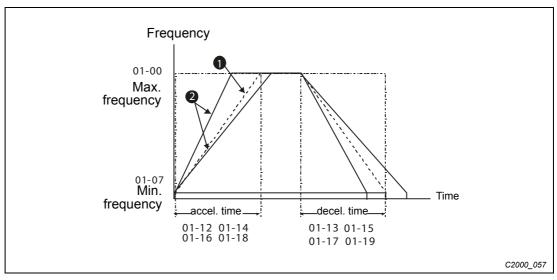


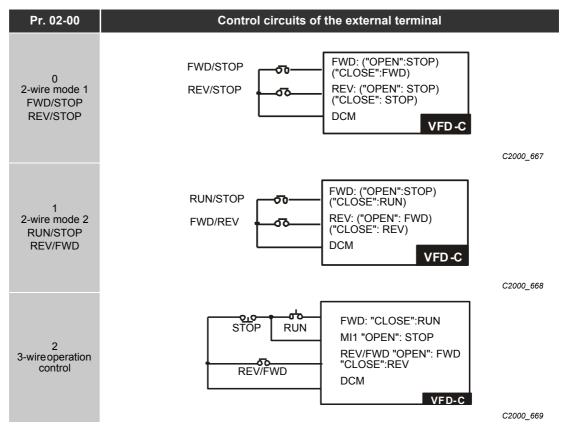
Fig. 12-26: Acceleration/deceleration time

• When Pr. 01-44 is set to 0.

accel./decel. time.

2 When Pr. 01-44 is set to 3.

01-45	Time Unit fo	r Acceleration/Deceleration and S Curve	
			Factory setting: 0
	Settings	0: Unit 0.01 sec 1: Unit 0.1 sec	
01-46	✗ Time for	CANopen Quick Stop	
			Factory setting: 1.00
	Settings	Pr. 01-45 = 0: 0.00–600.00 sec Pr. 01-45 = 1: 0.0–6000.0 sec	
		to got the time that decelerates from the max.	noration fraguency (Dr. 01.00)
It is used to set the time that decelerates from the max. operation frequency to 0.00 Hz in CANopen control.		peration frequency (P1. 01-00)	


12.3 Digital input/output parameter

NOTE *I* This parameter can be set during operation.

02-00 2-wire/3-wire operation control

		Factory setting: 0
Settings	0: 2 wire mode 1	
	1: 2 wire mode 2	
	2: 3 wire mode	

It is used to set the operation control method:

Tab. 12-5: Operation via 2- and 3-wire control line

02-01 Multi-function Input command 1 (MI1) (MI1 = STOP command when in 3-wire operation control)

Factory setting: 1

02-02

Multi-function input command 2 (MI2)

Factory setting: 2

02-03	Multi-function input command 2 (MI3)	
		Factory setting: 3
02-04	Multi-function input command 2 (MI4)	
		Factory setting: 4
02-05	Multi-function input command 5 (MI5)	
02-06	Multi-function input command 6 (MI6)	
02-07	Multi-function input command 7 (MI7)	
02-08	Multi-function input command 8 (MI8)	
02-26	Input terminal of I/O extension card (MI10)	
02-27	Input terminal of I/O extension card (MI11)	
02-28	Input terminal of I/O extension card (MI12)	
02-29	Input terminal of I/O extension card (MI13)	
02-30	Input terminal of I/O extension card (MI14)	
02-31	Input terminal of I/O extension card (MI15)	

Factory setting: 0

0	O Ne fuester								
Settings	0: No function								
	1: Multi-step speed command 1/multi-step position command 1								
	2: Multi-step speed command 2/multi-step position command 2								
	3: Multi-step speed command 3/multi-step position command 3								
	4: Multi-step speed command 4/multi-step position command 4								
	5: Reset								
	6: JOG command (By KPC-CC01 or external control)								
	7: Acceleration/deceleration speed not allow								
	8: The 1 st , 2 nd acceleration/deceleration time selection								
	9: The 3 rd , 4 th acceleration/deceleration time selection								
	10: EF Input (Pr. 07-20)								
	11: B.B input from external (Base Block)								
	12: Output stop								
	13: Cancel the setting of the optimal								
	Acceleration/deceleration time								
	14: Switch between motor 1 and motor 2								
	15: Operation speed command from AVI								
	16: Operation speed command from ACI								
	17: Operation speed command from AUI								
	18: Emergency stop (Pr. 07-20)								
	19: Digital up command								
	20: Digital down command								

21: PID function of	lisabled
22: Clear counter	
23: Input the cour	iter value (MI6)
24: FWD JOG co	nmand
25: REVJOG com	Imand
26: FOCG/TQC n	nodel selection
27: ASR1/ASR2 s	election
28: Emergency st	op (EF1)
29: Signal confirm	nation for Y-connection
30: Signal confirm	nation for Δ -connection
31: High torque b	as (Pr. 11-30)
32: Middle torque	bias (Pr. 11-31)
33: Low torque bi	as (Pr. 11-32)
	en multi-step position and
multi-speed c	
35: Enable position	in control
	step position learning function
(valid at stop)	
	position input command
	EEPROM function
39: Torque comm	
40: Force coast to) stop
41: HAND switch	
42: AUTO switch	
43: Enable resolu	tion selection (Pr. 02-48)
44: Reverse direc	tion homing
45: Forward direc	tion homing
46: Homing ORG	
47: Homing functi	on enable
48: Mechanical ge	er ratio switch
49: Drive enable	
50: Master dEb a	
51: Selection for I	PLC mode bit 0
52: Selection for I	
53: Trigger CANo	pen quick stop
54: Reserved	
55: Brake release	checking signal
56: Local/remote	selection
57–70: Reserve	

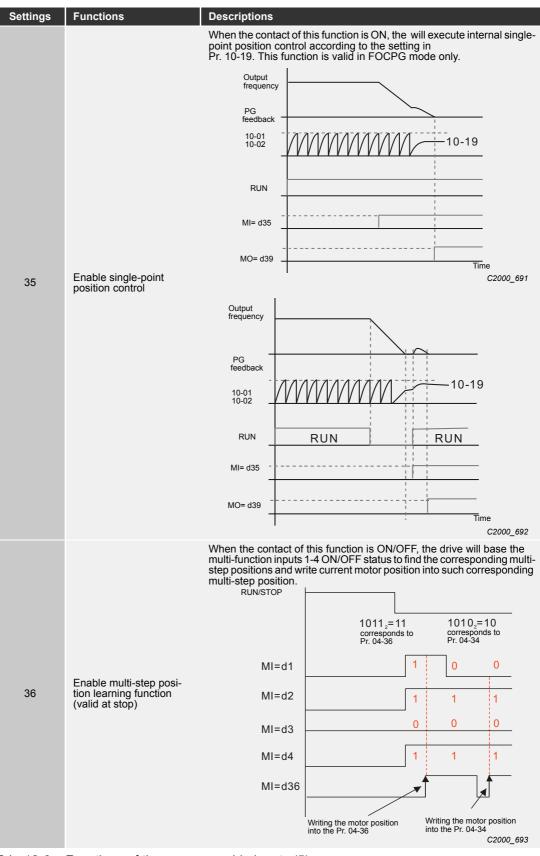
- This parameter selects the functions for each multi-function terminal.
- The terminals of Pr. 02-26–Pr. 02-29 are virtual and set as MI10–MI13 when using with optional card EMC-D42A. Pr. 02-30–02-31 are virtual terminals.
- When being used as a virtual terminal, it needs to change the status (0/1: ON/OFF) of bit 8-15 of Pr. 02-12 by digital keypad KPC-CC01 or communication.
- If Pr. 02-00 is set to 3-wire operation control. Terminal MI1 is for STOP contact. Therefore, MI1 is not allowed for any other operation.
- Summary of function settings (Take the normally open contact for example, ON: contact is closed, OFF: contact is open)

Settings	Functions	Descriptions						
0	No function							
1	Multi-step speed com- mand 1/multi-step posi- tion command 1							
2	Multi-step speed com- mand 2/ multi-step posi- tion command 2	15 step speeds could be conducted through the digital status of the 4 terminals, and 16 in total if the master speed is included. (Refer to parameter set 4)						
3	Multi-step speed com- mand 3/ multi-step posi- tion command 3							
4	Multi-step speed com- mand 4/ multi-step posi- tion command 4							
5	Reset	After the error of the drive is eliminated, use this terminal to reset the drive.						
6	JOG command	This function is valid when the source of operation command is external terminals. Before executing this function, it needs to wait for the drive stop completely. During running, it can change the operation direction and STOP key on the keypad is valid. Once the external terminal receives OFF command, the motor will stop by the JOG deceleration time. Refer to Pr. 01-20–01-22 for details.						
7	Acceleration/decelera- tion speed inhibit	When this function is enabled, acceleration and deceleration is stopped. After this function is disabled, the starts to accel./decel. from the inhibit point.						
8	The 1 st , 2 nd acceleration or deceleration time selection The 3 rd , 4 th acceleration	The acceleration/deceleration time of the drive could be selected from this function or the digital status of the terminals; there are 4 acceleration concentration acceleration in total for soloriton.						
9	or deceleration time selection	tion/deceleration speeds in total for selection.						
10	EF Input (EF: External fault)	For external fault input. Motor drive will decelerate by Pr. 07-20 setting, keypad will show EF. (It will have fault record when external fault occurs). Until the causes of fault are eliminated, the drive can keep running after resetting.						
11	External B.B. input (Base block)	When the contact of this function is ON, output of the drive will be cut off immediately, and the motor will be free run and keypad will display B.B. signal. Refer to Pr. 07-08 for details.						
Tab. 12-6:	Functions of the progra	ammable inputs (1)						

Tab. 12-6: Functions of the programmable inputs (1)

Settings	Functions	Descriptions
12	Output stop	If the contact of this function is ON, output of the drive will be cut off immediately, and the motor will then be free run. And once it is turned to OFF, the drive will accelerate to the setting frequency.
	(Output pause)	Mix-GND Operation command ON OFF ON C2000_686
13	Cancel the setting of the optimal accel./decel. time	Before using this function, Pr. 01-44 should be set to 01/02/03/04 first. When this function is enabled, OFF is for auto mode and ON is for linear accel./decel.
14	Switch between drive settings 1 and 2	When the contact of this function is ON: use motor 2 parameters. OFF: use motor 1 parameters.
15	Operation speed command form AVI	When the contact of this function is ON, the source of the frequency will force to be AVI. (If the operation speed commands are set to AVI, ACI and AUI at the same time. The priority is AVI $>$ ACI $>$ AUI)
16	Operation speed command form ACI	When the contact of this function is ON, the source of the frequency will force to be ACI. (If the operation speed commands are set to AVI, ACI and AUI at the same time. The priority is AVI $>$ ACI $>$ AUI)
17	Operation speed com- mand form AUI	When the contact of this function is ON, the source of the frequency will force to be AUI. (If the operation speed commands are set to AVI, ACI and AUI at the same time. The priority is AVI $>$ ACI $>$ AUI)
18	Emergency stop (07-20)	When the contact of this function is ON, the drive will ramp to stop by Pr. 07-20 setting.
19	Digital Up command	When the contact of this function is ON, the frequency will be increased and decreased. If this function is constantly ON, the frequency will be
20	Digital down command	increased/decreased by Pr. 02-09/Pr. 02-10. The frequency command returns to zero when the drive stops and the display frequency is 0.00 Hz. Select Pr. 11-00, Bit 7=1, frequency is not saved.
21	PID function disabled	When the contact of this function is ON, the PID function is disabled.
22	Clear counter	When the contact of this function is ON, it will clear current counter value and display "0". Only when this function is disabled, it will keep counting upward.
23	Input the counter value (multi-function input com- mand 6)	The counter value will increase 1 once the contact of this function is ON. It needs to be used with Pr. 02-19.
24	FWD JOG command	This function is valid when the source of operation command is external terminals. When the contact of this function is ON, the drive will execute forward Jog command. When execute JOG command under torque mode, the drive will automatically switch to speed mode; after JOG command is done, the drive will return to torque mode.
25	REV JOG command	This function is valid when the source of operation command is external terminals. When the contact of this function is ON the drive will execute reverse Jog command. When execute JOG command under torque mode, the drive will automatically switch to speed mode; after JOG command is done, the drive will return to torque mode.
Tab 10 6	Eurotions of the progra	$a_{\rm max} = b_{\rm max} = b_{m$

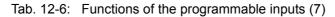
Tab. 12-6: Functions of the programmable inputs (2)


Se	ettings	Functions	Descriptions							
			When the contact of this function is ON: TQCPG mode. When the contact of this function is OFF: FOCPG mode.							
			RUN/STOP command RUN STOP							
			Multi- function							
			(torque/speed							
	26	FOCPG/TQCPG mode selection	03-00-02=1 (AVI/							
		mode selection	AUI/ACI is fre- torque torque quency command) limit torque limit torque							
			03-00–02=2 (AVI/ command command AUI/ACI is torque							
			command) speed speed speed speed control control control control							
			(decel. to stop) Switch timing for torque/speed control							
			(00-10=0/4, multi-function input terminal is set to 26)							
_			C2000_687 When the contact of this function is ON: speed will be adjusted by ASR							
	27	ASR1/ASR2 selection	2 setting. OFF: speed will be adjusted by ASR 1 setting. Refer to Pr.11-02 for details.							
	28	Emergency stop (EF1)	When the contact is ON, the drive will execute emergency stop and display EF1 on the keypad. The motor won't run and be in the free run until the fault is cleared after pressing RESET" (EF: External fault)							
	29	Signal confirmation for Y-connection	When is the contact of this function is ON, the drive will operate by 1st V/f.							
	30	Signal confirmation for Δ -connection	When the contact of this function is ON, the drive will operate by 2nd V/f.							
	31	High torque bias								
	32	Middle torque bias	Refer to Pr. 11-30–11-32 for details.							
	33	Low torque bias								
Tah	12-6.	Functions of the progra	mmahle innuts (3)							

Tab. 12-6: Functions of the programmable inputs (3)

Settings	Functions	Descriptions						
		When the contact speed for the mult (Refer to Pr. 04-16	i-function	inputs 1-	ON, the 4 will b	corre e 15	esponding 1 positions.	5-step
			Speed mode	e Pos	ition mod	e	Speed mode	
		Run						
		MI=d35		_				
		MI=d34				-		
		MI=d1		1	1	0	0	
		MI=d2		0	0	0	0	
		MI=d3		1	1	1	1	
		MI=d4		1	1	1	1	
		Output frequency				$ \land$		
				 10-19	04-40	0	4-38 ⁰⁴ -	11
34	Switch between multi- step position and multi- speed control		I	position (Home)	multi- positio 13	n	position spe 12 freq	n step ed mode uency 2000_689
			Spe	ed mode		Pos	ition mode	
		Run						
		MI=d34			_			
		MI=d35						
		MI=d1		1	1	· –	0	
		MI=d2		0			0	
		MI=d3		1	1	1	1	
		MI=d4		1	1	1	1	
		Master frequency	7	_				
		Output frequency		04-12			` ↑	_
				13th step speed frequency	04- mult posit		04-38 multi- position 12	
								2000_690

Tab. 12-6: Functions of the programmable inputs (4)


Tab. 12-6: Functions of the programmable inputs (5)

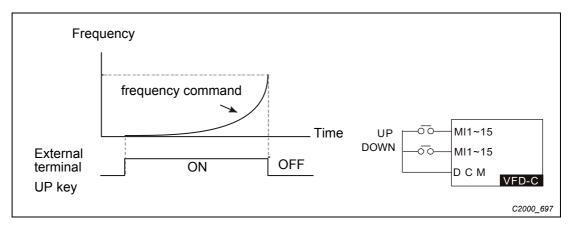
Settings	Functions	Descriptions						
		When Pr. 00-20 is set to 4 or 5 and the contact of this function is ON, the input pulse of PG card is position command. When using this function, it is recommended to set Pr. 11-25 to 0. Example: please refer to the following diagram when using this faction with MI = d35 return to home position,.						
		RUN						
		MI = d35						
		MO = d39						
37	Full position control pulse command input enable	MO = d37						
		Pulse command						
		Output frequency Time C2000_694						
38	Disable EEPROM write function (Parameters written disable)	When the contact of this function is ON, write to EEPROM is disabled. (Changed parameters will not be saved after power off)						
39	Torque command direction	For torque control (Pr. 00-10=2), when torque command is AVI or ACI, the contact of this function is ON and it is negative torque.						
40	Force coast to stop	When the contact of this function is ON during the operation, the drive will free run to stop.						
41	HAND switch	① When MI is switched to off status, it executes a STOP command., If MI is switched to off during operation, the drive will also stop.						
		 ② Using keypad KPC-CC01 to switch between HAND/AUTO, the drive will stop first then switch to the HAND or AUTO status. 						
		③ On the digital keypad KPC-CC01, it will display current drive status (HAND/OFF/AUTO).						
42	AUTO switch	Bit 1 Bit 0 OFF 0 0						
		OFF 0 0 AUTO 0 1						
		HAND 1 0						
		OFF 1 1						
43	Enable resolution selection	Refer to Pr. 02-48 for details.						
44	Reverse direction NLhoming	Signal input for reverse direction limit switch. When this terminal of this function is ON, the drive will react to the setting in Pr. 00-40, 00-41, 00-42 accordingly to execute homing in a reverse direction (counter clockwise). Note: NL means input terminal detection is negative-edge triggered or be regarded as NO (Normal Open)						
45	Forward direction PL homing	Signal input for forward direction limit switch. When this terminal of this function is ON, the drive will react to the setting in Pr. 00-40, 00-41, 00-42 accordingly to execute homing in a forward direction (clockwise). Note: PL means input terminal detection is postive-edge triggered or be regarded as NC(Normal Close)						
46	Homing ORG	ORG point input. When this terminal of this function is ON, the drive will refer to the setting in Pr. 00-40, 00-41, 00-42 accordingly to execute homing.						
Tab 12 6	Functions of the progra	ammable inpute (6)						

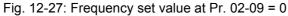
Tab. 12-6: Functions of the programmable inputs (6)

Settings	Functions	Descriptions					
47	Homing function enable	Pr. 00-10 = 3 (homing mode), if the external terminal MIx=47 is OFF, the drive will ignore the home command and execute Point to Point position control.					
48	Mechanical gear ratio switch	When this contact is ON, the mechanical gear ratio switch will be the second group A2/B2 (refer to 10-04, 10-05 to 10-06, 10-07).					
49	Drive enable	When drive = enable, RUN command is valid. When drive = disable, RUN command is invalid. When drive is in operation, motor coast to stop. This function will interact with MO=51					
50	Master dEb action input	Input the message setting in this parameter when dEb occurs to Master. This will ensure dEb also occurs to Slave, then Master and Slave will stop simultaneously.					
51	Selection for PLC mode bit 0	PLC status Bit 1 Bit 0					
		PLC statusBit 1Bit 0Disable PLC function (PLC 0)00					
52	Selection for PLC mode bit1	Trigger PLC to operation (PLC 1) 0 1					
-		Trigger PLC to stop (PLC 2) 1 0					
		No function 1 1					
53	Enable CANopen quick stop	When this function is enabled under CANopen control, it will change to quick stop. Refer to Chapter 15 for more details.					
54	Reserved						
55	Brake release checking signal	This parameter needs to be used with Pr. 02-56. The main purpose is to make sure if mechanical brake works or not after triggering brake release command. If the action is right, mechanical brake will give signal to MI terminal. Please check time sequence chart for reference.					
56	LOCAL/REMOTE selection	Use Pr. 00-29 to select for LOCAL/REMOTE mode (refer to Pr. 00-29). When Pr. 00-29 is not set to 0 on the digital keypad KPC-CC01 it will display LOC/REM status. (It will display on the KPC-CC01 if the firmware version is above version 1.021). Bit 0 REM 0 LOC 1 1					

02-09 X UP/DOWN key mode

Settings 0: Up/down by the accel/decel time 1: Up/down constant speed (Pr. 02-10)




Eactory	cotting.	0.01
Factory	seuing.	0.01

Settings	0.01–1.00 Hz/ms	

- These settings are used when multi-function input terminals are set to 19/20. Refer to Pr. 02-09 and 02-10 for the frequency up/down command.
- Pr. 02-09 set to 0: it will increase/decrease frequency command (F) by the external terminal UP/DOWN key as shown in the following diagram. In this mode, it also can be controlled by UP/DOWN key on the digital keypad.

■ Pr. 02-09 set to 1: it will increase/decrease frequency command (F) by the setting of acceleration/deceleration (Pr. 01-12–01-19) and only be valid during operation.

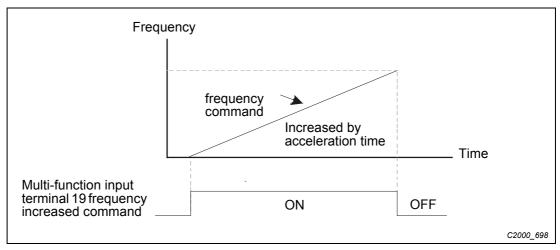


Fig. 12-28: Frequency set value at Pr. 02-09 = 1

✗ Digital input response time 02-11 Factory setting: 0.005 Settings 0.000-30.000 sec. This parameter is used to set the response time of digital input terminals FWD, REV and MI1-MI8. ■ It is used for digital input terminal signal delay and confirmation. The delay time is confirmation time to prevent some uncertain interference that would cause error in the input of the digital terminals. Under this condition, confirmation for this parameter would improve effectively, but the response time will be somewhat delayed. ■ When using MI8 as encoder pulse feedback input, this parameter will not be referred. 02-12 ✗ Digital input operation setting Factory setting: 0000 Settings 0000 h-FFFF h (0: N.O ; 1: N.C) The setting of this parameter is in hexadecimal. ■ This parameter is to set the status of multi-function input signal (0: Normal Open; 1: Normal Close) and it is not affected by the SINK/SOURCE status. ■ Bit0 is for FWD terminal, bit1 is for REV terminal and Bit2 to Bit15 is for MI1 to MI14. ■ User can change terminal status by communicating. For example, MI1 is set to 1 (multi-step speed command 1), MI2 is set to 2 (multi-step speed command 2). Then the forward + 2nd step speed command= 1001 (binary) = 9 (Decimal). Pr.02-12= 9 needs to be set by communication to run forward with 2nd step speed. No need to wire any multi-function terminal.

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MI14	MI13	MI12	MI11	MI10	MI9	MI8	MI7	MI6	MI5	MI4	MI3	MI2	MI1	\times	\times

C2000_701

■ Through the Pr. 11-42, Bit 1, it could make setting of FWD/REV terminals whether are controlled by Pr. 02-12, Bit 0 & 1.

02-13	✓ Multi-function Output 1 (Relay1)	
		Factory setting: 11
02-14	✓ Multi-function Output 2 (Relay2)	
		Factory setting: 1
02-16	✓ Multi-function Output 3 (MO1)	
02-17	✓ Multi-function Output 4 (MO2)	
02-36	✓ Output terminal of I/O extension card (MO10) or (RA10)	
02-37	✓ Output terminal of I/O extension card (MO11) or (RA11)	
02-38	✓ Output terminal of I/O extension card (MO12) or (RA12)	
02-39	✓ Output terminal of I/O extension card (MO13) or (RA13)	
02-40	✓ Output terminal of I/O extension card (MO14) or (RA14)	
02-41	✓ Output terminal of I/O extension card (MO15) or (RA15)	
02-42	✓ Output terminal of I/O extension card (MO16)	
02-43	✓ Output terminal of I/O extension card (MO17)	
02-44	✓ Output terminal of I/O extension card (MO18)	
02-45	✓ Output terminal of I/O extension card (MO19)	
02-46	✓ Output terminal of the I/O extension card (MO20)	

Factory setting: 0

Settings	0: No function
	1: Operation Indication
	2: Operation speed attained
	3: Desired frequency attained 1 (Pr. 02-22)
	4: Desired frequency attained 2 (Pr. 02-24)
	5: Zero speed (Frequency command)
	6: Zero speed, include STOP
	(Frequency command)
	7: Over torque 1 (Pr. 06-06-08)
	8: Over torque 2 (Pr. 06-09–06-11)
	9: Drive is ready
_	10: Low voltage warning (LV) (Pr. 06-00)
	11: Malfunction indication
	12: Mechanical brake release (Pr. 02-32)
	13: Overheat warning (Pr. 06-15)
	14: Software brake signal indication (Pr. 07-00)
	15: PID feedback error

16: Slip error (oSL)
17: Terminal count value attained
(Pr. 02-20; not return to 0)
18: Preliminary count value attained
(Pr. 02-19; returns to 0)
19: Base Block
20: Warning output
21: Over voltage warning
22: Over-current stall prevention warning
23: Over-voltage stall prevention warning
24: Operation mode indication
25: Forward command
26: Reverse command
27: Output when current >= Pr. 02-33 (>= 02-33)
28: Output when current <= Pr. 02-33 (<= 02-33)
29: Output when frequency >= Pr. 02-34 (>= 02-34)
30: Output when frequency <= Pr. 02-34 (<= 02-34)
31: Y-connection for the motor coil
32: Δ -connection for the motor coil
33: Zero speed (actual output frequency)
34: Zero speed include stop
(actual output frequency)
35: Error output selection 1 (Pr. 06-23)
36: Error output selection 2 (Pr. 06-24)
37: Error output selection 3 (Pr. 06-25)
38: Error output selection 4 (Pr. 06-26)
39: Position attained (Pr. 10-19)
40: Speed attained (including Stop)
41: Multi-position attained
42: Crane function
43: Actual motor speed slower than Pr. 02-47
44: Low current output (Pr. 06-71 to Pr. 06-73)
45: UVW Output Electromagnetic valve On/Off Switch
46: Master dEb action output 47: Closed brake output
48: Reserved
40. Reserved 49: Homing action complete
50: Output for CANopen control
51: Output for RS485 communication
52: Output for communication board
53–64: Reserved
65: Output for CANopen and RS485
66: SO contact A (N.O.)
67: Analog input signal level achieved
68: SO contact B (N.C.)

- This parameter is used for setting the function of multi-function terminals.
- Pr. 02-36–Pr. 02-41 requires additional extension cards to display the parameters, the choices of optional cards are EMC-D42A and EMC-R6AA.
- The optional card EMC-D42A provides 2 output terminals and can be used with Pr. 02-36–02-37.
- The optional card EMC-R6AA provides 6 output terminals and can be used with Pr. 02-36–02-41.
- Summary of function settings (Take the normally open contact for example, ON: contact is closed, OFF: contact is open)

Settings	Functions	Descriptions
0	No Function	
1	Operation Indication	Active when the drive is not at STOP.
2	Master Frequency Attained	Active when the reaches the output frequency setting.
3	Desired Frequency Attained 1 (Pr.02-22)	Active when the desired frequency (Pr.02-22) is attained.
4	Desired Frequency Attained 2 (Pr.02-24)	Active when the desired frequency (Pr.02-24) is attained.
5	Zero Speed (frequency command)	Active when frequency command = 0. (the drive should be at RUN mode)
6	Zero Speed with Stop (frequency command)	Active when frequency command = 0 or stop.
7	Over Torque 1	Active when detecting over-torque. Refer to Pr. 06-07 (over- torque detection level-OT1) and Pr. 06-08 (over-torque detection time-OT1). Refer to Pr. 06-06–06-08.
8	Over Torque 2	Active when detecting over-torque. Refer to Pr.06-10 (over- torque detection level-OT2) and Pr. 06-11 (over-torque detection time-OT2). Refer to Pr. 06-09–06-11.
9	Drive Ready	Active when the drive is ON and no abnormality detected.
10	Low voltage warn (Lv)	Active when the DC Bus voltage is too low. (refer to Pr.06-00 low voltage level)
11	Malfunction Indication	Active when fault occurs (except Lv stop).
12	Mechanical Brake Release (Pr.02-32)	When drive runs after Pr. 02-32, it will be ON. This function should be used with DC brake and it is recommended to use contact "b" (N.C).
13	Overheat	Active when IGBT or heat sink overheats to prevent OH turn off the drive. (refer to Pr. 06-15)
14	Software Brake Signal Indi- cation	Active when the soft brake function is ON. (refer to Pr.07-00)
15	PID Feedback Error	Active when the feedback signal is abnormal.
16	Slip Error (oSL)	Active when the slip error is detected.
17	Counting value achieved (Pr. 02-20; no reset to 0)	Active when the counter reaches Terminal Counter Value (Pr.02-19). This contact won't active when Pr.02-20 > Pr.02-19.
18	Preliminary Counter Value Attained (Pr.02-19; returns to 0)	Active when the counter reaches Preliminary Counter Value (Pr.02-19).
19	External Base Block input (B.B.)	Active when the output of the is shut off during base block.
20	Warning Output	Active when the warning is detected.
21	Over-voltage Warning	Active when the over-voltage is detected.
22	Over-current Stall Preven- tion Warning	Active when the over-current stall prevention is detected.
23	Over-voltage Stall preven- tion Warning	Active when the over-current stall prevention is detected.
24	Operation Mode Indication	Active when the operation command is controlled by external terminal. (Pr.00-21≠0)
25	Forward Command	Active when the operation direction is forward.
26	Forward Command	Active when the operation direction is reverse.
27	Output when Current >= Pr.02-33	Active when current is >= Pr. 02-33.
28	Output when Current < Pr.02-33	Active when current is < Pr.02-33
29	Output when frequency >= Pr.02-34	Active when frequency is >= Pr.02-34.
30	Output when Frequency < Pr.02-34	Active when frequency is <pr.02-34< th=""></pr.02-34<>
31	Star connection for the motor winding	Active when PR.05-24=1, when frequency output is lower than Pr.05-23 minus 2Hz, continues longer than 05-25.

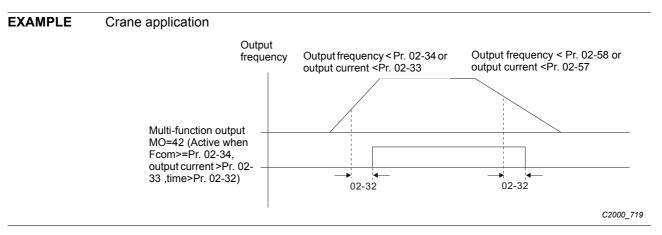
Tab. 12-7: Functions of the programmable outputs (1)

Settings	Functions			Descriptio	ns						
32	Δ -connection for the Motor Coil	Active when PR.05-24=1, when frequency output is high than Pr.05-23 plus 2Hz, continues longer than 05-25.									
33	Zero Speed (actual output frequency)	Active when the actual output frequency is 0. (the drive should be at RUN mode)									
34	Zero Speed with Stop (actual output frequency)	Active when the actual output frequency is 0 or Stop.									
35	Error Output Selection 1 (Pr.06-23)	Active when Pr.06-23 is ON.									
36	Error Output Selection 2 (Pr.06-24)	Active when	ı Pr.06-24 is	S ON.							
37	Error Output Selection 3 (Pr.06-25)	Active when Pr.06-25 is ON.									
38	Error Output Selection 4 (Pr.06-26)	Active when Pr.06-26 is ON.									
39	Position Attained (Pr.10-19)	Active when the PG position control point reaches Pr.10-19									
40	Speed Attained (including zero speed)	Active when the output frequency reaches frequency settin or stop.									
		The current be outputted only the mu Therefore, c	position act d. Example: lti-position c current statu	ion status of if setting Pr of the second is is RA (ON	on input termin these three te .02-36–02-38 d point has be I), RA (OFF) a I0. Bit0 is RA	erminals will to 41 and en done. and MO1					
			MO2 Pr.02- 17=41	MO1 Pr.02- 16=41	RY2 Pr.02- 14=41	RY1 Pr.02- 13=41					
		Pr.04-16	0	0	0	1					
		Pr.04-18	0	0	1	0					
		Pr.04-20	0	0	1	1					
		Pr.04-22	0	1	0	0					
41	Multi-position Attained	Pr.04-24	0	1	0	1					
		Pr.04-26	0	1	1	0					
		Pr.04-28	0	1	1	1					
		Pr.04-30	1	0	0	0					
		Pr.04-32	1	0	0	1					
		Pr.04-32	1	0	1	0					
		Pr.04-36	1	0	1	1					
		Pr.04-38	1	1	0	0					
		Pr.04-40	1	1	0	1					
		Pr.04-42	1	1	1	0					
		Pr.04-44	1	1	1	1					
42	Crane Function	Pr.02-34, Pr Active when and output of	r.02-57 and setting Pr.0 current > Pr e of the cra	Pr.02-58. 07-16=Pr.02 .02-33 and	Pr.02-32, Pr.02 -34 and Fcmd Time > Pr.02-3 on is in the foll	l > Pr.02-34 32.					
43	Motor Zero-speed Output (Pr.02-47)	Active when	motor actu	al speed is	less than Pr.0	2-47.					
44	Low Current Output	This function	n needs to l	be used with	n Pr.06-71 – P	r.06-73					

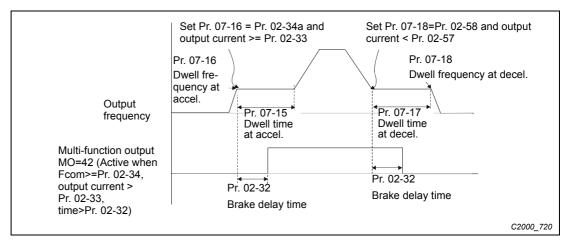
Tab. 12-7: Functions of the programmable outputs (2)

Catting	Functions	Descriptions
Settings 45	Functions UVW Phase Magnet Con- tractor ON/ OFF Switch	Descriptions Set MI=49 (drive enable) and MO=45 (electromagnetic con- tractor ON/OFF switch), then the magnetic contactor will fol- low the drive status to be ON or OFF. Enable Contactor AC Driver MC Motor
46	Master dEb signal output	V(T2) W(T3) W(T3) W(T3) Wix=49 C2000_717 When dEb arises at Master, MO will send a dEb signal to Slave. Then Slave will follow Master's command and decel-
		erate to stop simultaneously.
47	Brake Release at Stop	When drive stops, the corresponding multi-function terminal will be ON if the frequency is less than Pr.02-34. After it is ON, it will be OFF when brake delay time exceeds Pr.02-32.
48	Reserved	02000_, 10
49	Homing Action Complete	Output when homing action complete.

Tab. 12-7: Functions of the programmable outputs (3)



Settings	Functions		Des	criptions						
octangs-		Control multi-function output terminals through CANopen.								
		If to control RY2, then the Pr02-14 = 50. The mapping table of the CANopen DO is below:								
		Discologi	Setting of							
		Physical terminal	related parame-	Attribute	Corresponding Index					
			ters		The bit 0 at					
		RY1	P2-13 = 50	RW	2026-41					
		RY2	P2-14 = 50	RW	The bit 1 at 2026-41					
		MO1	P2-16 = 50	RW	The bit 2 at 2026-41					
		MO2	P2-17 = 50	RW	The bit 3 at 2026-41					
50	Output for CANopen control	MO10	P2-36 = 50	RW	The bit 4 at 2026-41					
		RY10	1200 00		The bit 5 at 2026-41					
		MO11	P2-37 = 50	RW	The bit 6 at 2026-41					
		RY11	1201 00		The bit 7 at 2026-41					
		RY12	P2-38 = 50	RW	The bit 8 at 2026-41					
		RY13 P2-39 = 50		RW	The bit 9 at 2026-41					
		RY14 P2-40 = 5	P2-40 = 50	RW	The bit 10 at 2026-41					
		RY15	P2-41 = 50	RW	The bit 0 at 2026-41					
		Refer to Chapter 15-3-5 for more information.								
51	Output for RS485 communication	FULK3400 UULPUL								
	communication	For commun	ication output of	of communica	ation cards (CMC-					
		MOD01, CM	MC-DN01)							
			Setting of							
		Physical terminal	related pa- rameters	Attribute	Corresponding address					
		RY1	P2-13 = 51	RW	The Bit 0 of 2640					
		RY2	P2-14 = 51	RW	The Bit 1 of 2640					
			P2-15 = 51	RW	The Bit 2 of 2640					
52	Output for	MO1	P2-16 = 51	RW	The Bit 3 of 2640					
	communication card	MO2	P2-17 = 51	RW	The Bit 4 of 2640					
		MO3	P2-18 = 51	RW	The Bit 5 of 2640					
		MO4	P2-19 = 51	RW	The Bit 6 of 2640					
		MO5	P2-20 = 51	RW	The Bit 7 of 2640					
		MO6	P2-21 = 51	RW	The Bit 8 of 2640					
		MO7	P2-22 = 51	RW	The Bit 9 of 2640					
		MO8	P2-23 = 51	RW	The Bit 10 of 2640					
53–64	Reserved									


Tab. 12-7: Functions of the programmable outputs (4)

Settings	Functions		Description	S		
65	Output for CANopen and RS485	To be control output of CANopen & RS485.				
66						
		Status of	Status of s	safety output		
		drive	N.O. (MO=66)	N.C. (MO=68)		
68	SO contact A (N.O.) SO contact B (N.C.)	Normal	Broken circuit (Open)	Short circuit (Close)		
		STO	Short circuit (Close)	Broken circuit (Open)		
			Short circuit (Close)	Broken circuit (Open)		
67	Analog input signal level achieved	Multi-function output terminals operate when analog in signal level is between high level and low level. 03-44: Select the analog signal channel, AVI, ACI, and which is going to be compared. 03-45: The high level of analog input, factory setting is 03-46: The low level of analog input, factory setting is If analog input > 03-45, then multi-function output term operates. If analog input < 03-46, then multi-function output term stops outputting.				

Tab. 12-7: Functions of the programmable outputs (5)

It is recommended to be used with Dwell function as shown in the following:

02.49		A I+: +	unatio		nut o	ottina											
02-18	×	 Multi-function output setting 															
														Factor	ry se	tting:	0000
	Sett	ings		0000	h–FF	FF h	(0: N.	0.; 1	: N.C.)							
	∎ Th	ne set	ting o	f this	paran	neter	is in h	exad	ecima	al.							
	The setting of this parameter is in hexadecimal. multi-function output acts in the opposite way. Example: If Pr. 02-13 = 1 and Pr. 02-18 = 0, Relay 1 is ON when the drive runs and is open when the drive is stopped.																
	If Pr. 02-13 = 1 and Pr. 02-18 = 1, Relay 1 is open when the drive runs and is closed wher the drive is stopped.							WIICH									
	■ Bi	t setti	ng														
	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
	MO20	MO19	MO18	MO17	MO16	MO15	MO14	MO13	MO12	MO11	MO10	MO2	MO1	Reserved	RY2	RY1	

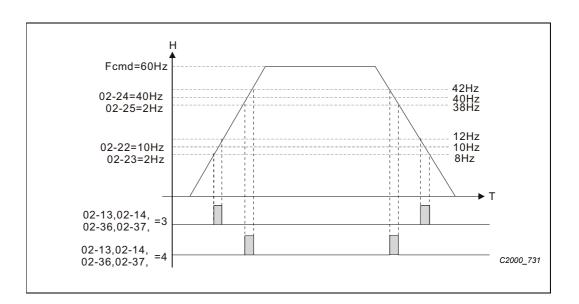
02-19 *X* Terminal counting value attained (return to 0)

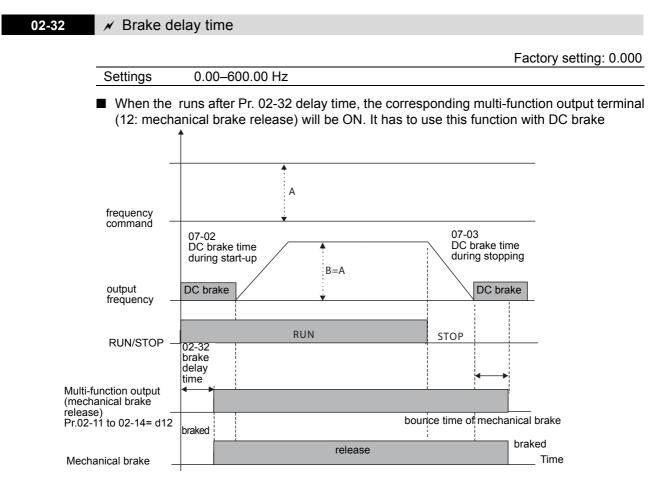
 Factory setting: 0

 Settings
 0–65535

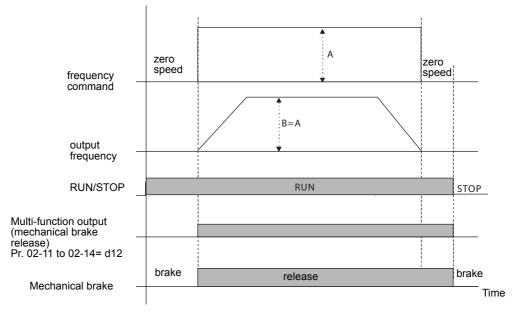
- The counter trigger can be set by the multi-function terminal MI6 (set Pr. 02-06 to 23). Upon completion of counting, the specified multi-function output terminal will be activated (Pr. 02-13–02-14, Pr. 02-36, 02-37 is set to 18). Pr. 02-19 can't be set to 0.
- When the display shows c5555, the drive has counted 5,555 times. If display shows c5555•, it means that real counter value is between 55,550 to 55,559.

02-20	Preliminary counting value attained (not return to 0)	
		Factory setting: 0
	Settings 0–65535	
	When the counter value counts from 1 and reaches this value, the function output terminal will be activated, provided one of Pr. 02-13, to 17 (Preliminary Count Value Setting). This parameter can be a counting to make the drive runs from the low speed to sto	02-14, 02-36, 02-37 set
	(output signal)	c → ↓ ↓ ↓ ↓ .0 msec th of trigger signal
	Terminal Counter Value 02-19=5 RY2 Pr. 02-14-18 02-14=17	
02-21	✓ Digital output gain (DFM)	
		Factory setting: 1
	Settings 1–166	Tactory Setting. T
	It is used to set the signal for the digital output terminals (DFM-DCM output (pulse X work period = 50 %). Output pulse per second = output	
02-22	 Desired frequency attained 1 	
	Facto	ory setting: 60.00/50.00
	Settings 0.00–600.00 Hz	
02-23	✓ The width of the desired frequency attained 1	
		Factory setting: 2.00
	Settings 0.00–600.00 Hz	
02-24	✓ Desired frequency attained 2	
	Facto	ory setting: 60.00/50.00
	Settings 0.00–600.00 Hz	

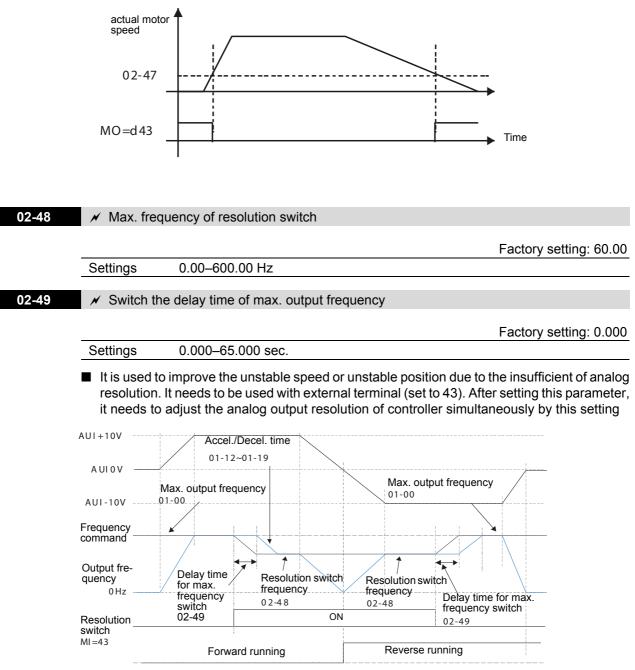



02-25 N The width of the desired frequency attained 2

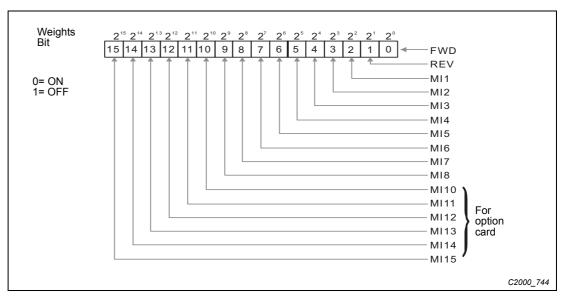
Factory setting: 2.00

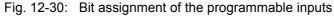

Settings 0.00–600.00 Hz

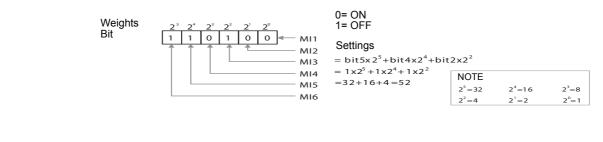
Once output frequency reaches desired frequency and the corresponding multi-function output terminal is set to 3 or 4 (Pr. 02-13, 02-14, 02-36, and 02-37), this multi-function output terminal will be ON.


If this parameter is used without DC brake, it will be invalid. Refer to the following operation timing.

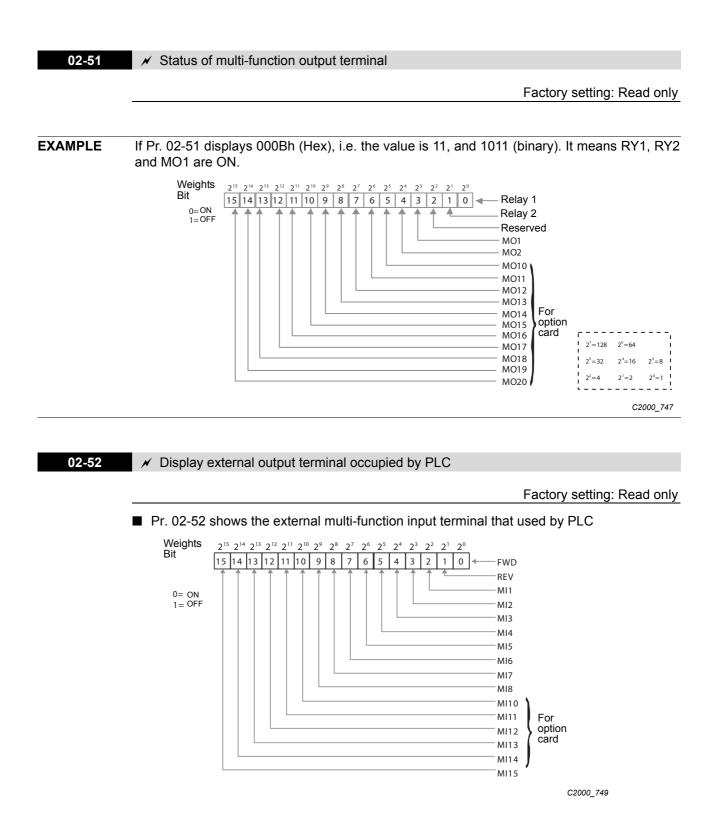
02-33	💉 Output cu	urrent level setting for multi-fund	tion output terminals
			Factory setting: 0
	Settings	0–100 %	
	terminal (P ■ When outp	r. 02-13, 02-14, 02-16 and 02-1	Pr. 02-33, it will activate multi-function output
02-34	✓ Output bo	oundary for multi-function outpu	t terminals
			Factory setting: 3.00
	Settings	0.00–600.00 Hz	
		out frequency is higher or equa r. 02-13, 02-14, 02-16, 02-17 is	al to Pr. 02-34, it will activate the multi-function set to 29).
		out frequency is lower or equa r. 02-13, 02-14, 02-16, 02-17 is	I to Pr. 02-34, it will activate the multi-function set to 30).
02-35	🖌 External	operation control selection a	fter reset and activate
			Factory setting: 0
	Settings	0: Disable	`````````````````````````````````
		1: Drive runs if the run comm after reset or re-boots.	and still exists
	drive will ru Status 2: A	JN.	nd the external terminal for RUN keeps ON, the detected and the external terminal for RUN keeps ET key.
02-47	💉 Zero-spe	eed level of motor	
02-47	✓ Zero-spe	eed level of motor	Factory setting: 0

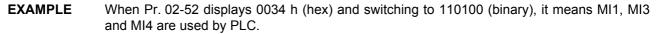

- This parameter should be used with the multi-function output terminals (set to 43). It needs to be used with PG cared and motor with encoder feedback.
- This parameter is used to set the level of motor zero-speed. When the actual speed is lower than this setting, the corresponding multi-function output terminal 43 will be ON as shown as follows.

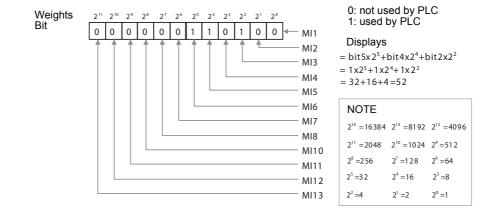



02-50 N Display the status of multi-function input terminal

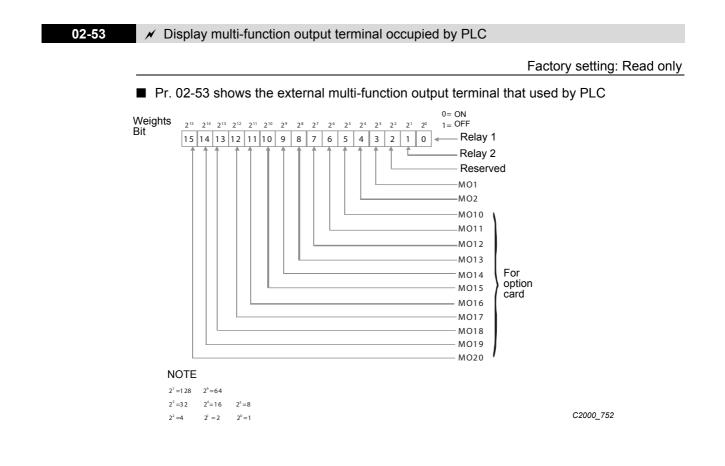
Factory setting: Read only

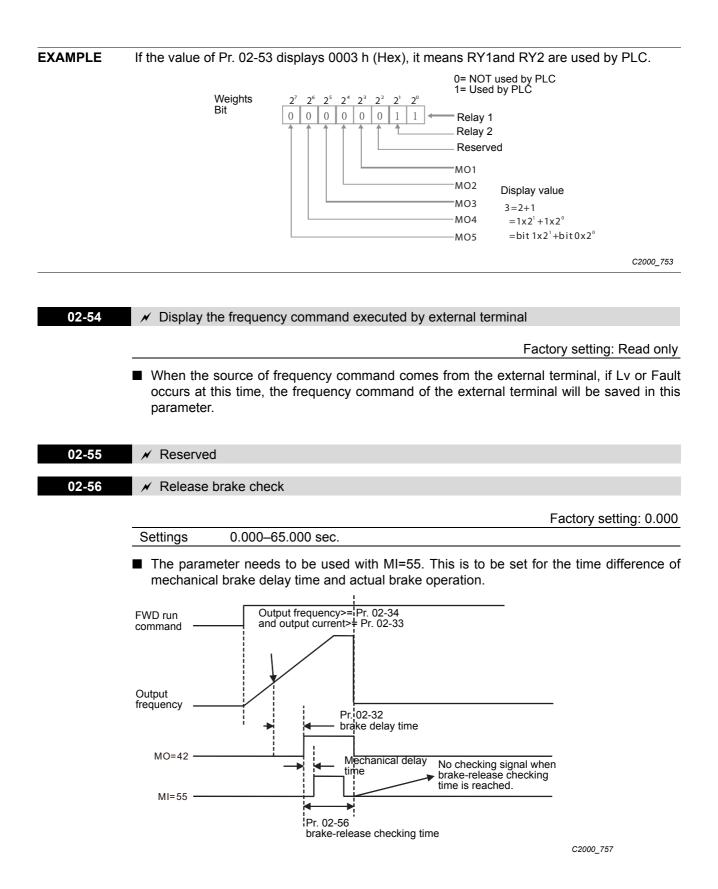



EXAMPLE If Pr. 02-50 displays 0034 h (Hex), i.e. the value is 52, and 110100 (binary). It means MI1, MI3 and MI4 are active.

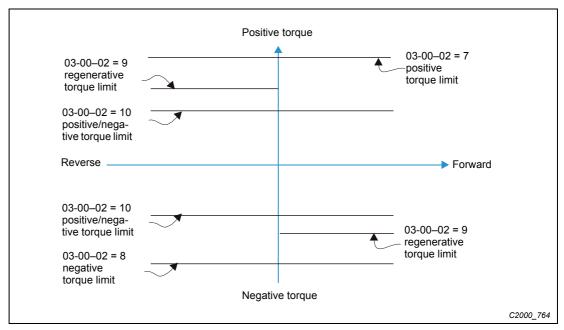


C2000_745



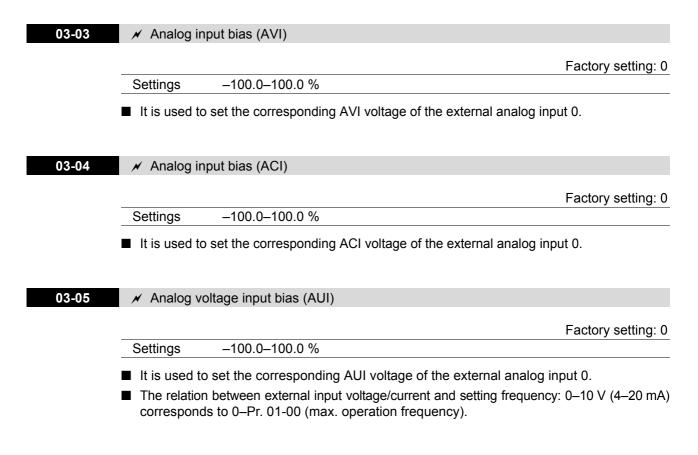


C2000_750



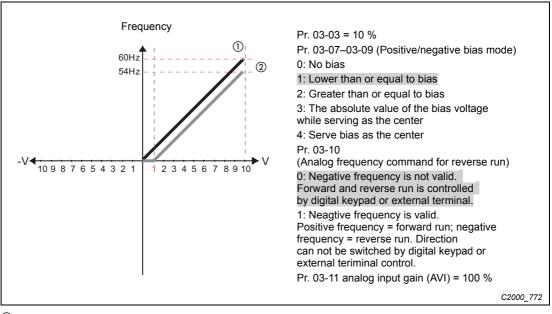
02-57	Multi-funct	ion output terminal: Function 42: brake current checking point
		Factory setting: 0
	Settings	0–150 %
02-58	🖌 Multi funct	ion output terminal: Function 42: brake frequency checking point
02-30		on output terminal. Function 42. brake nequency checking point
		Factory setting: 0.00
	Settings	0.00–655.35 Hz
		r. 02-33, Pr. 02-34, Pr. 02-57 and Pr. 02-58 can be applied on setting up cranes. ne action #42 to set up multi-function output Pr. 02-13, Pr. 02-14, Pr. 02-16, and
	Current (>=(Point of the	It current of a drive is higher than the setting of Pr. 02-33 Pivot Point of the 02-33) and when output frequency is higher than the setting of Pr. 02-34 Pivot Frequency (>= 02-34), choose #42 to set up Multi-function output Pr. 02-13, r. 02-16 and Pr. 002-17 after the delay time set at Pr. 02-32.
	drive is lowe than the set	ivot Point of the Current 's setting $02-57\neq0$ and when the output current of the er than the setting of Pr. 02-57 (<02-57), or when the output frequency is lower ing of Pr. 02-58 (<02-58), the disable the setting #42 of the multi-function output r. 02-14, Pr. 02-16, Pr. 02-17.
	current (<02	P-57 = 0, the output current is lower than setting of Pr. 02-33 Pivot Point of the -33) or when output frequency is lower than the setting of Pr. 02-58(<02-58), etting of #42 of the multi-function output Pr. 02-13, Pr. 02-14, Pr. 02-16, Pr. 02-17.
02-70	✓ IO card typ	De
		Factory setting: Read only
	Settings	0: No IO card
		1: EMC-BPS01 card
		2: No IO card
		3: No IO card
		4: EMC-D611A card
		5: EMC-D42A card 6: EMC-R6AA card
		6: EMC-R6AA Cald 7: No IO card
		1. NO IO GAIU

12.4 Analog input/output parameter

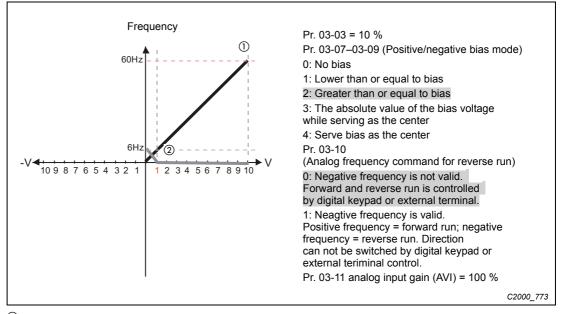

NOTE *i* This parameter can be set during operation.

03-00	💉 Analog ir	put selection (AVI)			
					Factory setting: 1
03-01	💉 Analog ir	put selection (ACI)			
					Factory setting: 0
03-02	💉 Analog ir	put selection (AUI)			
					Factory setting: 0
	Settings	0: No function 1: Frequency comm 2: Torque comman 3: Torque offset co 4: PID target value 5: PID feedback sig 6: PTC thermistor i 7: Positive torque I 8: Negative torque 9: Regenerative tor 10: Positive/negative 11: PT100 thermistor 12: Reserved 13: PID compensator 14-20: Reserved	d (torque limit u mmand nput value imit limit rque limit ve torque limit tor input value		
	When use analog input as PID reference value, Pr. 00-20 must set 2 (analog input). Setting method 1: Pr. 03-00–03-02 set 1 as PID reference input Setting method 2: Pr. 03-00–03-02 set 4 as PID reference input If the setting value 1 and set value 4 existed at the same time, AVI input has highest priority to become PID reference input.				
	■ When use analog input as PID compensation value, Pr. 08-16 must set 1 (Source of PID compensation is analog input). The compensation value can be observed via Pr. 08-17.				
		frequency command of 0 – max. output frequency			nding value for 0-±10 V/
		torque command or to output torque (Pr. 11-2		corresponding valu	ue for 0–±10 V/4–20 mA
	When it is torque.	orque compensation,	the correspondi	ng value for 0–±10) V/4–20 mA is 0 – rated

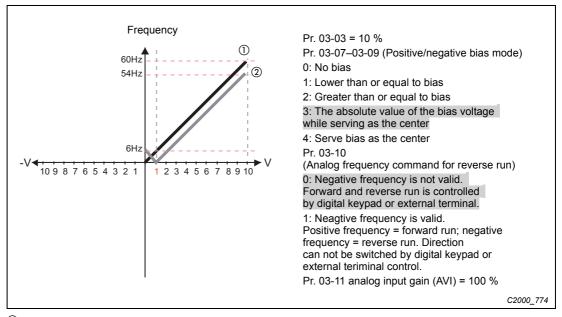
Fig. 12-31: Torque limits


■ When Pr. 03-00–Pr. 03-02 have the same setting, then the AVI will be the prioritized selection.

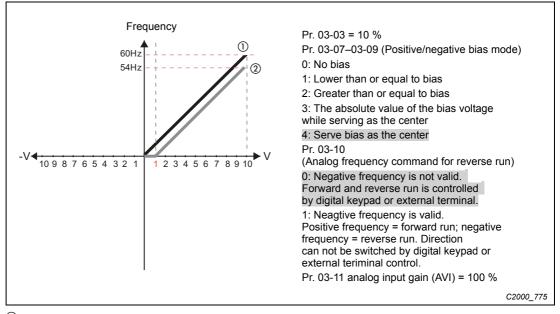
03-06	✓ Reserved	
03-07	✓ Positive/negative bias mode (AVI)	
03-08	✓ Positive/negative bias mode (ACI)	
03-09	✓ Positive/negative bias mode (AUI)	
		Factory setting: 0


Settings	0: Zero bias
	1: Lower than or equal to bias
	2: Greater than or equal toe bias
	3: The absolute value of the bias voltage while serving as the center.
	4: Serve bias as the center.

In a noisy environment, it is advantageous to use negative bias to provide a noise margin. It is recommended NOT to use less than 1 V to set the operation frequency.

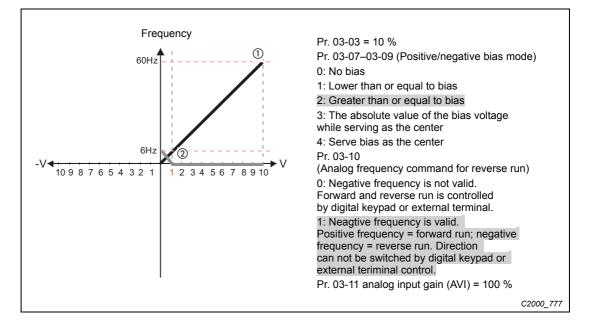


1 Black line: curve with no bias

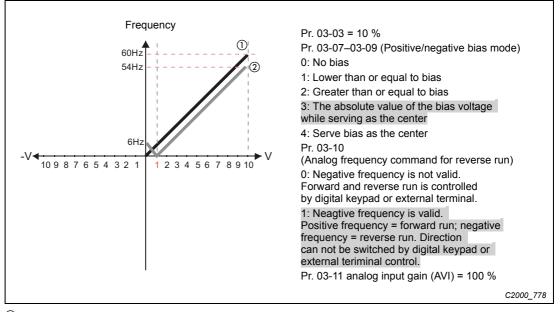


- 1 Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias

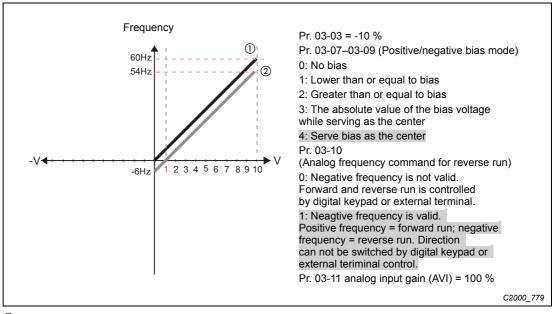
- 1 Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias

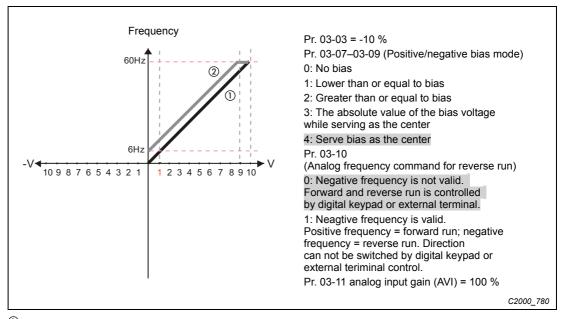


- $^{\textcircled{}}$ Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias

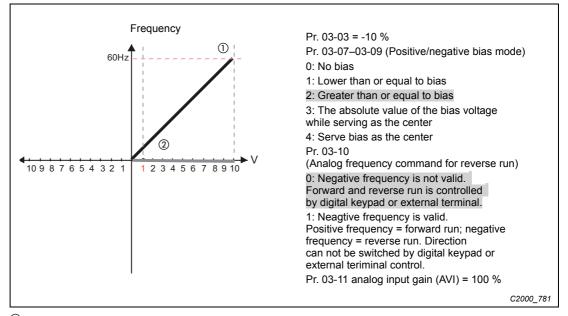


- $^{\textcircled{}}$ Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias

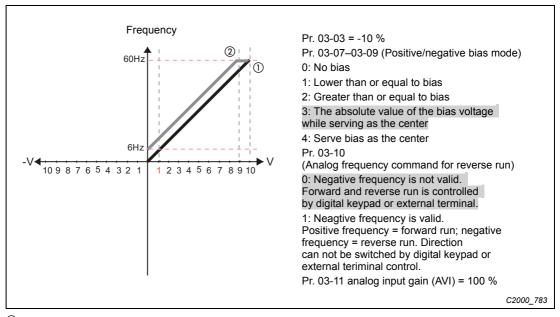



- ⁽¹⁾ Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias

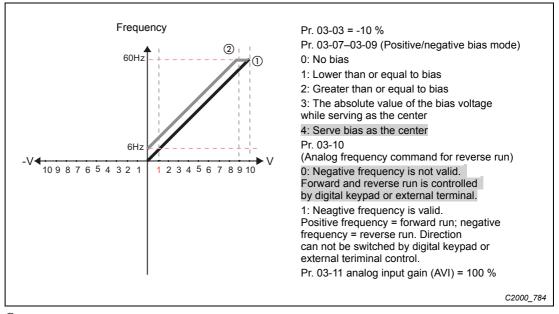
- $^{(1)}$ Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias



- 1 Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias

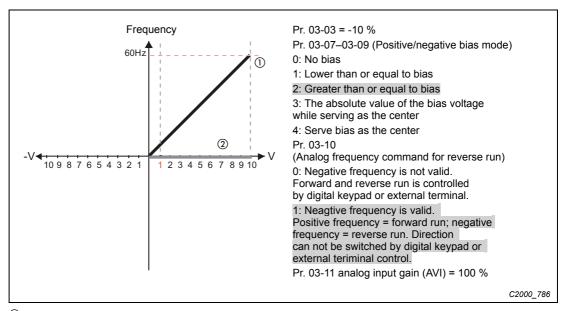


- ^① Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias

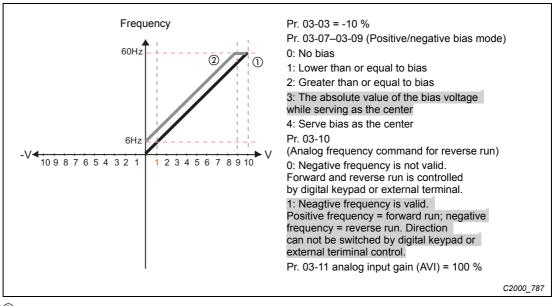


- 1 Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias

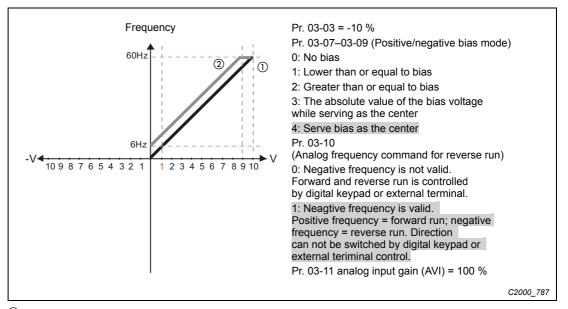
- $^{\textcircled{}}$ Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias

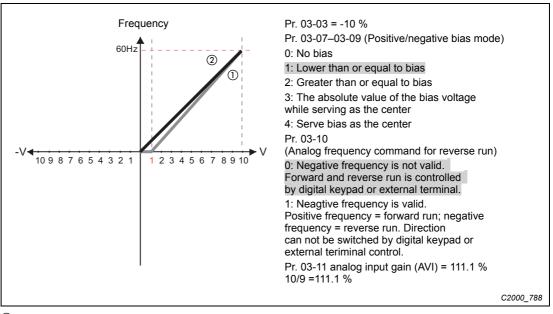


- 1 Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias

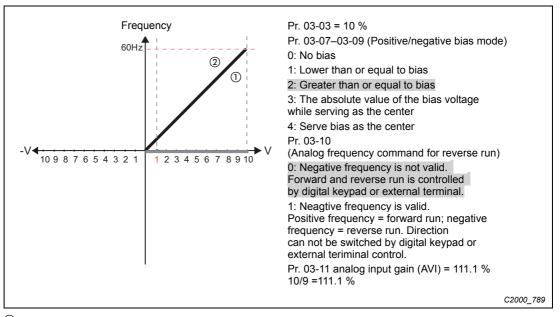


- 1 Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias

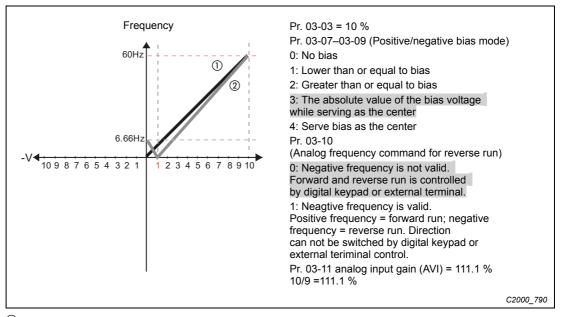



- ^① Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias

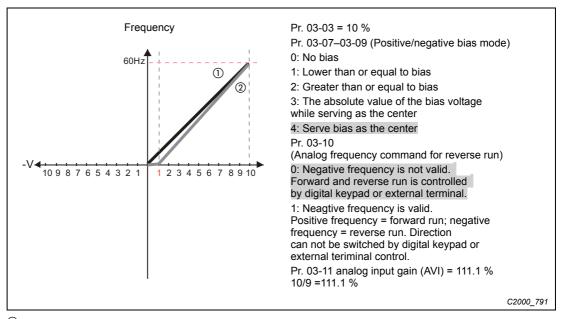
^① Black line: curve with no bias

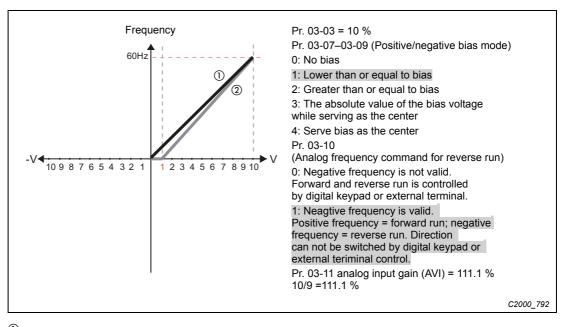


- 1 Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias

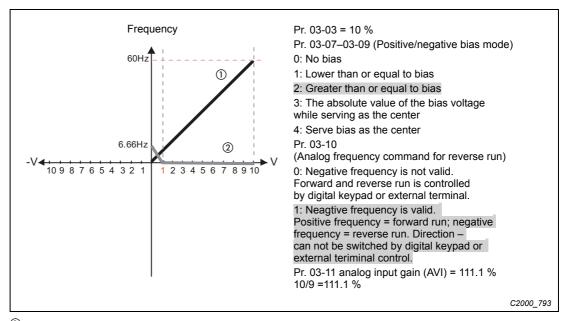


- ^① Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias

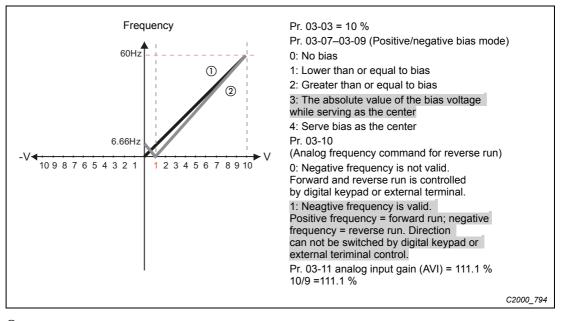



- 1 Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias

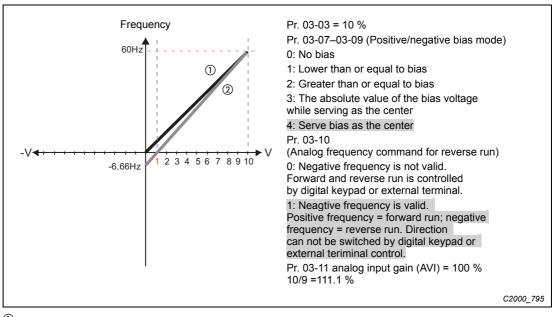
- $^{\textcircled{1}}$ Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias

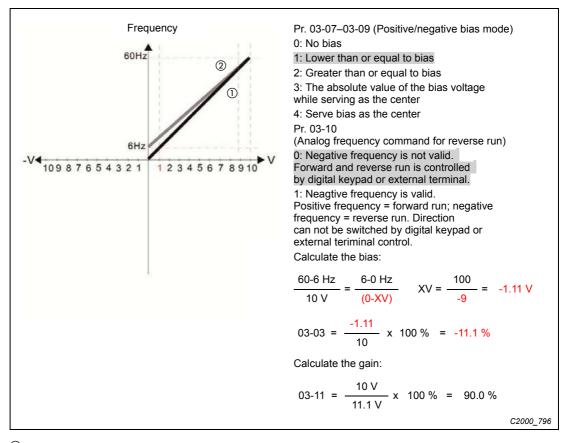


- 1 Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias

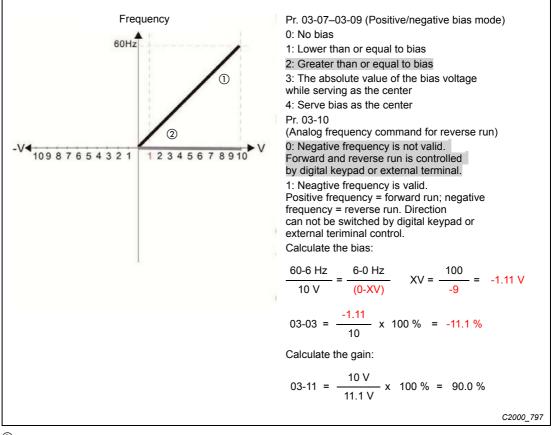


- 1 Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias

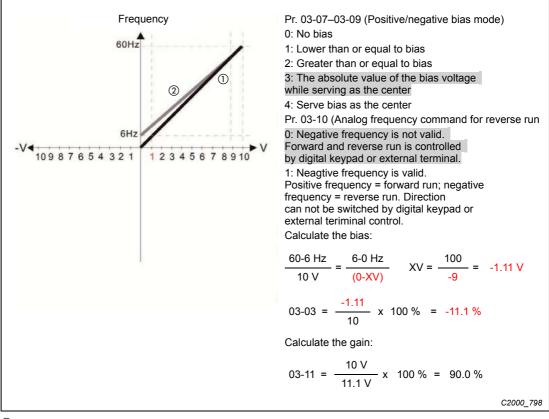



- $^{\textcircled{1}}$ Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias

- ① Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias

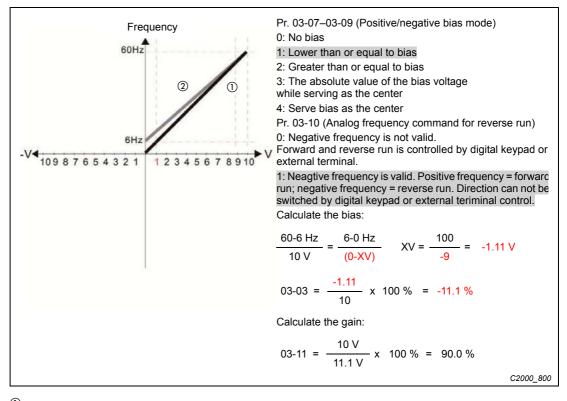


- 1 Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias


- 1 Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias

1 Black line: curve with no bias

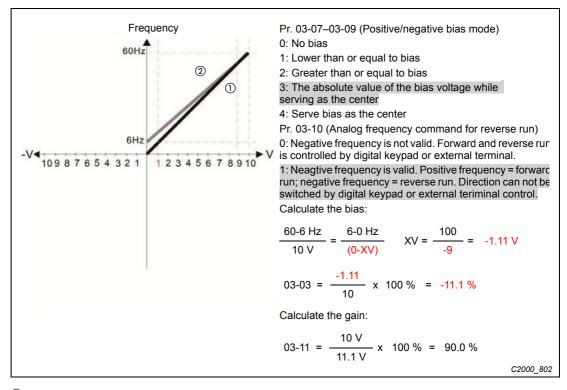
2 Gray line: curve with bias


Black line: curve with no bias
 Gray line: curve with bias

Frequency	Pr. 03-07–03-09 (Positive/negative bias mode)
60Hz 60Hz 0 0 0 0 0 0 0 0 0 0 0 0 0	 0: No bias 1: Lower than or equal to bias 2: Greater than or equal to bias 3: The absolute value of the bias voltage while serving as the center 4: Serve bias as the center Pr. 03-10 (Analog frequency command for reverse run) 0: Negative frequency is not valid. Forward and reverse rur V is controlled by digital keypad or external terminal. 1: Neagtive frequency is valid. Positive frequency = forwarc
	$\frac{60.6 \text{ Hz}}{10 \text{ V}} = \frac{6.0 \text{ Hz}}{(0-\text{XV})} \text{XV} = \frac{100}{-9} = -1.11 \text{ V}$
	$03-03 = \frac{-1.11}{10} \times 100 \% = -11.1 \%$
	Calculate the gain:
	$03-11 = \frac{10 \text{ V}}{11.1 \text{ V}} \times 100 \% = 90.0 \%$
	C2000_799

1 Black line: curve with no bias

 $^{\textcircled{2}}$ Gray line: curve with bias

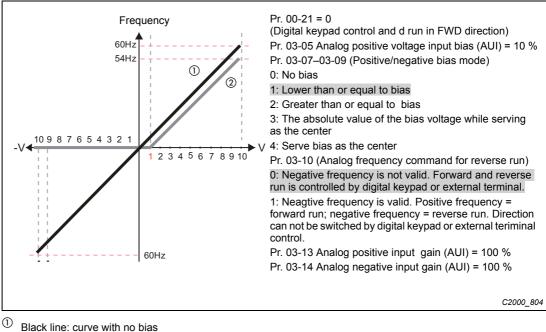


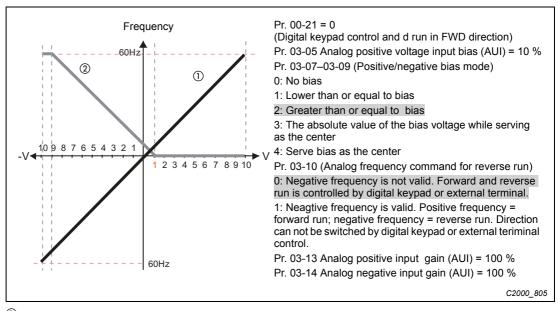
- 1 Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias

Frequency	Pr. 03-07–03-09 (Positive/negative bias mode)
-V4	 0: No bias 1: Lower than or equal to bias 2: Greater than or equal to bias 3: The absolute value of the bias voltage while serving as the center 4: Serve bias as the center Pr. 03-10 (Analog frequency command for reverse run) 0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
10307034321 12343078310	1: Neagtive frequency is valid. Positive frequency = forwarc run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control. Calculate the bias: $\frac{60-6 \text{ Hz}}{10 \text{ V}} = \frac{6-0 \text{ Hz}}{(0-\text{XV})} \qquad \text{XV} = \frac{100}{-9} = -1.11 \text{ V}$
L	$03-03 = \frac{-1.11}{10} \times 100 \% = -11.1 \%$
	Calculate the gain:
	$03-11 = \frac{10 \text{ V}}{11.1 \text{ V}} \times 100 \% = 90.0 \%$
	C2000_801

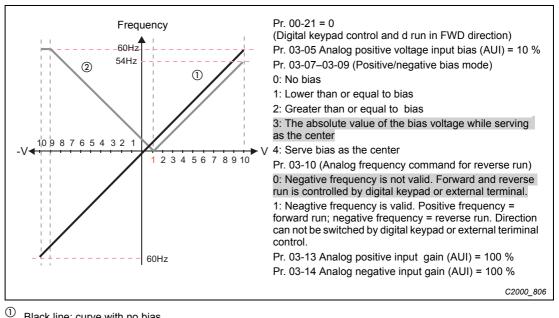
1 Black line: curve with no bias

 $^{\textcircled{2}}$ Gray line: curve with bias


- 1 Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias

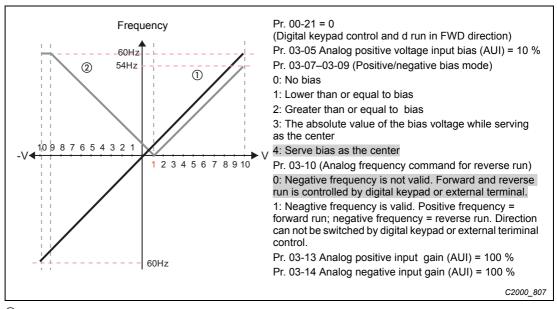

Frequency	Pr. 03-07–03-09 (Positive/negative bias mode)
GHZ 6HZ 6HZ 0 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 V	 Pr. 03-07–03-09 (Positive/negative bias mode) 0: No bias 1: Lower than or equal to bias 2: Greater than or equal to bias 3: The absolute value of the bias voltage while serving as the center 4: Serve bias as the center Pr. 03-10 (Analog frequency command for reverse run) 0: Negative frequency is not valid. Forward and reverse rur is controlled by digital keypad or external terminal. 1: Neagtive frequency is valid. Positive frequency = forwarc run; negative frequency = reverse run. Direction can not be
	Switched by digital keypad or external teriminal control. Calculate the bias: $\frac{60-6 \text{ Hz}}{10 \text{ V}} = \frac{6-0 \text{ Hz}}{(0-\text{XV})} \qquad \text{XV} = \frac{100}{-9} = -1.11 \text{ V}$
I	$03-03 = \frac{-1.11}{10} \times 100 \% = -11.1 \%$
	Calculate the gain:
	$03-11 = \frac{10 \text{ V}}{11.1 \text{ V}} \times 100 \% = 90.0 \%$
	C2000_803

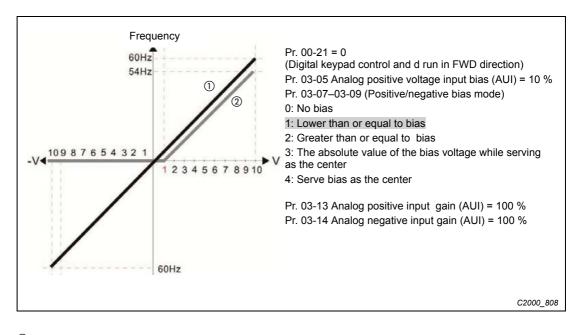
 $^{\textcircled{2}}$ Gray line: curve with bias



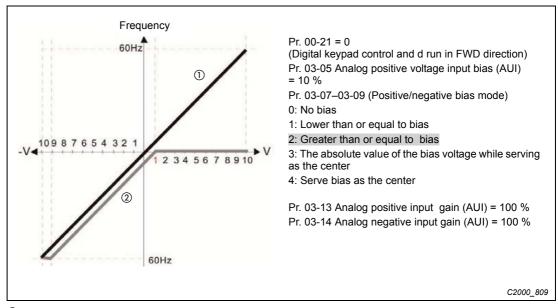
- Black line. Curve with no blas
- $^{(2)}$ Gray line: curve with bias

1 Black line: curve with no bias

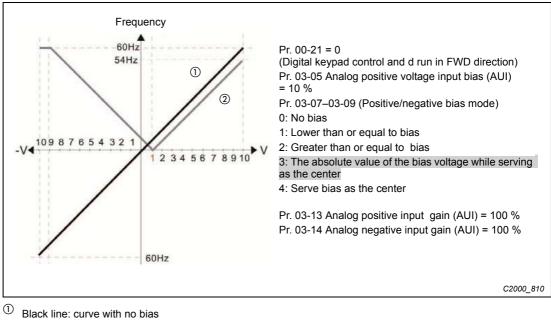

2 Gray line: curve with bias


Black line: curve with no bias

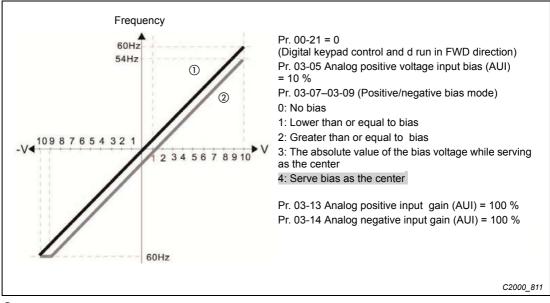
2 Gray line: curve with bias



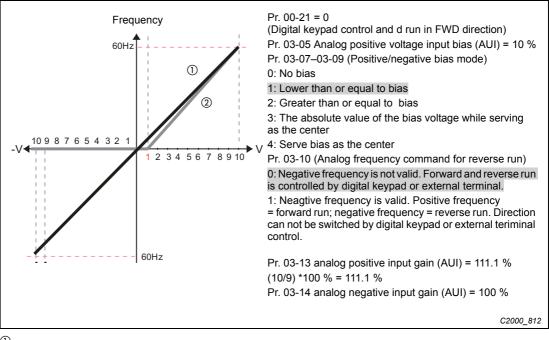
- $^{\textcircled{1}}$ Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias



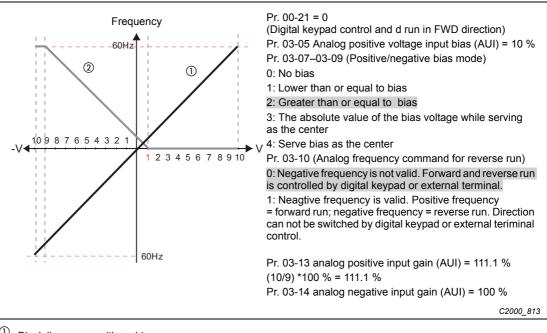
- ⁽¹⁾ Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias


1 Black line: curve with no bias

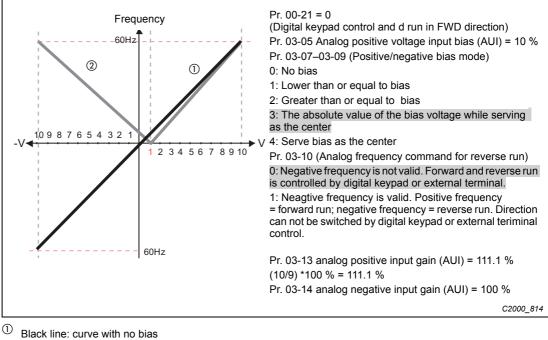
2 Gray line: curve with bias



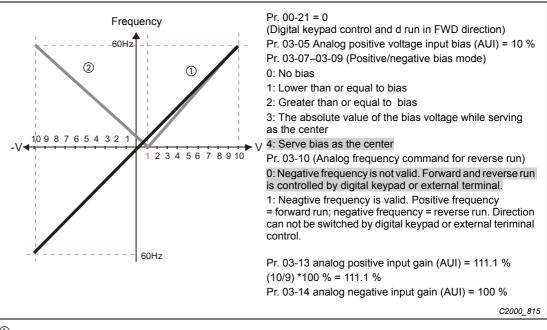
2 Gray line: curve with bias



 $^{\textcircled{}}$ Black line: curve with no bias

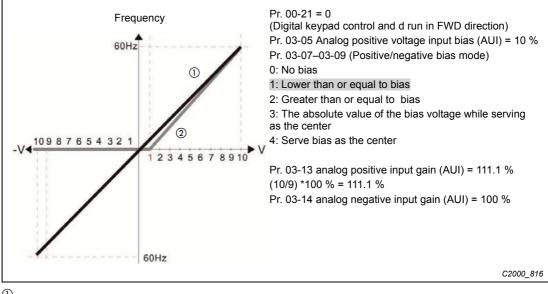


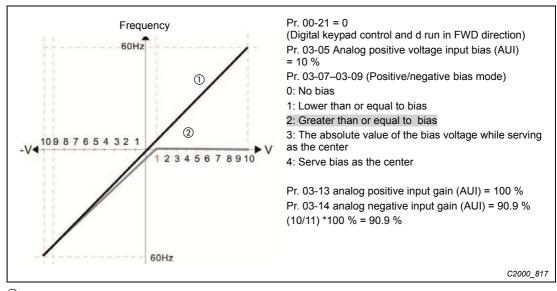
- ^① Black line: curve with no bias
- $^{(2)}$ Gray line: curve with bias



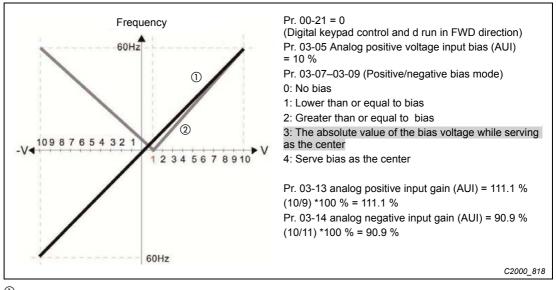
1 Black line: curve with no bias

2 Gray line: curve with bias

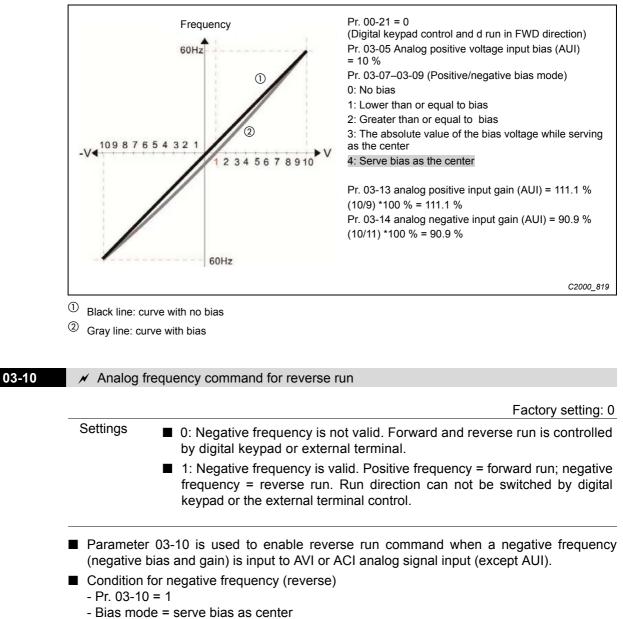




① Black line: curve with no bias


⁽²⁾ Gray line: curve with bias

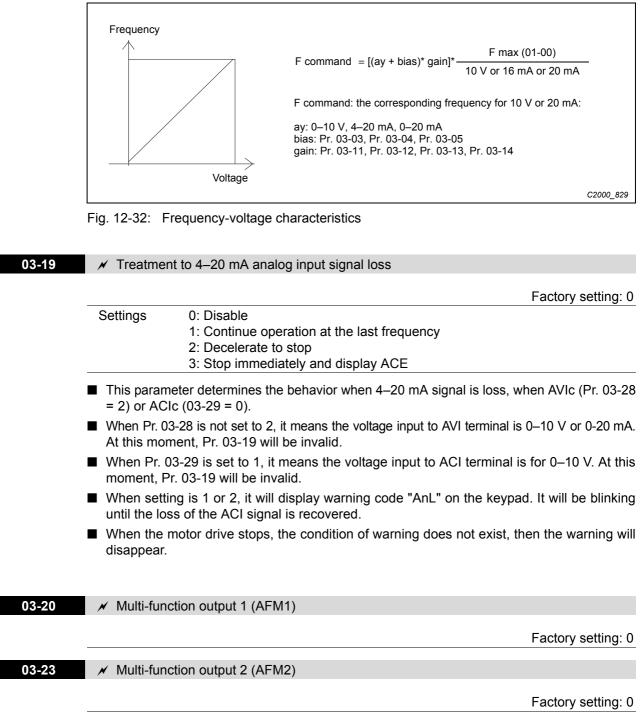
 $^{\textcircled{1}}$ Black line: curve with no bias



- 1 Black line: curve with no bias
- ⁽²⁾ Gray line: curve with bias

 $^{\textcircled{}}$ Black line: curve with no bias

- Corresponded analog input gain < 0 (negative), make input frequency be negative.
- In using addition function of analog input (Pr. 03-18 = 1), when analog signal is negative after adding, this parameter can be set for allowing reverse or not. The result after adding will be restricted by "Condition for negative frequency (reverse)".


03-11	✓ Analog input gain (AVI)
03-12	✓ Analog input gain (ACI)
03-13	✓ Analog positive input gain (AUI)
03-14	✓ Analog negative input gain (AUI)
	Factory setting: 100.0
	Settings -500.0-500.0 %
	Parameters 03-03 to 03-14 are used when the source of frequency command is the analog voltage/current signal.
03-15	✓ Analog input filter time (AVI)
03-16	✓ Analog input filter time (ACI)
03-17	✓ Analog input filter time (AUI)
	Factory setting: 0.01
	Settings 0.00–20.00 sec
	These input delays can be used to filter noisy analog signal.
	 When the setting of the time constant is too large, the control will be stable but the control response will be slow. When the setting of time constant is too small, the control response will be faster but the control may be unstable. To find the optimal setting, please adjust the setting according to the control stable or response status.
03-18	✓ Addition function of the analog input
	Factory setting: 0
	Settings 0: Disable (AVI, ACI, AUI) 1: Enable
	 When Pr. 03-18 is set to 1: EX1: Pr. 03-00 = Pr. 03-01 = 1 Frequency command = AVI+ACI

EX3: Pr. 03-00 = Pr. 03-02 = 1 Frequency command = AVI+AVI2

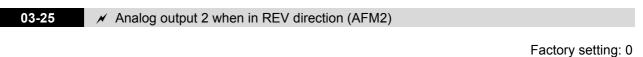
EX4: Pr. 03-01 = Pr. 03-02 = 1 Frequency command = ACI+AVI2

■ When Pr. 03-18 is set to 0 and the analog input setting is the same, the priority for AVI, ACI and AUI are AVI>ACI>AUI.

Settings 0–23

C2000 series

Se	ttings	Functions	Descriptions
	0	Output frequency (Hz)	Max. frequency Pr. 01-00 is regarded as 100 %.
	1	Frequency command (Hz)	Max. frequency Pr. 01-00 is regarded as 100 %.
	2	Motor speed (Hz)	600 Hz is regarded as 100 %
	3	Output current (rms)	(2.5 X rated current) is regarded as 100 %
	4	Output voltage	(2 X rated voltage) is regarded as 100 %
	5	DC Bus voltage	450 V (900 V) = 100 %
	6	Power factor	-1.000-1.000 = 100 %
	7	Power	Rated power is regarded as 100 %
	8	Output torque	Full-load torque is regarded as 100 %
	9	AVI	0-10 V=0-100 %
	10	ACI	0–20 mA=0–100 %
	11	AUI	-10-10 V=0-100 %
	12	q-axis current (Iq)	(2.5 X rated current) is regarded as 100 %
	13	q-axis feedback value (Iq)	(2.5 X rated current) is regarded as 100 %
	14	d-axis current (Id)	(2.5 X rated current) is regarded as 100 %
	15	d-axis feedback value (Id)	(2.5 X rated current) is regarded as 100 %
	16	q-axis voltage (Vq)	250 V (500 V) = 100 %
	17	d-axis voltage(Vd)	250 V (500 V) = 100 %
	18	Torque command	Rated torque is regarded as 100 %
	19	PG2 frequency command	Max. frequency Pr. 01-00 is regarded as 100 %.
	20	Output for CANopen control	For CANopen analog output
	21	RS485 analog output	For communication output (CMC-MOD01, CMC- EIP01, CMC-PN01, CMC-DN01)
	22	Analog output for communication card	For communication output (CMC-MOD01, CMC- EIP01, CMC-PN01, CMC-DN01)
	23	Constant voltage/ current output	Pr. 03-32 and Pr. 03-33 controls voltage/current output level 0–100 % of Pr. 03-32 corresponds to 0–10 V of AFN
	24	Reserve	
	25	CAN & 485 output	
ſab.	12-8:	Function chart	
×	Gain c	f analog output 1 (AFM1)	
			Factory setting: 10
×	Gain c	f analog output 2 (AFM2)	
			Factory setting: 10
Se	ettings	0–500.0 %	


03-21

03-24

Factory setting: 0

Settings	0: Absolute value in REV direction
-	1: Output 0 V in REV direction; output 0–10 V in FWD direction
	2: Output 5-0 V in REV direction; output 5–10 V in FWD direction

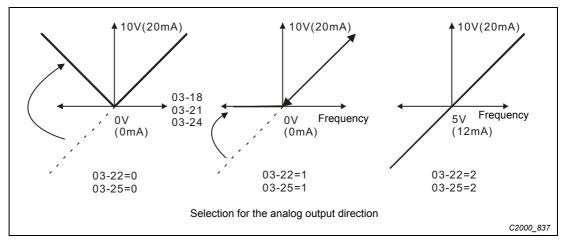


Fig. 12-33: Selection of the revolution direction for the analog inputs

03-26	Reserve	
03-27	✓ AFM2 Output Bias	
		Factory setting: 0.00
	Settings -100.00-100.00 %	
EXAMPLES	① AFM2 0–10 V is set output frequency, the output equation is	
	10 V x Output frequency 01-00 x 03 - 24 + 10 V x 03 - 27	
	② AFM2 0–20 mA is set output frequency, the output equation is	
	20 mA x Output frequency 01-00 x 03 - 24 + 20 mA x 03 - 2 7	
	③ AFM2 4–20 mA is set output frequency, the output equation is	
	4 mA + 16 mA x Output frequency 01-00 x 03 - 24 + 16 mA x 03 - 27	
	This parameter can set the corresponded voltage of 0 for analog out	tput.

03-28	💉 AVI selecti	on	
		Factory	setting: 0
	Settings	0: 0-10 V 1: 0-20 mA 2: 4-20 mA	
03-29	💉 ACI selecti	on	
		Factory	setting: 0
	Settings	0: 4-20 mA 1: 0-10 V 2: 0-20 mA	
	-	ing the input mode, please check if the switch of external terminal (S) to the setting of Pr. 03-28–03-29.	№3, SW4)
03-30	Status of PLC	output terminal	
		Factory s	etting: ##
	Settings	0–65535	
		Monitor the status of PLC analog output terminals	
	■ Pr. 03-30 sh	ows the external multi-function output terminal that used by PLC	
	Weights 2^{15} 2 Bit 15 14 Note:	4 13 12 11 10 9 8 7 6 5 4 3 2 1 0 AFM 1 AFM 2	
	2 ⁷ =128	$3 2^{\circ} = 64$	
	2 ⁵ = 3 2		
	2 ² =4	$2^{1} = 2$ $2^{0} = 1$	
			C2000_843
EXAMPLE	If the value of I	Pr. 03-30 displays 0002h (Hex), it means AFM2 are used by PLC.	
	Weights	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
		splay value	
		$=1 \times 2^{1} + 0 \times 2^{0}$	
		$=bit 1x2^{1}+bit 0x2^{0}$	
			C2000_844

DELTA

03-31	✔ AFM2 0-2	0 mA output selection	
			Factory setting: 0
	Settings	0: 0–20 mA output 1: 4–20 mA output	
03-32	💉 AFM1 DC	output setting level	
03-33		output setting level	
	<i>// / / / / / / / / / / / / / / / / / /</i>		F (
	Settings	0.00–100.00 %	Factory setting: 0.00
03-34	Reserve		
03-35	💉 AFM1 filter	output time	
03-36	💉 AFM2 filter	output time	
			Factory setting: 0.01
	Settings	0.00-20.00 seconds	
03-37 – 03-43	Reserve		
03-44	💉 MO by Al I		
00-44			_
	Settings	0: AVI	Factory setting: 0
	Coungo	1: ACI	
		2: AUI	
03-45	× Al upper le	vel	
			Factory setting: 50 %
	Settings	–100 %–100 %	
03-46	✓ Al lower let	vel	
			Factory setting: 50 %
	Settings	-100 %-100 %	r dotory county. co //
	achieved. Th MO shutoffs	n requires working with Multi-function Output iten ne MO active when AI input level is higher than Pr. when the AI input is lower that Pr. 03-46 AI Lower el must be higher than AI Lower level.	03-45 AI Upper level. The

03-47 – 03-49	Reserve		
03-50	💉 Analog inp	out curve selection	
			Factory setting: 0
	Settings	0: regular curve 1: 3 point curve of AVI 2: 3 point curve of ACI 3: 3 point curve of AVI & ACI 4: 3 point curve of AUI 5: 3 point curve of AVI & AUI 6: 3 point curve of ACI & AUI 7: 3 point curve of AVI & ACI & AUI	
03-51	💉 AVI low po	pint	
			Factory setting: 0.00
	Settings	03-28 = 0, 0.00–10.00 V 03-28 ≠ 0, 0.00–20.00 mA	
03-52	💉 AVI propo	rtional low point	
			Factory setting: 0.00
	Settings	0.00–100.00 %	
03-53	💉 AVI mid po	pint	
			Factory setting: 5.00
	Settings	03-28 = 0, 0.00–10.00 V 03-28 ≠ 0, 0.00–20.00 mA	
03-54	💉 AVI propo	rtional mid point	
			Factory setting: 50.00
	Settings	0.00–100.00 %	
03-55	💉 AVI high p	oint	
			Factory setting:10.00
	Settings	03-28 = 0, 0.00–10.00 V 03-28 ≠ 0, 0.00–20.00 mA	
03-56	× AVI propo	rtional high point	
			Factory setting: 100.00
	Settings	0.00–100.00 %	

- When Pr. 03-28 = 0, AVI setting is 0–10 V and the unit is in voltage (V).
- When Pr. 03-28 \neq 0, AVI setting is 0–20 mA or 4–20 mA and the unit is in current (mA).
- When setting analog input AVI to frequency command, it 100 % corresponds to Fmax (Pr. 01-00 Max. operation frequency).
- The 3 parameters (Pr. 03-51, Pr. 03-53 and Pr. 03-53) must meet the following argument: Pr. 03-51 < Pr. 03-53 < P03-55. The 3 proportional points (Pr. 03-52, Pr. 03-54 and Pr. 03-56) doesn't have any limit. Between two points is a linear calculation. The ACI and AUI are same as AVI.
- The output % will become 0% when the AVI input value is lower than low point setting. For example: Pr. 03-51 = 1V; Pr. 03-52 = 10 %. The output will become 0 % when AVI input is lower than 1 V. If the AVI input is swing between 1 V and 1.1 V, drive's output frequency will beats between 0 % and 10 %

03-57	💉 ACI low p	point	
			Factory setting: 4.00
	Settings	Pr. 03-29 = 1, 0.00–10.00 V Pr. 03-29 ≠ 1, 0.00–20.00 mA	
		<i>··</i> · · · ·	
03-58	ACI prop	ortional low point	
			Factory setting: 0.00
	Settings	0.00–100.00 %	, , ,
03-59	💉 ACI mid	point	
			Factory setting: 12.00
	Settings	Pr. 03-29 = 1, 0.00–10.00 V Pr. 03-29 ≠ 1, 0.00–20.00 mA	, <u> </u>
03-60	💉 ACI prop	ortional mid point	
			Factory setting: 50.00
	Settings	0.00–100.00 %	
03-61	💉 ACI high	point	
			Factory setting: 20.00
	Settings	Pr. 03-29 = 1, 0.00–10.00 V Pr. 03-29 ≠ 1, 0.00–20.00 mA	Tuotory Souring. 20.00
03-62	💉 ACI prop	ortional high point	
			Factory setting: 100.00
	Settings	0.00–100.00 %	

- When Pr. 03-29 = 1, ACI setting is 0–10 V and the unit is in voltage (V).
- When Pr. 03-29 \neq 1, ACI setting is 0–20 mA or 4–20 mA and the unit is in current (mA).
- When setting analog input ACI to frequency command, it 100 % corresponds to Fmax
- The 3 parameters (Pr. 03-57, Pr. 03-59 and Pr. 03-61) must meet the following argument: Pr. 03-57 < Pr. 03-59 < Pr. 03-61. The 3 proportional points (Pr. 03-58, Pr. 03-60 and Pr. 03-62) doesn't have any limit. Between two points is a linear calculation.(Pr. 01-00 Max. operation frequency).
- The output % will become 0% when the ACI input value is lower than low point setting. For example: Pr. 03-57 = 2 mA; Pr. 03-58 = 10 %. The output will become 0 % when AVI input is lower than 2 mA. If the ACI input is swing between 2 mA and 2.1 mA, drive's output frequency will beats between 0 % and 10 %.

03-63	💉 Positive A	UI voltage low point	
			Factory setting: 0.00
	Settings	0.00–10.00 V	
03-64	. Dopitivo A	Ill voltage propertienal low point	
03-64	A Positive A	UI voltage proportional low point	
			Factory setting: 0.00
	Settings	-100.00 %-100.00 %	
03-65	💉 Positive A	UI voltage mid point	
			Factory actting: 5.00
	Settings	0.00–10.00 V	Factory setting: 5.00
	octango	0.00 10.00 V	
03-66	💉 Positive A	UI voltage proportional mid point	
			Factory setting: 50.00
	Settings	-100.00 %-100.00 %	
	0		
02 67		I II veltere high point	
03-67	N Positive A	UI voltage high point	
			Factory setting: 10.00
	Settings	0.00–10.00 V	
03-68	✓ Positive A	UI voltage proportional high point	
	,		
			Factory setting: 100.00
	Settings	-100.00 %-100.00 %	
		ng positive voltage AUI to frequency command, in Max. operation frequency) and the motor runs in f	•
	,	e positive voltage AUI points can be set according	
		tion, there is no setting limit for AUI points.	

03-69	V Negative /	AUI voltage low point	
-03-09			
			Factory setting: 0.00
	Settings	0.00–10.00 V	
03-70	V Negative (AUI voltage proportional low point	
05-70		to voltage proportional low point	
			Factory setting: 0.00
	Settings	-100.00 %-100.00 %	
03-71	✓ Negative A	AUI voltage mid point	
	Settings	0.00–10.00 V	Factory setting: -5.00
	Settings	0.00-10.00 V	
03-72	Negative A	AUI voltage proportional mid point	
			Factory setting: -50.00
	Settings	-100.00 %-100.00 %	Tactory setting: -50.00
	Cottingo		
03-73	✓ Negative A	AUI voltage high point	
			Factory setting: -10.00
	Settings	0.00–10.00 V	
03-74	Negative A	AUI voltage proportional high point	
			Factory setting: -100.00
	Settings	-100.00 %-100.00 %	
		g negative voltage AUI to frequency commar lax. operation frequency) and the motor runs	
		negative voltage AUI points can be set accor on, there is no setting limit for AUI points.	ding to user's demand on voltage
		neters (Pr. 03-69, Pr. 03-71 and Pr. 03-73) m	ust meet the following argument:

- The 3 parameters (Pr. 03-69, Pr. 03-71 and Pr. 03-73) must meet the following argument: Pr. 03-69 < Pr. 03-71 < Pr. 03-73. The 3 proportional points (Pr. 03-70, Pr. 03-72 and Pr. 03-74) doesn't have any limit. Between two points is a linear calculation.
- The output % will become 0% when the negative AUI input value is lower than low point setting. For example: Pr. 03-63 = -1 V; Pr. 03-64 = 10 %. The output will become 0 % when AUI input is bigger than -1V. If the AUI input is swing between -1 V and -1.1 V, drive's output frequency will beats between 0 % and 10 %.

12.5 Multi-step speed parameters

NOTE *i* This parameter can be set during operation.

04-00	✓ 1st step speed frequency
04-01	✓ 2nd step speed frequency
04-02	✓ 3rd step speed frequency
04-03	✓ 4th step speed frequency
04-04	✓ 5th step speed frequency
04-05	✓ 6th step speed frequency
04-06	✓ 7th step speed frequency
04-07	✓ 8th step speed frequency
04-08	✓ 9th step speed frequency
04-09	✓ 10th step speed frequency
04-10	✓ 11th step speed frequency
04-11	✓ 12th step speed frequency
04-12	✓ 13th step speed frequency
04-13	✓ 14th step speed frequency
04-14	✓ 15th step speed frequency

Factory setting: 0

Settings 0.00–600.00 Hz

- The Multi-function Input Terminals (refer to setting 1–4 of Pr.02-01–02-08 and 02-26–02-31) are used to select one of the Multi-step speeds(max. 15 speeds). The speeds (frequencies) are determined by Pr. 04-00 to 04-14 as shown in the following
- The run/stop command can be controlled by the external terminal/digital keypad/communication via Pr. 00-21.
- Each one of multi-step speeds can be set within 0.00–600.00Hz during operation.
- Explanation for the timing diagram for multi-step speeds and external terminals. The Related parameter settings are:

- Pr. 04-00–04-14: setting multi-step speeds (to set the frequency of each step speed)
- Pr. 02-01–02-08, 02-26–02-31: setting multi-function input terminals (multi-step speed 1–4)

Related parameters: 01-22 JOG Frequency, 02-01 Multi-function Input Command 1 (MI1), 02-02 Multi-function Input Command 2 (MI2), 02-03 Multi-function Input Command 3 (MI3), 02-04 Multi-function Input Command 4 (MI4).

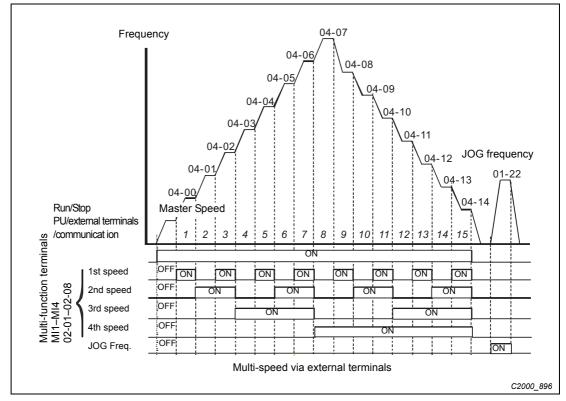


Fig. 12-34: Speed selection via external terminals

04-16	✓ Position command 1 (pulse)
04-18	 Position command 2 (pulse)
	N /
04-20	✓ Position command 3 (pulse)
04-22	✓ Position command 4 (pulse)
04-24	✓ Position command 5 (pulse)
04-26	✓ Position command 6 (pulse)
04-28	✓ Position command 7 (pulse)
04-30	✓ Position command 8 (pulse)
04-32	✓ Position command 9 (pulse)
04-34	✓ Position command 10 (pulse)
04-36	✓ Position command 11 (pulse)
04-38	✓ Position command 12 (pulse)
04-40	✓ Position command 13 (pulse)
04-42	✓ Position command 14 (pulse)
04-44	✓ Position command 15 (pulse)

Factory setting: 0

Please refer to Pr. 02-01–02-08 (Multi-function Input Command) for description on setting 34 (Switch between multi-step position and multi-speed control) and setting 36

(Enable multi-step position learning function).

-32767-32767

Settings

Multi-step position corresponding	MI4	MI3	MI2	MI1	Multi-step speed corresponding
10-19	0	0	0	0	Positioning for encoder position
04-16 Position command 1 (pulse)	0	0	0	1	04-00 1 st step speed frequency
04-18 Position command 2 (pulse)	0	0	1	0	04-01 2 nd step speed frequency
04-20 Position command 3 (pulse)	0	0	1	1	04-02 3 rd step speed frequency
04-22 Position command 4 (pulse)	0	1	0	0	04-03 4 th step speed frequency
04-24 Position command 5 (pulse)	0	1	0	1	04-04 5 th step speed frequency
04-26 Position command 6 (pulse)	0	1	1	0	04-05 6 th step speed frequency
04-28 Position command 7 (pulse)	0	1	1	1	04-06 7 th step speed frequency
04-30 Position command 8 (pulse)	1	0	0	0	04-07 8 th step speed frequency
04-32 Position command 9 (pulse)	1	0	0	1	04-08 9 th step speed frequency
04-34 Position command 10 (pulse)	1	0	1	0	04-09 10 th step speed frequency
04-36 Position command 11 (pulse)	1	0	1	1	04-10 11 th step speed frequency
04-38 Position command 12 (pulse)	1	1	0	0	04-11 12 th step speed frequency
04-40 Position command 13 (pulse)	1	1	0	1	04-12 13 th step speed frequency
04-42 Position command 14 (pulse)	1	1	1	0	04-13 14 th step speed frequency
04-44 Position command 15 (pulse)	1	1	1	1	04-14 15 th step speed frequency

Tab. 12-9: Multi-step position in dependence of the terminals

04-15	 Position command 1 (rotation)
04-17	 Position command 2 (rotation)
04-19	✓ Position command 3 (rotation)
04-21	✓ Position command 4 (rotation)
04-23	✓ Position command 5 (rotation)
04-25	✓ Position command 6 (rotation)
04-27	✓ Position command 7 (rotation)
04-29	✓ Position command 8 (rotation)
04-31	✓ Position command 9 (rotation)
04-33	✓ Position command 10 (rotation)
04-35	✓ Position command 11 (rotation)
04-37	✓ Position command 12 (rotation)
04-39	✓ Position command 13 (rotation)
04-41	✓ Position command 14 (rotation)
04-43	✓ Position command 15 (rotation)

Setzen Sie Pr. 02-01 = 1, Pr. 02-02 = 2, Pr. 02-03 = 3, Pr. 02-04 = 4, um die Zielposition durch Schalten der externen Klemmen anzufahren und wählen Sie die Punkt-zu-Punkt-Positionierung mit Drehzahlvorsteinstellung. Einstellung: Zielposition = 04-15 x (10-01 x 4) + 04-16.

Multi-step speed status	Targe	t position of	P2P	Maximum s	peed of P2P
0000	0			11-00 bit 8 = 0	11-00 bit 8 = 1
0001	Position 1	04-15	04-16		04-00
0010	Position 2	04-17	04-18		04-01
0011	Position 3	04-19	04-20		04-02
0100	Position 4	04-21	04-22	11-43	04-03
0101	Position 5	04-23	04-24		04-04
0110	Position 6	04-25	04-26		04-05
0111	Position 7	04-27	04-28		04-06
1000	Position 8	04-29	04-30		04-07
1001	Position 9	04-31	04-32		04-08
1010	Position 10	04-33	04-34		04-09
1011	Position 11	04-35	04-36	11-43	04-10
1100	Position 12	04-37	04-38	11-43	04-11
1101	Position 13	04-39	04-40		04-12
1110	Position 14	04-41	04-42		04-13
1111	Position 15	04-43	04-44		04-14

Tab. 12-10: Terminals for point-to-point positioning

04-50	✓ PLC Buffer 0	04-60	✓ PLC Buffer 10
04-51	✓ PLC Buffer 1	04-61	✓ PLC Buffer 11
04-52	✓ PLC Buffer 2	04-62	✓ PLC Buffer 12
04-53	✓ PLC Buffer 3	04-63	✓ PLC Buffer 13
04-54	✓ PLC Buffer 4	04-64	✓ PLC Buffer 14
04-55	✓ PLC Buffer 5	04-65	✓ PLC Buffer 15
04-56	✓ PLC Buffer 6	04-66	✓ PLC Buffer 16
04-57	✓ PLC Buffer 7	04-67	✓ PLC Buffer 17
04-58	✓ PLC Buffer 8	04-68	✓ PLC Buffer 18
04-59	✓ PLC Buffer 9	04-69	✓ PLC Buffer 19

Factory setting: 0

Settings 0–65535

■ The Pr. 04-50–Pr. 04-69 can be combined with PLC or HMI programming for variety application.

Factory setting: 0

12.6 Motor parameters

NOTE *N* This parameter can be set during operation.

05-00 × Motor auto tuning

Settings	0: No function
	1: Rolling test for induction motor (IM) (Rs, Rr, Lm, Lx, no-load current) [motor running]
	Static test for induction motor [motor not running]
	3: No function
	4: Dynamic test for PM motor magnetic pole [motor running]
	5: Dynamic test for PM (SPM) motor [motor running]
	6: Rolling test for IM motor flux curve [motor running]
	12: FOC Sensorless inertia estimation [motor running]
	13: Static test for PM (IPM) motor

Induction motor

- This parameter can conduct motor parameters auto test. When setting as 1, motor will roll for more than one round; setting as 4, 5, 6, and 12, motor will roll less than one round.
- Press (Run) to begin auto tuning when the setting is done. The measured value will be written into motor 1 (Pr. 05-05 –05-09, Rs, Rr, Lm, Lx, no-load current) and motor 2 (Pr. 05-17 to Pr. 05-21) automatically.

To begin AUTO-Tuning in rolling test:

- ① Make sure that all the parameters are set to factory settings (Pr. 00-02 = 9 or 10) and the motor wiring is correct.
- ② Make sure the motor has no-load before executing auto-tuning and the shaft is not connected to any belt or gear motor. It is recommended to set to 2 if the motor can't separate from the load.
- ③ Please set motor related parameters according to motor nameplate.

	Motor 1 parameter	Motor 2 parameter
Motor rated frequency	01-01	01-35
Motor rated voltage	01-02	01-36
Motor full-load current	05-01	05-13
Motor rated power	05-02	05-14
Motor rated speed	05-03	05-15
Motor pole numbers	05-04	05-16

- ④ Set Pr. 05-00 = 1 and press (Run), the drive will begin auto-tuning. Please be aware of the motor that it starts spinning as (Run) is pressed.
- (5) When auto-tuning is completed, please check if the measured values are written into motor 1 (Pr. 05-05-05-09) and motor 2 (Pr. 05-17-05-21) automatically. Mechanical equivalent circuit.

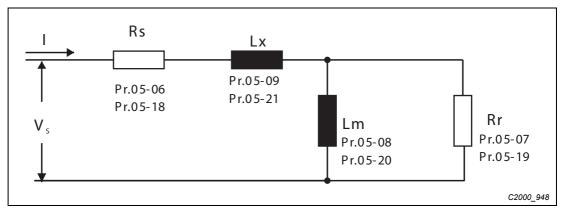


Fig. 12-35: Motor replacement circuit diagram

NOTE

If Pr. 05-00 is set to 2 (static test), user needs to input the no-load current value of motor into Pr. 05-05 for motor 1/Pr. 05-17 for motor 2.

Set Pr. 05-00 = 6 to begin rolling test for IM motor flux curve. This function is available when the drive is in FOC/TQC Sensorless control. User may begin auto-tuning after setting up the motor information.

- ① Set up Pr. 01-01, 01-02, 05-01-05-04 according to the motor nameplate information?
- ② Set Pr. 05-00 = 6 and press (Run), make sure no loading is applied to the motor before setting Pr. 05-00 to 6 and before performing auto-tuning.

When Pr. 05-00 = 12, the drive begins FOC Sensorless inertia estimation for IM motor. This function is available when the drive is in FOC/TQC Sensorless control. User may begin auto-tuning after setting up the motor information.

- **NOTE** Make sure the motor parameters (no-load current, Rs, Rr, Lm and Lx) of the drive are set before performing Pr. 05-00 = 12 (auto-tuningfor FOC Sensorless interia estimation for IM motor).
 - ① Set Pr. 00-10 = 2 (torque mode)
 - ② Set Pr. 00-13 = 2 (TQCPG, Open-loop torque mode)
 - ③ Set Pr. 05-00 = 12 and press?Run?to begin FOC Sensorless inertia measure
 - ④ When the process of inertia estimation is completed, check Pr. 11-01 (unit: PU Q8) and see if the measured value is acceptable.

Set up sensorless FOC mode:

- ① Set Pr. 00-10 = 0 (speed mode)
- Set Pr. 00-11 = 5 (FOC sensorless mode)
- ③ Set bit 0 of Pr. 11-00 to 1 (use ASR gain function to automatically adjust the ASR bandwidth in Pr. 11-03, 11-04, 11-05)

NOTES

- In torque/vector control mode, it is not recommended to have motors run in parallel.
- It is not recommended to use torque/vector control mode if motor rated power exceeds the rated power of the AC motor drive.
- When auto-tuning 2 motors, it needs to set multi-function input terminals (setting 14) or change Pr. 05-22 for motor 1/motor 2 selection.
- The no-load current is usually 20–50 % X rated current.
- The rated speed can not be greater than or equal to 120f /p (f = rated frequency Pr. 01-01/ 01-35; P: number of motor poles Pr. 05-04/05-16).

Permanent magnet motor (PM)

Set Pr. 05-00 = 5 or 13 and press (Run) to begin auto tuning for PM motor. The measured values will be written into Pr. 05-39 (Rs), Pr. 05-40 & 41 (Ld & Lq) and Pr. 05-43 (PM motor's Ke parameter).

To begin AUTO-tuning for PM motor in rolling test:

- ① Make sure all the parameters are reset to factory setting and the motor wiring installation is correct.
- ② For PM motor, set Pr. 05-33 = 1 for SPM or Pr. 05-33 = 2 for IPM and complete the following settings according to your motor specifications, Pr. 05-34 rated current, Pr. 05-35 rated power, Pr. 05-36 rated speed and Pr. 05-37 pole number. The acceleration time and deceleration time should be set according to your motor capacity.
- ③ Set Pr. 05-00 to 5 and press (Run) to begin auto tuning for PM motor. Please be aware of the motor that it starts spinning as (Run) is pressed.
- (4) When auto-tuning is completed, please check if the measured values are written into Pr. 05-39–05-41 and Pr. 05-43 automatically.

Set Pr. 05-00 = 4 and press (Run) to begin auto-tuning for PM motor PG offset angle. The measured value will be written into Pr. 05-42 automatically.

- When execute auto-tuning for PM motor PG origin, please make sure the encoder setting are correct (Pr. 10-00, 10-01, 10-02), otherwise the PG origin measure error and motor stall may occur.
 - If PM motor runs in an opposite direction of the drive's command, switch any two of the UVW cable and re-connect, then execute PG origin search again. It is crucial to execute auto-tuning after the switch otherwise PG origin measure error and motor stall may occur.

Auto-tuning process for measuring PG offset angle of PM motor:

- ① Set Pr. 05-00 = 5 and press RUN, or manually input the values into Pr. 01-01, 05-34–541 and Pr. 05-43.
- ② It is strongly suggested to remove the motor and unload before beings auto-tuning.
- ③ Set Pr. 05-00 = 4 and press (Run) to begin auto-tuning. Please be aware of the motor that it starts spinning as (Run) is pressed.
- ④ When auto-tuning is completed, please check if the PG offset angle is written into Pr. 05-42 automatically.

NOTE When auto-tuning for PM motor is completed and the control mode setting is done, it is recommend to turn the drive's power off and restart again to ensure the drive operates according to the motor parameter settings.

 05-01
 Full-load current of induction motor 1 (A)

 Unit: Amper Factory setting: #.##

 Settings 10 to 120 % of drive's rated current

 Image: This value should be set according to the rated current of the motor as indicated on the motor nameplate. The factory setting is 90 % X rated current.

 EXAMPLE
 The rated current for 7.5 HP (5.5 kW) is 25 and factory setting is 22.5 A. The range for setting will be 2,5–30 A. (25*10 % = 2,5 A and 25*120 % = 30 A)

NOTES

	/ Deted news of industing material ()	
05-02	✓ Rated power of induction motor 1 (k	vv)
		Factory setting: #.##
	Settings 0–655.35 kW	
	It is used to set rated power of the model	tor 1. The factory setting is the power of the drive.
05-03	✓ Rated speed of induction motor 1 (r	om)
		Factory setting: 1710 (60Hz 4 poles) 1410 (50Hz 4 poles)
	Settings 0–65535	
	 It is used to set the rated speed of the Before set up Pr. 05-04, this parameter 	e motor according to the motor nameplate. er must be set.
05-04	Pole number of induction motor 1	
		Factory setting: 4
	Settings 2–20	
	It is used to set the number of motor processing of the set of the number of the nu	poles (must be an even number).
		01-01 and Pr. 05-03 to make sure motor operate
		tting range is "2–4". If use a 6 poles motor, to set up e motor nameplate, then the Pr. 05-04 setting range
05-05	PNo-load current of induction motor 1 (۵۱
		Unit: Amper Factory setting: #.##
	Settings 0 to the factory setting i	n Pr. 05-01
	The factory setting is 40 % motor rate	d current.
	■ For model with 110 kW and above, de	fault setting is 20 % motor rated current.
05-06	Stator resistance (Rs) of induction moto	or 1
05-07	Rotor resistance (Rr) of induction moto	r 1
		Factory setting: #.##
	Settings 0–65.535 Ω	

05-08	Magnetizing in	iductance (Lm) of indu	ction motor 1		
05-09	Stator inductar	nce (Lx) of induction m	notor 1		
	Settings	0–6553.5 mH			Factory setting: #.#
05-10– 05-12	Reserved				
05-13	Full-load curre	nt of induction motor 2	2 (A)		
					Unit: Amper Factory setting: #.##
	Settings	10–120 %			
		nt with regard to the ra g is 90 % X rated curr		ed on the name	eplate of the motor. The
EXAMPLE		ent for 7.5 HP (5.5 kW 2.5–30 A. (25*10%=2.5			22.5 A. The range for
05-14	Rated power of	finduction motor 2 (kV	V)		
					Factory setting: #.##
	Settings	0–655.35 kW			
	It is used to s	set rated power of the	motor 2. The facto	ory setting is th	e power of the drive.
05-15	Rated speed o	finduction motor 2 (rp	m)		
					Factory setting: 1710
	Settings	0–65535			
	It is used to s	set the rated speed of	the motor accordi	ng to the moto	r nameplate.
05-16	Rated speed o	finduction motor 2 (rp	m)		
					Factory setting: 4
	Settings	2–20			, ,
		set the number of moto -04 after setting up Pr. (•		er). motor operate normally.

05-17	No-load curre	nt of induction motor 2 (A)	
			Unit: Amper
			Factory setting: #.##
	Settings	0 to the factory setting in Pr. 05-13	
	The factory s	setting is 40 % motor rated current.	
	•	ith 110 kW and above, default setting is 20 % motor ra	ated current.
05.40	Otatan na sistan		
05-18	Stator resistar	nce (Rs) of induction motor 2	
05-19	Rotor resistan	ce (Rr) of induction motor 2	
			Factory setting: #.###
	Settings	0–65.535 Ω	
05-20	Magnetizing ir	nductance (Lm) of induction motor 2	
03-20	Magnetizing i		
05-21	Stator inducta	nce (Lx) of induction motor 2	
	Cattings	0–6553.5 mH	Factory setting: #.#
	Settings	0-0555.5 IIIH	
05-22	Induction moto	or 1/2 selection	
			Factory setting: 1
	Settings	1: Motor 1	Factory Setting. T
	e e tan ige	2: Motor 2	
	■ It is used to	set the motor that driven by the AC motor drive.	
		·····	
05-23	Frequency for	Y-connection/ \triangle -connection switch of induction motor	•
03-23	Trequency for		
			Factory setting: 60.00
	Settings	0.00–600.00 Hz	
05-24	Y-connection/	riangle-connection switch of induction motor IM	
			Factory setting: 0
	Settings	0: Disable 1: Enable	

05-25 Delay time for Y-connection/△-connection switch of induction motor Factory setting: 0.200 Settings 0.000-60.000 sec ■ Pr. 05-23 and Pr. 05-25 are applied in the wide range motors and the motor coil will execute the switch of Y-connection/△-connection as required. (The wide range motors has relation with the motor design. In general, it has higher torque at low speed and Y-connection and it has higher speed at high speed and connection. ■ Pr. 05-24 is used to enable/disable Y-connection/△-connection switch. ■ When Pr. 05-24 is set to 1, the drive will select by Pr. 05-23 setting and current motor frequency to switch motor to Y-connection or △-connection. At the same time, it will also affect motor parameters. ■ Pr. 05-25 is used to set the switch delay time of Y-connection/△-connection. ■ When output frequency reaches Y-connection/△-connection switch frequency, drive will delay by Pr. 05-25 before multi-function output terminals are active \triangle -connection is fineshed U (Pr. 02-01-08 = 30 V OMI1 W Δ -connection is fineshed W V Y -connection is fineshed Pr. 02-13–14 = 32 Pr. 02-01-08 = 29 Q Q Q Μ RA⁽ \bigcirc MI2 Q 0 Q Y -connection is fineshed 3-Pr. 02-11-14 = 31 MRA Ζ γ Х 00 00 $\overline{00}$

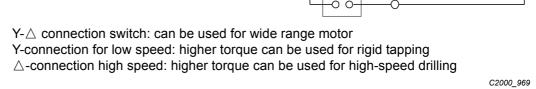


Fig. 12-36: Wiring for star/delta connection

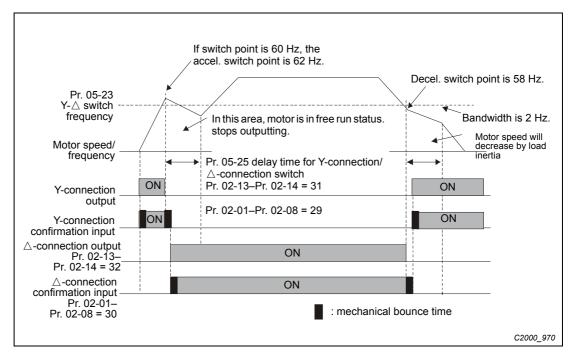


Fig. 12-37: Output signals at star/delta connection

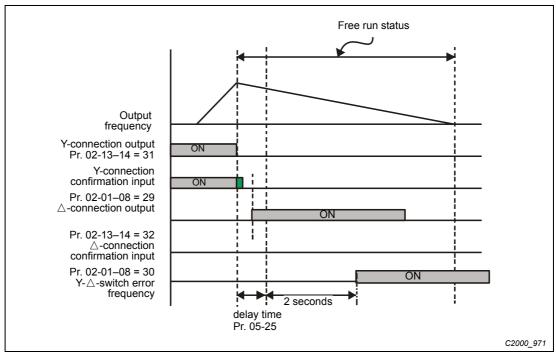


Fig. 12-38: Error at missing confirmation signal

05-26	Accumulative	e watt per second of motor in low word (W-sec)	
			Factory setting: 0.0
	Settings	Read only	
	ī		
05-27	Accumulativ	e watt per second of motor in high word (W-sec)	
05-27	Accumulative		
			Factory setting: 0.0
	Settings	Read only	
05-28	Accumulative	e watt-hour of motor (W-Hour)	
			Factory setting: 0.0
	Settings	Read only	
	ī		
05-29	Accumulativ	a watt haur of mater in low word (K)N Haur)	
05-25	Accumulative	e watt-hour of motor in low word (KW-Hour)	
			Factory setting: 0.0
	Settings	Read only	
05-30	Accumulative	e watt-hour of motor in high word (KW-Hour)	
			Factory setting: 0.0
	Settings	Read only	r detory setting. 0.0
	0		
		05-29 records the amount of power consumed	
	•	en the drive is activated and record is saved wher the of consumed watts will continue to accumulate	•
		e accumulation, set Pr. 00-02 to 5 then the accum	-
05-31	Accumulative	e motor operation time (Min)	
	Cottingo	00 1420	Factory setting: 0
	Settings	00–1439	
05-32	Accumulative	e motor operation time (day)	
			Factory setting: 0
	Settings	00–65535	. coury county i
	■ Pr. 05-31 a	nd Pr. 05-32 are used to record the motor operation	on time. To clear the operation
		r. 05-31 and Pr. 05-32 to 00. Operation time short	

05-33	Induction mot	or (IM) and permanent magnet motor selection
		Factory setting: 0
	Settings	0: Induction Motor
	Octango	1: Permanent Magnet Motor (SPM)
		2: Permanent Magnet Motor (IPM)
05-34	Full-load curr	ent of permanent magnet motor
		Factory setting: 0.00
	Settings	0.00–655.35 Amps
05-35	Rated power	of permanent magnet motor
	rated perior	
		Factory setting: 0.00
	Settings	0.00–655.35 kW
	Set motor rapower.	ated power in accord to motor nameplate. Default setting is motor drive rated
05-36	Rated power	of permanent magnet motor
		Factory acting: 2000
	Settings	0–65535 rpm
	Settings	0-63935 Tpm
05-37	Pole number	of permanent magnet motor
	O attin and	Factory setting: 10
	Settings	0–65535

05-38	Inertia of p	permanent	magnet m	notor					
								Factory s	etting: 0.0
	Settings	006	553 5 kg	cm^2 (0.00	01 kg.m ²)			T dotory 3	cuirig. 0.0
			-		01 kg.iii)				
	■ Default v	alue will fo	ollow the c	hart.					
	Rated power (kW)	0.4	0.75	1.5	2.2	3.7	5.5	7.5	9.3
	Rotor iner- tia (kg.cm ²)	1.2	3.0	6.6	15.8	25.7	49.6	82.0	121.6
	Rated power (kW)	11	14.1	18.2	27	33	40	46	54
	Rotor iner- tia (kg.cm ²)	177.0	211.0	265.0	308.0	527.0	866.0	1082.0	1267.6
	Rated power (kW)	Above 54							
	Rotor iner- tia (kg.cm ²)	1515.0							
05-39	Stator resi	stance of F	PM motor						
							F	actory sett	na: 0.000
	Settings	0.000)-65.535	Ω				j	<u></u>
05-40	Permanen	it magnet n	notor I d						
	1 ormanor	it magnet i							
								Factory se	tting: 0.00
	Settings	0.00-	-655.35 m	1H					
05-41	Permanen	it magnet n	notor Lq						
								Factory se	tting: 0.00
	Settings	0.00-	-655.35 m	ηΗ					
		-					-		

05-42	PG offset and	gle of PM motor	
			Factory setting: 0
	Settings	0.0–360.0°	
	■ When Pr. 0	5-00 is set to 4, the drive will detect offset angle and	write into Pr. 05-42.
05-43	Ke paramete	r of PM motor	
			Unit: V/1000 rpm Factory setting: 0
	Settings	0–65535	

—

- - 11

12.7 Protection parameters

NOTE *i* This parameter can be set during operation.

06-00 × Low voltage level

		Factory setting:
Settings	230 V Series:	
	Frame A –D (including D0): 150.0–220.0 V DC	180.0
	Frame E and above: 190.0–220.0 V	200.0
	Frame A–D (including D0): 460 V Series: 300.0–440.0 V	360.0
	Frame E and above: 380.0– 440.0 V	400.0

- This parameter is used to set the Low Voltage level. When the DC BUS voltage is lower than Pr. 06-00, drive will stop output and free to stop.
- If the drive is triggered LV fault during the operation, drive will stop output and free to stop. There are three LV faults, LvA (LV during acceleration), LvD (LV during deceleration), and LvN (LV in constant speed) which will be triggered in different stage of drive operation. These faults need to be reset manually to restart the drive, while setting restart after momentary power off function (Pr. 07-06, Pr. 07-07), the drive will restart automatically.
- If LV is triggered when the drive is in stop status, the fault is named LvS (LV during stop), which will not be recorded, and the drive will restart automatically when input voltage is 30 V DC (230 V series) or 60 V DC (460 V series) higher than LV level.

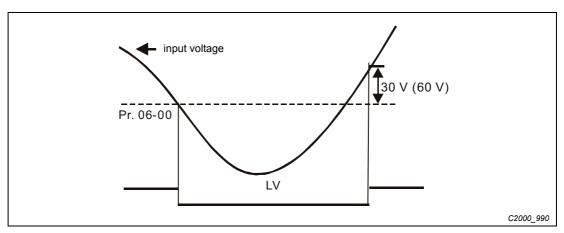


Fig. 12-39: Trigger threshold for low voltage

Factory setting: 380.0/760.0

Settings	230 V series: 0.0–450.0 V
	460 V series:0.0–900.0 V
	0: Disabled

- When Pr. 06-01 is set to 0.0, the over-voltage stall prevention function is disabled. When braking units or resistors are connected to the drive, this setting is suggested.
- When the setting is not 0.0, the over-voltage stall prevention is activated. This setting should refer to power supply system and loading. If the setting is too low, then over-voltage stall prevention will be easily activate, which may increase deceleration time.
- Related parameters: Pr. 01-13, Pr. 01-15, Pr. 01-17, Pr. 01-19 Decel. Time 1–4, Pr. 02-13– Pr. 02-14 Multiple-function output (Relay 1 and 2), Pr. 02-16–Pr. 02-17 Multiple-function output (MO1,2), and Pr. 06-02 selection for over-voltage stall prevention.

06-02	Selection for	Selection for over-voltage stall prevention			
			Factory setting: 0		
	Settings	0: Traditional over-voltage stall prevention			
		1: Smart over-voltage prevention			

- This function is used for the occasion that the load inertia is unsure. When it stops in the normal load, the over-voltage won't occur during deceleration and fulfill the setting of deceleration time. Sometimes, it may not stop due to over-voltage during decelerating to stop when increasing the load regenerative inertia. At this moment, the AC drive will auto add the deceleration time until drive stop.
- Pr. 06-02 is set to 0: During deceleration, the DC bus voltage may exceed its maximum allowable value due to motor regeneration in some situation, such as loading inertia is too high or decel. Time is set too short. When traditional over-voltage stall prevention is enabled, the drive will not decelerate further and keep the output frequency constant until the voltage drops below the setting value again.
- When Pr. 06-02 is set to 1, the drive will maintain DC bus voltage when decelerating and prevent OV.

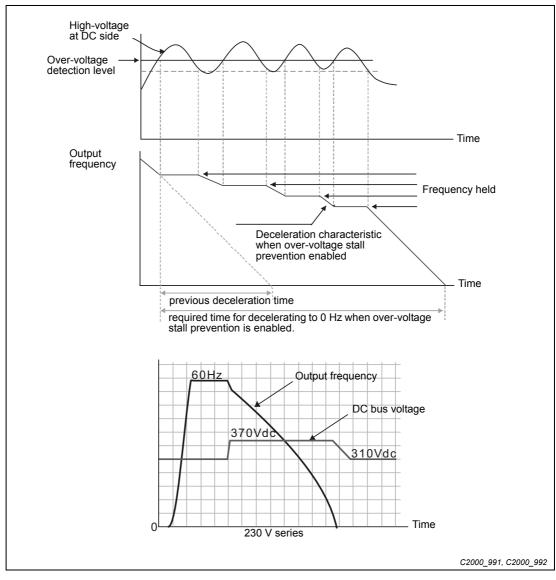


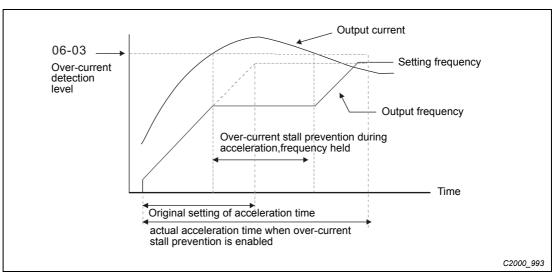
Fig. 12-40: Stall prevention at over-voltage

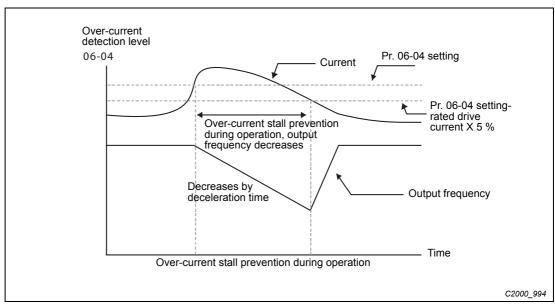
- When the over-voltage stall prevention is enabled, drive deceleration time will be larger than the setting.
- When there is any problem as using deceleration time, refer to the following items to solve it.
 1. Add the suitable deceleration time.
 2. Add brake resistor (refer to Chapter 7-1 for details) to dissipate the electrical energy that regenerated from the motor as heat type.
- Related parameters: Pr. 01-13, Pr. 01-15, Pr. 01-17, Pr. 01-19 Decel. Time 1–4, Pr. 02-13– Pr. 02-14 Multiple-function output (Relay 1 and 2), Pr. 02-16–Pr. 02-17 Multiple-function output (MO1,2), and Pr. 06-01 over-voltage stall prevention.

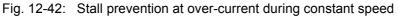
06-03 / Over-current stall prevention during acceleration

		Factory setting:
Settings	Normal duty: 0–160 % (100 %: drive's rated current)	120
	Heavy duty: 0–180 % (100 %: drive's rated current)	150

- This parameter only works in VF, VFPG, and SVC control mode.
- If the motor load is too large or drive acceleration time is too short, the AC drive output current may increase abruptly during acceleration and it may cause motor damage or trigger protection functions (OL or OC). This parameter is used to prevent this situation.
- During acceleration, the AC drive output current may increase abruptly and exceed the value specified by Pr. 06-03 due to rapid acceleration or excessive load on the motor. When this function is enabled, the AC drive will stop accelerating and keep the output frequency constant until the current drops below the maximum value.
- When the over-current stall prevention is enabled, drive acceleration time will be larger than the setting.
- When the over-current stall prevention occurs due to too small motor capacity or in the factory setting, please decrease Pr. 06-03 setting.
- When there is any problem by using acceleration time, refer to the following items to solve it.
- Related parameters: Pr. 01-12, 01-14, 01-16, 01-18 (settings of accel. time 1–4), Pr. 01-44
 1. dd the suitable acceleration time.
 - 2. Setting Pr. 01-44 optimal acceleration/deceleration setting to 1, 3 or 4 (auto accel.)
- Optimal acceleration/deceleration setting, Pr. 02-13–02-14 (Multi-function output 1 RY1, RY2), Pr. 02-16–02-17 multi-function output (MO1, 2)




Fig. 12-41: Stall prevention at over-current during acceleration


06-04

✓ Over-current stall prevention during operation

		Factory setting:
Settings	Normal duty: 0–160 % (100 %: drive's rated current)	120
	Heavy duty: 0–180 % (100 %: drive's rated current)	150

- This parameter only works in VF, VFPG, and SVC control mode.
- It is a protection for drive to auto decrease output frequency when the motor is over-load abruptly during motor constant operation.
- If the output current exceeds the setting specified in Pr. 06-04 when the drive is operating, the drive will decrease its output frequency (according to Pr. 06-05) to prevent the motor stall. If the output current is lower than the setting specified in Pr. 06-04, the drive will accelerate (according to Pr. 06-05) again to catch up with the set frequency command value.

06-05 ✓ Accel./decel. time selection of stall prevention at constant speed Factory setting: 0 Settings 0: by current accel/decel time 1: by the 1st accel/decel time 2: by the 2nd accel/decel time 3: by the 3rd accel/decel time 3: by the 3rd accel/decel time 4: by the 4th accel/decel time 5: by auto accel/decel

It is used to set the accel./decel. time selection when stall prevention occurs at constant speed.

	- · · · ···
	Factory setti
Settings	0: No function
	1: Continue operation after over-torque detection during constant speed operation
	2: Stop after over-torque detection during constant speed operation
	3: Continue operation after over-torque detection during RUN
	4: Stop after over-torque detection during RUN
N Over-to	orque detection selection (OT2)
	Factory setti
Settings	0: No function
	1: Continue operation after over-torque detection during constant speed operation
	2: Stop after over-torque detection during constant speed operation
	3: Continue operation after over-torque detection during RUN
	4: Stop after over-torque detection during RUN
have an a ■ When Pr.	06-06 and Pr. 06-09 are set to 1 or 3, it will display a warning message and v abnormal record. 06-06 and Pr. 06-09 are set to 2 or 4, it will display a warning message and abnormal record.
have an a ■ When Pr.	abnormal record. 06-06 and Pr. 06-09 are set to 2 or 4, it will display a warning message and
have an a ■ When Pr. have an a	abnormal record. 06-06 and Pr. 06-09 are set to 2 or 4, it will display a warning message and
have an a ■ When Pr. have an a	abnormal record. 06-06 and Pr. 06-09 are set to 2 or 4, it will display a warning message and abnormal record.
have an a ■ When Pr. have an a	abnormal record. 06-06 and Pr. 06-09 are set to 2 or 4, it will display a warning message an abnormal record.
have an a ■ When Pr. have an a ✓ Over-to Settings	abnormal record. 06-06 and Pr. 06-09 are set to 2 or 4, it will display a warning message and abnormal record. prque detection level (OT1) Factory setting 10 to 250 % (100 %: drive's rated current)
have an a When Pr. have an a ✓ Over-to Settings	abnormal record. 06-06 and Pr. 06-09 are set to 2 or 4, it will display a warning message and abnormal record. orque detection level (OT1) Factory setting
have an a ■ When Pr. have an a ✓ Over-to Settings	abnormal record. 06-06 and Pr. 06-09 are set to 2 or 4, it will display a warning message and abnormal record. prque detection level (OT1) Factory setting 10 to 250 % (100 %: drive's rated current) prque detection level (OT1)
have an a When Pr. have an a ✓ Over-to Settings	abnormal record. 06-06 and Pr. 06-09 are set to 2 or 4, it will display a warning message an abnormal record. prque detection level (OT1) Factory setting 10 to 250 % (100 %: drive's rated current) prque detection level (OT1)
have an a When Pr. have an a ✓ Over-to Settings	abnormal record. 06-06 and Pr. 06-09 are set to 2 or 4, it will display a warning message and abnormal record. orque detection level (OT1) Factory setting 10 to 250 % (100 %: drive's rated current) orque detection level (OT1) Factory setting Factory setting
have an a When Pr. have an a ✓ Over-to Settings Settings	abnormal record. 06-06 and Pr. 06-09 are set to 2 or 4, it will display a warning message and abnormal record. orque detection level (OT1) Factory setting 10 to 250 % (100 %: drive's rated current) orque detection level (OT1) Factory setting Factory setting
have an a When Pr. have an a ✓ Over-to Settings	abnormal record. 06-06 and Pr. 06-09 are set to 2 or 4, it will display a warning message and abnormal record. prque detection level (OT1) Factory setting 10 to 250 % (100 %: drive's rated current) prque detection level (OT1) Factory setting 0.0–60.0 sec

Factory setting: 0.1

Settings	0.0-60.0 sec	
----------	--------------	--

- When the output current exceeds the over-torque detection level (Pr. 06-07 or Pr. 06-10) and also exceeds Pr. 06-08 or Pr. 06-11, the over torque detection will follow the setting of Pr. 06-06 and Pr. 06-09.
- When Pr. 06-06 or Pr. 06-09 is set to 1 or 3, the motor drive will have the ot1/ot2 warning after over torque detection, while the motor drive will keep running. The warning will be off only until the output current is smaller than the 5 % of the over-torque detection level (Pr. 06-07 and Pr. 06-10).

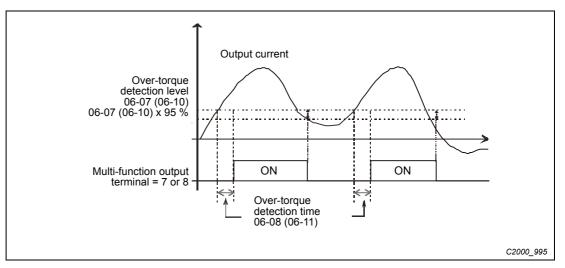


Fig. 12-43: Continuous operation at over-torque

■ When Pr. 06-06 or Pr. 06-09 is set to 2 or 4, the motor drive will have the ot1/ot2 fault after torque detection. Then the motor drive stop running until it is manually reset.

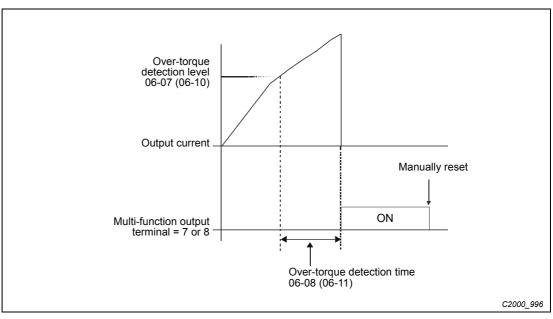
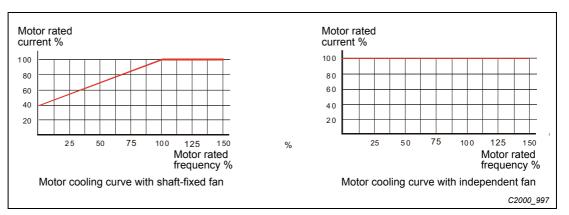
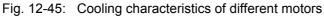




Fig. 12-44: Operation stop at over-torque

06-12	✓ Current limit
	Factory setting: 17
 Pr. 06-12 sets the maximum output current of are used to set the drive's output current limit. Mode, output frequency will decreases as the as current stall prevention. Pr. 06-13 Electronic thermal relay selection (Motor 1) Pr. 2000 Section (Motor 2) Settings 0: Special motor (with external for 1: Self-cooled motor (so motor with 2: Disable) It is used to prevent self-cooled motor overhead thermal relay to limit driver's output power. Setting as 0 is suitable for special motor (motor this kind of motor, the cooling capacity is not reof electronic thermal relay will remain stable load capability in low speed. Setting as 1 is suitable for standard motor (motive field of motor, the cooling capacity is not reof electronic thermal relay will remain stable load capability in low speed. Setting as 1 is suitable for standard motor (motive field of motor, the cooling capacity is low in low relay will reduce the action time, which ensure will be reset. If there are several motors core electronic thermal relay in each motor respective will be reset. If there are several motors core electronic thermal relay in each motor respective. 	
	are used to set the drive's output current limit. When the drive is in VF, SVC or VFPG contro mode, output frequency will decreases as the output current reaches current limit. It acts
06-13	 Electronic thermal relay selection (Motor 1)
06-27	 ✓ Electronic thermal relay selection (Motor 2)
	Factory setting:
	thermal relay to limit driver's output power.
	this kind of motor, the cooling capacity is not related to motor speed obviously. So the action of electronic thermal relay will remain stable in low speed, which can ensure the motor's
	well. It is because when the power is switched off, the electronic thermal relay protection
06-14	 Electronic thermal characteristic for motor 1
06-28	✓ Electronic thermal characteristic for motor 2
	Settings 0–250 % (100 %: drive's rated current) Pr. 06-12 sets the maximum output current of the drive. Pr. 06-12 and Pr. 11-17–Pr. 11-20 are used to set the drive's output current the drive is in VF, SVC or VFF6 control mode, output frequency will decreases as the output current reaches current limit. It acts as current stall prevention. Image: the drive's output current of the drive. Pr. 06-12 and Pr. 11-17–Pr. 11-20 are used to set the drive's output current medrices in VF, SVC or VFF6 control mode, output frequency will decreases as the output current reaches current limit. It acts as current stall prevention. Image: the drive's output current of Motor 1) Image: the drive's output current of Motor 2) Factory setting: 2 Settings 0: Special motor (with external forced cooling) 1: Self-cooled motor (so motor with fan on the shaft) 2: Disable Image: the drive's output power. Setting as 0 is suitable for special motor (motor fan using independent power supply). For this kind of motor, the cooling capacity is not related to motor speed obviously. So the action of electronic thermal relay will remain stable in low speed, which can ensure the motor's load capability in low speed. Setting as 1 is suitable for standard motor (motor fan is fixed on the rotor shaft). For this kind of motor, the cooling capacity is low in low speed, and the action of electronic thermal relay will remain stable in low speed, and the action of electronic thermal relay is often switched, even setting as 0 or 1 can bot protect the motor will be reset. If there are several motors connected to one motor drive, please install electronic thermal relay in
	Pr. 06-28 to prevent the motor damaged from overheating. When it reaches the setting, i will display "EoL1/EoL2" and the motor will be in free running.
	I2t characteristic curve of electronic thermal relay, output frequency and current of moto

- The action of electronic thermal relay depends on the setting of Pr. 06-13/Pr. 06-27.
 - 06-13 or 06-27 is set 0 (using special motor): When output current of motor drive is higher than 150 % of motor current (refer to motor cooling curve with independent fan), motor drive will start to count the time. When the accumulated time exceeds Pr. 06-14 or 06-28, electronic thermal relay will act.
 - 2. 06-13 or 06-27 is set 0 (using standard motor): When output current of motor drive is higher than 150 % of motor current (refer to motor cooling curve with shaft-fixed fan), motor drive will start to count the time. When the accumulated time exceeds Pr. 06-14 or 06-28, electronic thermal relay will act. The real electronic thermal relay action time will adjust with drive output current (shown as motor loading rate). When the current is high, the action time is short; when the current is high, the action time is short. Please refer to following chart:

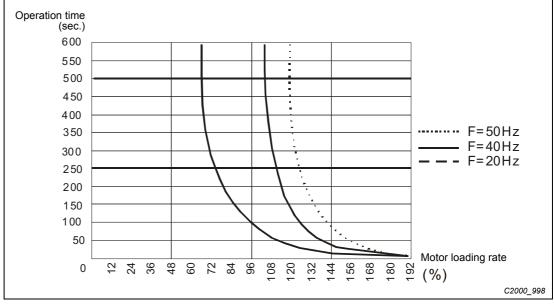


Fig. 12-46: Motor protection characteristics

06-15	✓ Heat sink over-heat (OH) warning
	Factory setting: 105.0
	Settings 0.0–110.0 °C
	When using heavy duty or advanced control mode, the OH wrning will be disabled if Pr. 06-15 remains as default. When the temperature reaches 105 °C, motor drive will stop with IGBT over-heat fault.
	When using normal duty or general control mode, the OH warning will be disabled if Pr. 06-15 is set to 110 °C. When the temperature reaches 110 °C, motor drive will stop with IGBT over-heat fault.
06-16	✓ Stall prevention limit level (Flux weakening area current stall prevention level)
	Factory setting: 50
	Settings 0–100 % (Refer to Pr. 06-03, Pr. 06-04)
	 When operation frequency is larger than Pr. 01-01; e.g. Pr. 06-03 = 150 %, Pr. 06-04 = 100 % and Pr. 06-16 = 80 %: Calculate the stall prevention level during acceleration: Pr. 06-03 x Pr. 06-16 = 150 x 80 % = 120 %. Calculate the stall prevention level at constant speed: Pr. 06-04 x Pr. 06-16 = 100 x 80 % = 80 %.
06-17	Present fault record
06-18	Second most recent fault record
06-19	Third most recent fault record
06-20	Fourth most recent fault record
06-21	Fifth most recent fault record

Settings	0: No fault record
<u> </u>	1: Over-current during acceleration (ocA)
	2: Over-current during deceleration (ocd)
	3: Over-current during constant speed (ocn)
	4: Ground fault (GFF)
	5: IGBT short-circuit (occ)
	6: Over-current at stop (ocS)
	7: Over-voltage during acceleration (ovA)
	8: Over-voltage during deceleration (ovd)
	9: Over-voltage during constant speed (ovn)
	10: Over-voltage at stop (ovS)
	11: Low-voltage during acceleration (LvA)
	12: Low-voltage during deceleration (Lvd)
	13: Low-voltage during constant speed (Lvn)
	14: Stop mid-low voltage (LvS)
	15: Phase loss protection (OrP)
	16: IGBT over-heat (oH1)
	17: Capacitance over-heat (oH2) (for 30 kW above)
	18: tH1o (TH1 open: IGBT over-heat protection error)
	19: tH2o (TH2 open: capacitance over-heat protection error)
	20: Reserved
	21: Drive over-load (oL)
	22: Electronics thermal relay 1 (EoL1)
	23: Electronics thermal relay 2 (EoL2)
	24: Motor PTC overheat (oH3) (PTC)
	25: Reserved
	26: Over-torque 1 (ot1)
	27: Over-torque 2 (ot2)
	28: Low current (uC)
	29: Home limit error (LMIT)
	30: Memory write-in error (cF1)
	31: Memory read-out error (cF2)
	32: Reserved
	33: U-phase current detection error (cd1)
	34: V-phase current detection error (cd2)
	35: W-phase current detection error (cd3)
	36: Clamp current detection error (Hd0)
	37: Over-current detection error (Hd1)
	38: Over-voltage detection error (Hd2)
	39: occ IGBT short circuit detection error (Hd3)
	40: Auto tuning error (AUE)
	41: PID feedback loss (AFE)
	42: PG feedback error (PGF1)
	43: PG feedback loss (PGF2)
	44: PG feedback stall (PGF3)
	45: PG slip error (PGF4)
	46: PG ref loss (PGr1)

 48: Analog current input loss (ACE)
 49: External fault input (EF)
 50: Emergency stop (EF1)
 51: External Base Block (bb)
 52: Password error (PcodE)
 53: Reserved
54: Communication error (CE1)
 55: Communication error (CE2)
 56: Communication error (CE3)
 57: Communication error (CE4)
58: Communication Time-out (CE10)
59: PU Time-out (CP10)
60: Brake transistor error (bF)
61: Y-connection/ Δ -connection switch error (ydc)
62: Decel. Energy Backup Error (dEb)
 63: Slip error (oSL)
 64: Electromagnet switch error (ryF)
 65: PG Card Error (PGF5)
 66–67: Reserved
 68: Sensorless estimated speed have wrong direction
 69: Sensorless estimated speed is over speed
 70: Sensorless estimated speed deviated
 71: Reserved
 72: STO Loss 1
 73: External safety gate S1
 74–75: Reserved
 76: STO
 77: STO Loss 2
 78: STO Loss 3
 79: Uocc U phase over current (Detection begins as RUN is pressed,
software protection)
 80: Vocc V phase over current (Detection begins as RUN is pressed,
 software protection)
81: Wocc W phase over current (Detection begins as RUN is pressed,
 software protection)
 82: OPHL U phase output phase loss
 83: OPHL Vphase output phase loss
 84: OPHL Wphase output phase loss
 85: PG-02U ABZ hardware disconnection
 86: PG-02U UVW hardware disconnection
 87–88: Reserved
 89: Initial rotor position detection error
 90: Inner PLC function is forced to stop
 91–100: Reserved
101: CGdE CANopen software disconnect1
 102: CHbE CANopen software disconnect2
 103: CSYE CANopen synchronous error
 104: CbFE CANopen hardware disconnect
 105: CIdE CANopen index setting error
 106: CAdE CANopen slave station number setting error

-	107: CFrE CANopen index setting exceed limit
-	108–110: Reserved
_	111: InrCOM Internal communication overtime error
_	112: PM sensorless shaft Lock error
_	113: Software OC
	When the fault occurs and force stopping, it will record in this parameter.
I	At stop with low voltage Lv (LvS warn, no record). During operation with mid-low voltage Lv (LvA, Lvd, Lvn error, will record).
•	Setting 62: when dEb function is enabled, the drive will execute dEb and record to the Pr. 06-17 to Pr. 06-22 simultaneously.
_	
06-23	✓ Fault output option 1
06-24	✓ Fault output option 2
06-25	✓ Fault output option 3
06-26	✓ Fault output option 4
_	Factory setting: 0
-	Settings 0 to 65535 sec (refer to bit table for fault code)
•	These parameters can be used with multi-function output (set to 35-38) for the specific requirement. When the fault occurs, the corresponding terminals will be activated (It needs to convert binary value to decimal value to fill in Pr. 06-23 to Pr. 06-26).

	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6
Fault Code		volt.	OL	SYS	FBK	EXI	CE
0: No fault							
1: Over-current during acceleration (ocA)	•						
2: Over-current during deceleration (ocd)	•						
3: Over-current during constant speed (ocn)	•						
4: Ground fault (GFF)	•						
5: IGBT short-circuit (occ)	•						
6: Over-current at stop (ocS)	•						
7: Over-voltage during acceleration (ovA)		•					
8: Over-voltage during deceleration (ovd)		•					
9: Over-voltage during constant speed (ovn)		•					
10: Over-voltage at stop (ovS)		•					
11: Low-voltage during acceleration (LvA)		•					
12: Low-voltage during deceleration (Lvd)		•					
13: Low-voltage during constant speed (Lvn)		•					

Tab. 12-11: Bit table for fault codes (1)

	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6
Fault Code	cur- rent	volt.	OL	SYS	FBK	EXI	CE
14: Stop mid-low voltage (LvS)		•					
15: Phase loss protection (OrP)		•					
16: IGBT over-heat (oH1)			•				
17: Capacitance over-heat (oH2)			•				
18: tH1o (TH1 open)			•				
19: tH2o (TH2 open)			•				
20: Reserved							
21: Drive over-load (oL)			•				
22: Electronics thermal relay 1 (EoL1)			•				
23: Electronics thermal relay 2 (EoL2)			•				
24: Motor PTC overheat (oH3) (PTC)			•				
25: Reserved							
26: Over-torque 1 (ot1)			•				
27: Over-torque 2 (ot2)			•				
28: Low current (uC)	•						
29: Home limit error (LMIT)						•	
30: Memory write-in error (cF1)				•			
31: Memory read-out error (cF2)				•			
32: Reserved							
33: U-phase current detection error (cd1)				•			
34: V-phase current detection error (cd2)				•			
35: W-phase current detection error (cd3)				•			
36: Clamp current detection error (Hd0)				•			
37: Over-current detection error (Hd1)				•			
38: Over-voltage detection error (Hd2)				•			
39: occ IGBT short circuit detection error (Hd3)				•			
40: Auto tuning error (AUE)				•			
41: PID feedback loss (AFE)					•		
42: PG feedback error (PGF1)					•		
43: PG feedback loss (PGF2)					•		
44: PG feedback stall (PGF3)					•		
45: PG slip error (PGF4)					•		
46: PG ref loss (PGr1)					•		
47: PG ref loss (PGr2)					•		
48: Analog current input loss (ACE)					•		
49: External fault input (EF)						•	
50: Emergency stop (EF1)						•	
51: External base block (bb)						•	
52: Password error (PcodE)				•			
53: Reserved							
54: Communication error (CE1)							•
55: Communication error (CE2)							•
56: Communication error (CE3)							•
57: Communication error (CE4)							•
58: Communication time-out (CE10)							•
59: PU Time-out (CP10)							•
							-

Tab. 12-11: Bit table for fault codes (2)

		Bit1	Bit2	Bit3	Bit4	Bit5	Bit6
Fault Code	cur- rent	volt.	OL	SYS	FBK	EXI	CE
60: Brake transistor error (bF)						•	
61: Y-connection/∆-connection switch error (ydc)						•	
62: Decel. energy backup error (dEb)		•					
63: Slip error (oSL)						•	
64: Electromagnet switch error (ryF)						•	
65: PG Card Error (PGF5)						•	
66–67: Reserved							
68: Sensorless estimated speed have wrong direction							
69: Sensorless estimated speed is over speed							
70: Sensorless estimated speed deviated							
71: Reserved							
72: STO Loss 1				•			
73: External safety gate S1				•			
74–75: Reserved							
76: STO				•			
77: STO Loss 2				•			
78: STO Loss 3				•			
79: U phase over current (Uocc)	•						
80: V phase over current (Vocc)	•						
81: W phase over current (Wocc)	•						
82: OPHL U phase output phase loss	•						
83: OPHL Vphase output phase loss	•						
84: OPHL Wphase output phase loss	•						
85: PG-02U ABZ hardware disconnection					•		
86: PG-02U UVW hardware disconnection					•		
87–88: Reserved							
89: Initial rotor position detection error							
90: Inner PLC function is forced to stop							
91–100: Reserved							
101: CGdE CANopen software disconnect 1							•
102: CHbE CANopen software disconnect 2							•
103: CSYE CANopen synchronous error							•
104: CbFE CANopen hardware disconnect							•
105: CIdE CANopen index setting error							•
106: CAdE CANopen slave station number setting error							•
107: CFrE CANopen index setting exceed limit							•
108–110: Reserved							
111: InrCOM Internal communication overtime error							•
112: PM sensorless shaft lock error							

Tab. 12-11: Bit table for fault codes (3)

06-29	✓ PTC (Positive temperature coefficient) detection selection
	Settings 0: Warn and keep operating
	1: Warn and ramp to stop
	2: Warn and coast to stop
	3: No warning
	o. No wanning
	Pr. 06-29 setting defines how the will drive operate after PTC detection.
06-30	✓ PTC level
	Factory setting: 50.0
	Settings 0.0–100.0 %
	■ It needs to set AVI/ACI/AUI analog input function Pr. 03-00–03-02 to 6 (P.T.C. thermistor input value).
	 It is used to set the PTC level, and the corresponding value for 100 % is max. analog input value.
06-31	Frequency command for malfunction
	Factory setting: Read only
	Settings 0.00–655.35 Hz
	When malfunction occurs, use can check the frequency command. If it happens again, it will overwrite the previous record.
06-32	Output frequency at malfunction
	Factory setting: Read only
	Settings 0.00–655.35 Hz
	When malfunction occurs, use can check the current frequency command. If it happens again, it will overwrite the previous record.

06-33	Output volta	ge at malfunction	
			Factory setting: Read only
	Settings	0.0–6553.5 V	
		unction occurs, user ca ne previous record.	an check current output voltage. If it happens again, it will
06-34	DC voltage a	at malfunction	
			Factory setting: Read only
	Settings	0.0–6553.5 V	
		unction occurs, user cate the previous record.	can check the current DC voltage. If it happens again, it
06-35	Output curre	nt at malfunction	
			Factory setting: Read only
	Settings	0.00–655.35 Amp	
		unction occurs, user ca vrite the previous recor	an check the current output current. If it happens again, rd.
06-36	IGBT temper	rature at malfunction	
			Factory setting: Read only
	Settings	-3276,7–3276,7 °C	
		unction occurs, user ca rite the previous record	an check the current output current. If it happens again, rd.

06-37	Capacitance temperature at malfunction
	Factory setting: Read on
	Settings -3276.7–3276.7 °C
	When malfunction occurs, user can check the current capacitance temperature. If happens again, it will overwrite the previous record.
06-38	Motor speed in rpm at malfunction
	Factory setting: Read on
	Settings -3276.7–3276.7 rpm
	When malfunction occurs, user can check the current motor speed in rpm. If it happen again, it will overwrite the previous record.
06-39	Torque command at malfunction
	Factory setting: Read on
	Settings -3276.7–3276.7
	 When malfunction occurs, user can check the current torque command. If it happens again it will overwrite the previous record.
06-40	Status of multi-function input terminal at malfunction
	Factory setting: Read on
	Settings 0000h-FFFFh
06-41	Status of multi-function output terminal at malfunction
	Factory setting: Read on
	Settings 0000h-FFFFh
	When malfunction occurs, user can check the status of multi-function input/output terminals If it happens again, it will overwrite the previous record.

06-42	Drive status	at malfunction
		Factory setting: Read only
	Settings	0000h-FFFFh
		unction occurs, please check the drive status (communication address 2119H). on happens again, the previous record will be overwritten by this parameter.
06-43	Reserved	
06-44	💉 STO alar	m latch
		Factory setting: 0
	Settings	0: STO alarm Latch
		1: STO alarm no Latch
	is need to o ■ Pr. 06-44 = will be clea	0 STO Alarm Latch: after the reason of STO Alarm is cleared, a Reset command clear STO Alarm. 1 STO Alarm no Latch: after the reason of STO Alarm is cleared, the STO Alarm red automatically. –STL3 error are "Alarm latch" mode (in STL1–STL3 mode, the Pr. 06-44 function ive).

		nt to outpu						
							Facto	ory setting: 3
S	ettings		n and keep o					
			n and ramp t					
		2: Wari 3: No v	n and coast t	o stop				
			-			_		
—	The OPHL	. protect w	vill be active v	when the se	etting is not :	3.		
-46	✓ Waiting f	time of ou	tput phase lo	SS				
							Factory s	etting: 0.500
S	ettings	0.000–	65.535 sec					
47	 Current of 	detection I	level of outpu	ut phase los	SS			
							Factory	setting: 1.00
S	ettings	0.00–6	55.35 %					
48 /	 Output p 	nase loss	detection fu	nction exec	uting time b	efore run		
S	ettings	0.000-	65.535 sec				Factory s	etting: 0.000
	When Pr. (Status 1: M Any phase	06-48 is 0, /lotor drive e is less th	65.535 sec , OPHL detec e is in operati an Pr. 06-47 . 06-45 settin	on setting lev				
•	When Pr. (Status 1: M Any phase	06-48 is 0, /lotor drive e is less th	, OPHL detec e is in operati an Pr. 06-47 . 06-45 settin	on setting lev				
8	When Pr. (Status 1: M Any phase	06-48 is 0, Aotor drive e is less th perform Pr. Drive's s	, OPHL detec e is in operati an Pr. 06-47 . 06-45 settin	on setting lev				
•	When Pr. (Status 1: M Any phase drive will p	06-48 is 0, Aotor drive e is less th perform Pr. Drive's s	, OPHL detec e is in operati an Pr. 06-47 . 06-45 settin	on setting lev			6-46 setting	
8	When Pr. (Status 1: M Any phase drive will p	06-48 is 0, Notor drive e is less th perform Pr. Drive's s	, OPHL detec e is in operati an Pr. 06-47 . 06-45 settin	on setting lev		eeds Pr. 06	6-46 setting	
•	When Pr. 0 Status 1: M Any phase drive will p Operation c	06-48 is 0, Notor drive e is less th perform Pr. Drive's s	, OPHL detec e is in operati an Pr. 06-47 . 06-45 settin	on setting lev		eeds Pr. 06	6-46 setting	
•	When Pr. 0 Status 1: M Any phase drive will p Operation c	06-48 is 0, Aotor drive e is less th erform Pr. Drive's s command detection	, OPHL detec e is in operati an Pr. 06-47 . 06-45 settin	on setting lev		eeds Pr. 06	6-46 setting	
•	When Pr. (Status 1: M Any phase drive will p Operation c	06-48 is 0, Aotor drive e is less th erform Pr. Drive's s command detection	, OPHL detec e is in operati an Pr. 06-47 . 06-45 settin	on setting lev		eeds Pr. 06	6-46 setting	
	When Pr. (Status 1: M Any phase drive will p Operation c	06-48 is 0, Notor drive e is less th erform Pr. Drive's s command detection Pr. 06-47	, OPHL detec e is in operati an Pr. 06-47 . 06-45 settin	on setting lev		eeds Pr. 06	6-46 setting	time, motor

Fig. 12-47: Output phase loss (OPHL) during frequency inverter operation

■ Status 2: Motor drive is in stop; Pr. 06-48 = 0; Pr. 07-02 ≠ 0

After motor drive starts, DC brake will be applied in accord to Pr. 07-01 and Pr. 07-02. During this period, OPHL detection will not be conducted. After DC brake, motor drive starts to run, and conducts the OPHL protection as mentioned in status 1.

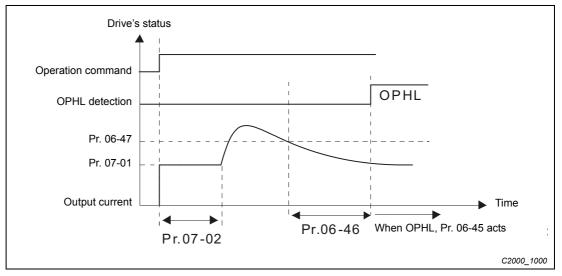


Fig. 12-48: Output phase loss (OPHL) during frequency inverter stop

Status 3: Motor drive is in stop; Pr. 06-48 ≠ 0; Pr. 07-02 ≠ 0 When motor drive starts, it will perform Pr. 06-48 and then Pr. 07-02 (DC brake). DC brake current level in this status includes two parts, one is 20 times of Pr. 06-47 setting value in Pr. 06-48 setting time, and Pr. 07-02 setting value in Pr. 07-01 setting time. Total DC brake time is T = Pr. 06-48 + Pr. 07-02.

In this period, if OPHL happens, motor drive starts to count until Pr. 06-48/2, motor drive will perform Pr. 06-45 setting.

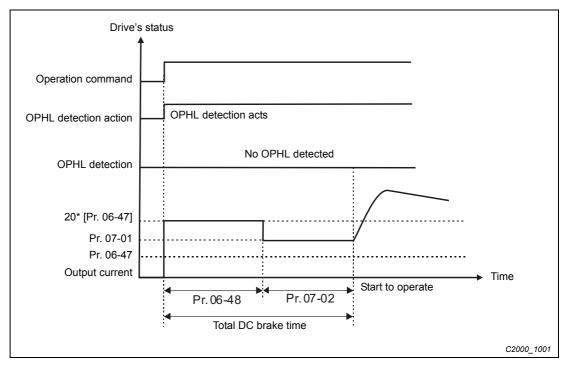


Fig. 12-49: Status 3-1: Pr. 06-48 \neq 0, Pr. 07-02 \neq 0 (No OPHL detected before operation)

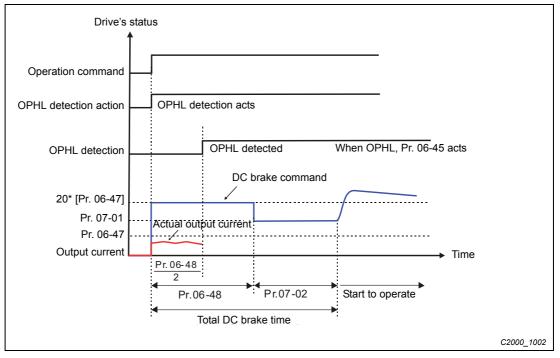


Fig. 12-50: Status 3-2: Pr. 06-48 \neq 0, Pr. 07-02 \neq 0 (OPHL detected before operation)

Status 4: Motor drive is in stop; Pr. 06-48≠0; Pr. 07-02=0 When motor drive starts, it will perform Pr. 06-48 as DC brake. The DC brake current level is 20 times of Pr. 06-47 setting value. In this period, if OPHL happens, motor drive starts to count until Pr. 06-48/2, motor drive will perform Pr. 06-45 setting.

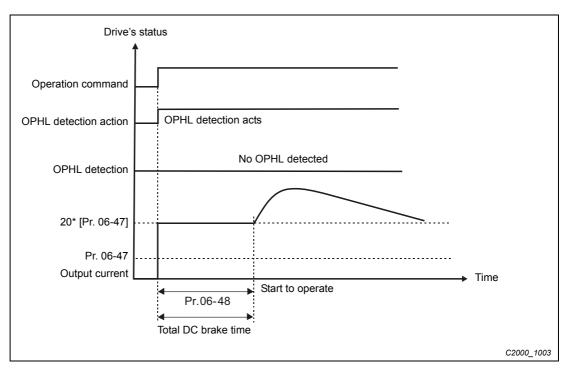


Fig. 12-51: Status 4-1: Pr. 06-48 \neq 0, Pr. 07-02 = 0 (No OPHL detected before operation)

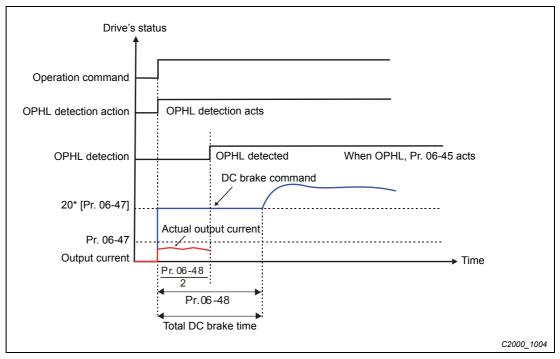
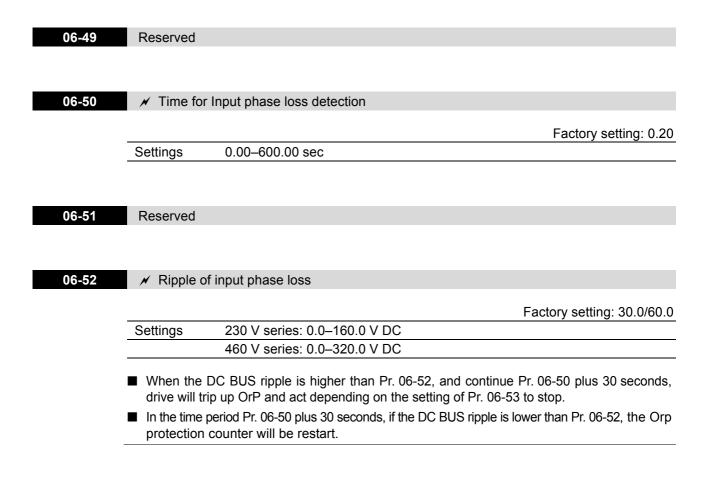
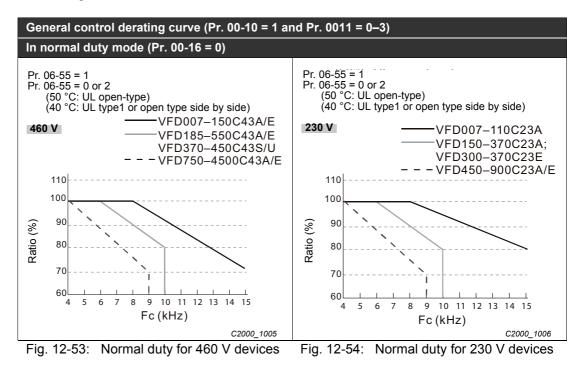



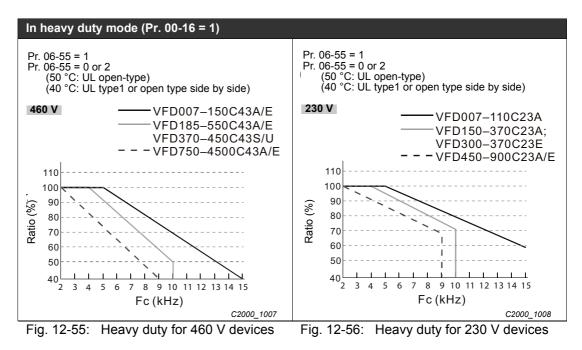
Fig. 12-52: Status 4-2: Pr. 06-48 \neq 0, Pr. 07-02 = 0 (OPHL detected before operation)

06-53		ant for the detected input phase loss (OrD)
06-53	A freatme	ent for the detected Input phase loss (OrP)
		Factory setting: 0
	Settings	0: warn, ramp to stop
		1: warn, coast to stop
	Over ripple	e protection
		DC BUS ripple is bigger than protection level, drive will trip up OrP and depending e parameter 06-53 is set to stop.
06-54	Reserved	
06-55	Derating pro	otection
		Factory setting: 0
	Settings	0: constant rated current and limit carrier wave by load current and temperature
		1: constant carrier frequency and limit load current by setting carrier wave
		2: constant rated current(same as setting 0), but close current limit
	decrease overload s	rated current is constant, carrier frequency (Fc) outputted by PWM will auto according to surrounding temperature, overload output current and time. If situation is not frequent and only cares the carrier frequency operated with the rent for a long time and carrier wave changes during short overload, it is

recommended to set to 0. Refer to the following diagram for the level of carrier frequency. Take VFD007C43A in normal duty as example, surrounding temperature 50 °C with independent installation and UL open-type. When the carrier frequency is set to 15 kHz, it corresponds to 72 % rated output current. When it outputs higher than the value, it will auto decrease the carrier frequency. If the output is 83 % rated current and the carrier frequency will decrease to 12 kHz. In addition, it will also decrease the carrier frequency when overload. When the carrier frequency is 15 kHz and the current is 120 % *72 % = 86 % for a minute, the carrier frequency will decrease to the factory setting.

■ Setting 1:


It is used for the fixed carrier frequency and prevents the carrier wave changes and motor noise caused by the surrounding temperature and frequent overload.


Refer to the following for the derating level of rated current. Take VFD007C43A in normal duty as example, when the carrier frequency keeps in 15 kHz and the rated current is decreased to 72 %, it will have OL protection when the current is 120 % *72 % = 86 % for a minute. Therefore, it needs to operate by the curve to keep the carrier frequency.

Setting 2:

It sets the protection method and action to 0 and disables the current limit for the Ratio*160 % of output current in the normal duty and Ratio*180 % of output current in the heavy duty. The advantage is that it can provide higher output current when the setting is higher than the factory setting of carrier frequency. The disadvantage is that it decreases carrier wave easily when overload.

- It should be used with Pr. 00-16 and Pr. 00-17 for setting.
- Ambient temperature will also affect the derating, please refer to ambient temperature derating curve.

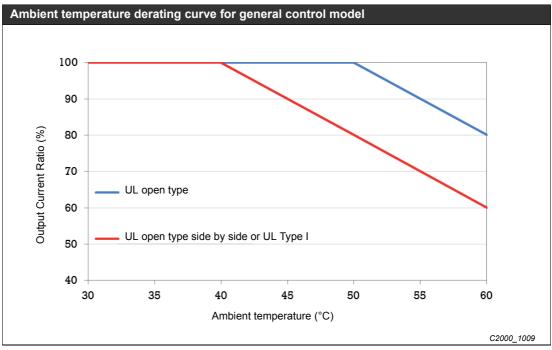


Fig. 12-57: Derating for high ambient temperature

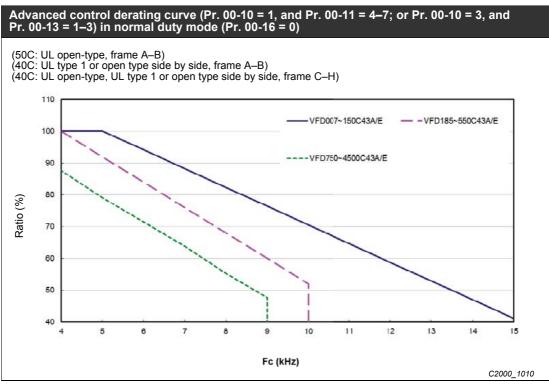


Fig. 12-58: Derating cureve for sensorless control (460 V, ND)

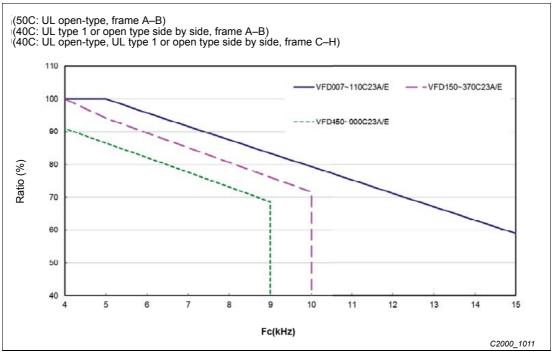


Fig. 12-59: Derating cureve for sensorless control (230 V, ND)

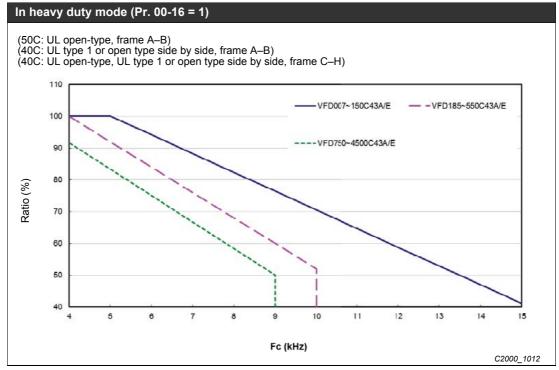


Fig. 12-60: Derating curve for sensorless control (460 V, HD)

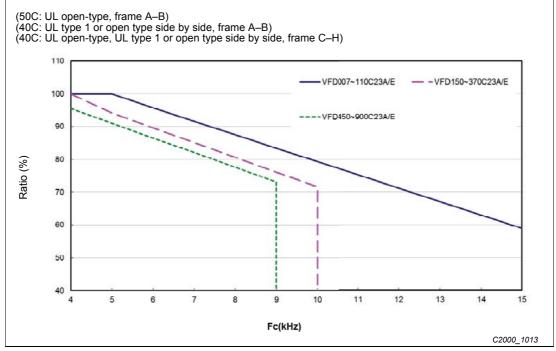


Fig. 12-61: Derating curve for sensorless control (230 V, HD)

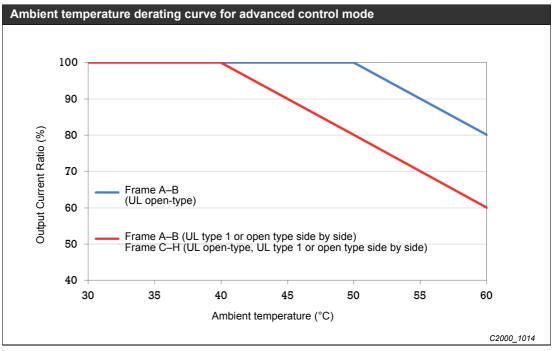
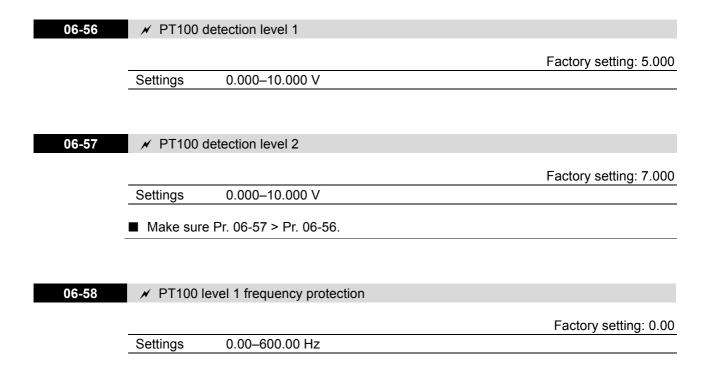
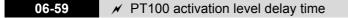




Fig. 12-62: Derating for high ambient temperature

Factory setting: 60 sec

```
Settings 0–6000 sec
```

- PT100 operation
 - (1) Use AVI, AUI or ACI (set to 0-10 V) for analog voltage input and select PT100 mode.
 - (2) Choose one of the analog voltage input type: (a) AVI (Pr. 03-00 = 11), (b) AUI (Pr. 03-02 = 11), or (c) ACI (Pr. 03-01 = 11 and Pr. 03-29 = 1).
 - (3) When using ACI as analog voltage input, set Pr. 03-01=11 and Pr. 03-29=1. Then switch SW2 to 0-10 V on the I/O control terminal block.
 - (4) Set Pr. 03-23 = 23 and AFM2 to constant current output. Switch AFM2 (SW2) to 0–20 mA on the I/O control terminal block and set constant current output to 9 mA by setting Pr. 03-33=45. The AFM2 constant output current is 20 mA* 45 % = 9 mA.
 - (5) Pr. 03-33 is for adjusting the constant voltage or constant current of AFM2, the setting range is 0–100.00 %.
 - (6) There are two types of action level for PT100. The diagram of PT protecting action is shown as below:

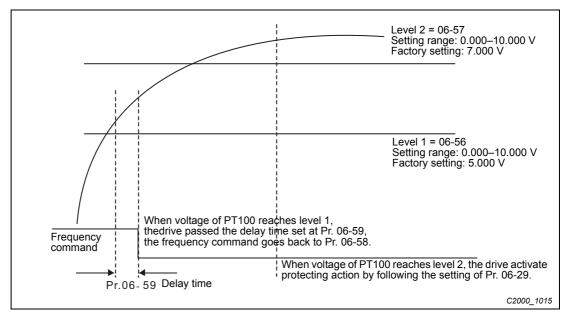


Fig. 12-63: Trigger threshold of PT100 sensor

(7) PT100 wiring diagram:

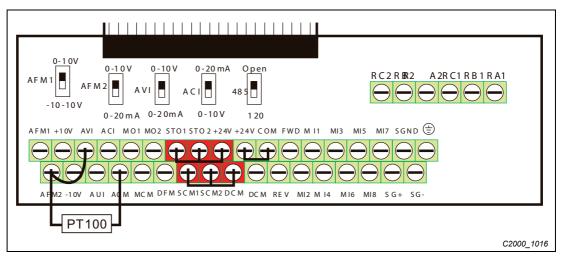


Fig. 12-64: Connection of a PT100 sensor to the I/O control terminal block

- When Pr. 06-58 = 0.00 Hz, PT100 function is disabled.
- EXAMPLE A PT100 is installed to the drive. If motor temperature reaches 135 °C (275 °F) or higher, the drive will decrease motor frequency to the setting of Pr. 06-58. Motor will operate at this frequency (Pr. 06-58) till the motor temperature decreases to 135 °C (275 °F) or lower. If motor temperature exceeds 150 °C (302 °F), the motor will decelerate to stop and outputs an 'OH3' warning.

Set up process:

- Switch AFM2 (SW2) to 0–20 mA on the I/O control terminal block. (Refer to Figure 12-64, PT100 wiring diagram)
- Wiring (Refer to Figure 12-64, PT100 wiring diagram): Connect external terminal AFM2 to (+) Connect external terminal ACM to (-) Connect external terminals AFM2 and AVI to short-circuit
- ③ Set Pr. 03-00=11 or Pr. 03-23=23 or Pr. 03-33 = 45 % (9 mA)
- ④ Refer to RTD temperature and resistance comparison table Temperature = 135 °C, resistance = 151.71 Ω; Input current: 9 mA, voltage: approximately: 1.37 V DC Temperature = 150 °C, resistance = 157.33 Ω; Input current: 9 mA, voltage: approximately: 1.42 V DC
- (5) Set Pr. 06-56 =1.37 and Pr. 06-58 =10 Hz. When RTD temperature increases to 135 °C or higher, the drive will decelerate to the selected frequency. When Pr. 06-58 = 0, the drive will not run.
- (6) Set Pr. 06-57 = 1.42 and Pr. 06-29 = 1 (warning and decelerate to stop). When RTD temperature increases to 150 °C or higher, the drive will decelerate to stop and outputs an 'OH3' warning.

06-60	✗ Software	e detection GFF current level	
			Factory setting: 60.0
	Settings	0.0–6553.5 %	
06-61	💉 Software	edetection GFF filter time	
			Factory setting: 0.10
	Settings	0.00–655.35 sec	
		motor drive detects the unbalanced three-phase out curre Pr. 06-60, GFF protection will be activated. Then the r	-
		ase current output unbalance value has exceeds Pr. 06-60 d stop output immediately.) setting, drive will trip
06-62	Reserved		
06-63	Fault record	1 (day)	
06-65	Fault record	2 (day)	
06-67	Fault record	3 (day)	
06-69	Fault record	4 (day)	
		Facto	ory setting: Read only
	Settings	0–65535 days	

Factory setting: Read only

06-68 Fault record 3 (min) 06-70 Fault record 4 (min)
--

Cottingo	0–1439 min		
Settings	0–1439 min		

■ When there is any malfunctions in motor drive operation, Pr. 06-17–22 will record 6 malfunctions recently, and Pr. 06-63–70 can record the operation time for 4 malfunctions in sequence. It can help to check if there is any wrong with the drive according to the recorded internal time.

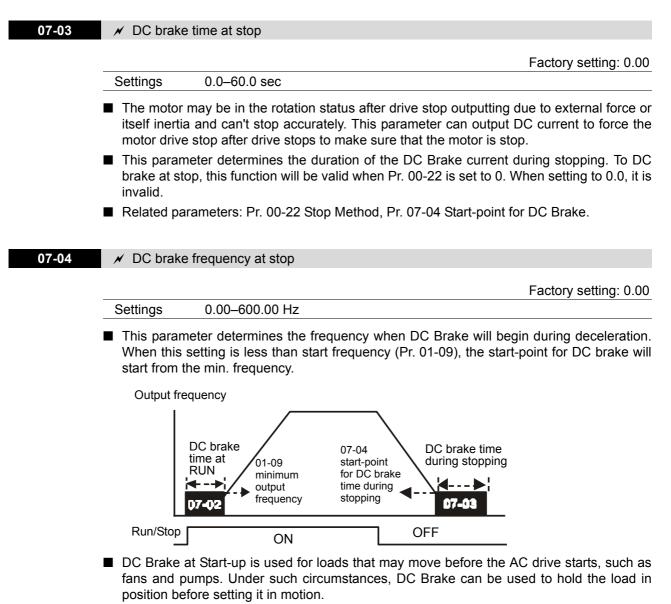
For example: The first error: ocA occurs in 1000 minutes after motor drive start operation. The second error: ocd happens after another 1000 minutes. The 4th error: ocA happens after another 1000 minutes. Then, the 5th error is ocd, happening 1000 minutes following 4th error. Last, 6th error ocn happens 1000 minutes after 5th error. Then Pr. 06-17–Pr. 06-22 and Pr. 06-63–Pr. 06-70 will be:

	1 st fault	2 nd fault	3 rd fault	4 th fault	5 th fault	6 th fault
06-17	ocA	ocd	ocn	ocA	ocd	ocn
06-18	0	ocA	ocd	ocn	ocA	ocd
06-19	0	0	ocA	ocd	ocn	ocA
06-20	0	0	0	ocA	ocd	ocn
06-21	0	0	0	0	ocA	ocd
06-22	0	0	0	0	0	ocA
06-63	1000	560	120	1120	680	240
06-64	0	1	2	2	3	4
06-65	0	1000	560	120	1120	680
06-66	0	0	1	2	2	3
06-67	0	0	1000	560	120	1120
06-68	0	0	0	1	2	2
06-69	0	0	0	1000	560	120
06-70	0	0	0	0	1	2

Tab. 12-12: Example of 6 fault entries in reference to the operating time

* From time record, it can be known that the last fault (Pr. 06-17) happened after the drive run for 4 days and 240 minutes.

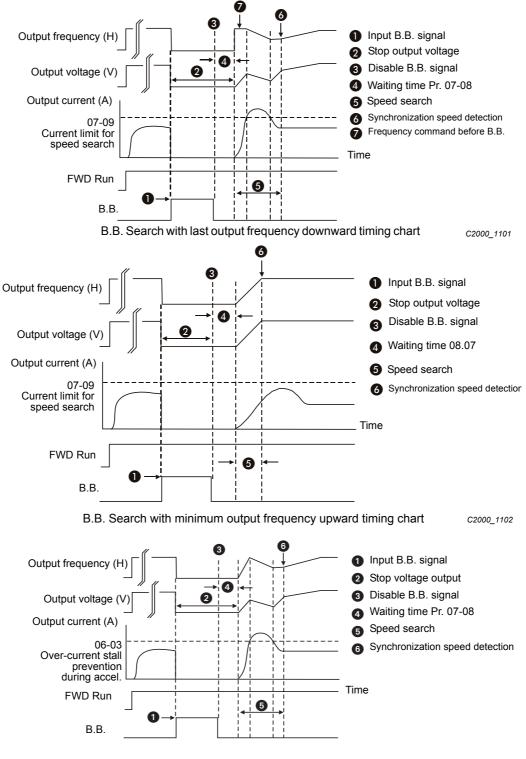
06-71	✓ Low curr	ent setting level
	Cottingo	Factory setting: 0.0
	Settings	0.0–6553.5 %
06-72	× Low curr	ent detection time
		Factory setting: 0.0
	Settings	0.00–655.35 sec
06-73	💉 Treatme	nt for low current
		Factory setting: 0
	Settings	0: No function
		1: warn and coast to stop
		2: warn and ramp to stop by 2nd deceleration time
		3: warn and operation continue
	of Pr. 06-7 This paran Iow curren	vill operate as the setting of Pr. 06-73 when output current is lower than the setting 1 and when low current continues for a period longer than the setting of Pr. 06-72. neter can also be used with external multi-function output terminal 44 (MO44) for t output. urrent detection function will not be executed when drive is at sleep or standby


12.8 Special parameters

NOTE *i* This parameter can be set during operation.

07-00	✓ Software brake level
	Factory setting: 380.0/760.0
	Settings 230 V series: 350.0–450.0 V DC 460 V series: 700.0–900.0 V DC
	This parameter sets the DC-bus voltage at which the brake chopper is activated. Users can choose the suitable brake resistor to have the best deceleration. Refer to Chapter 7 Accessories for the information of the brake resistor.
	It is only valid for the models below 30 kW of 460 series and 22 kW of 230 series.
'-01	✓ DC brake current level
	Factory setting: 0
	Settings 0–100 %
	This parameter sets the level of DC Brake Current output to the motor during start-up and stopping. When setting DC Brake Current, the Rated Current is regarded as 100 %. It is recommended to start with a low DC Brake Current Level and then increase until proper holding torque has been attained.
	When it is in FOCPG control mode, DC brake is zero-speed operation. It can enable DC brake function by setting to any value. The drive will output an appropriate current to meet the actual need.
7-02	✓ DC brake time at RUN
	Factory setting: 0.0

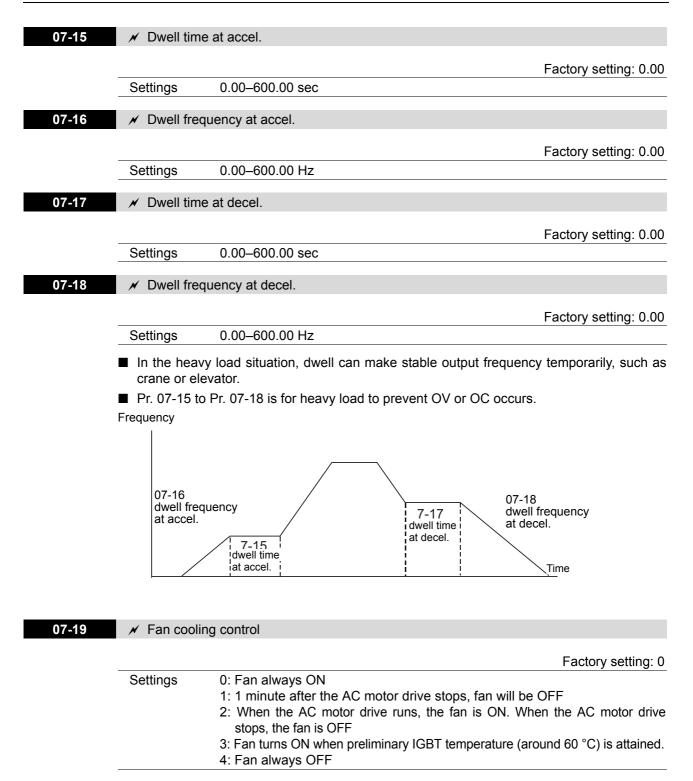
Ine motor may be in the rotation status due to external force or itself inertia. If the drive is used with the motor at this moment, it may cause motor damage or drive protection due to over current. This parameter can be used to output DC current before motor operation to stop the motor and get a stable start. This parameter determines the duration of the DC Brake current after a RUN command. When it is set to 0.0, it is invalid.



■ DC Brake at stop is used to shorten the stopping time and also to hold a stopped load in position, such as crane or cutting machine.

✓ Voltage incrasing gain	
Factory setting	j: 100
Settings 1–200 % When the user is using speed tracking, adjust Pr. 07-05 to slow down the increasivoltage if there are errors such as oL or oc.	ing of
 Restart after momentary power loss 	
Factory setti	ing: 0
Settings 0: Stop operation 1: Speed search for last frequency command 2: Speed search for the minimum output frequency	
This parameter determines the operation mode when the AC motor drive restarts a momentary power loss.	from
The power connected to the drive may power off momentarily due to many reasons function allows the drive to keep outputting after power is on again after power off and cause drive stops.	
Setting 1: Operation continues after momentary power loss, speed search starts wit Master Frequency reference value after drive output frequency and motor rotator spe synchronous. The motor has the characteristics of big inertia and small obstruction example, in the equipment with big inertia wheel, it doesn't need to wait to execute ope command until wheel is complete stop after re-start to save time.	eed is n. For
Setting 2: Operation continues after momentary power loss, speed search starts with master frequency after drive output frequency and motor rotator speed is synchronous motor has the characteristics of small inertia and bigger obstruction.	
In PG control mode, the AC motor drive will execute the speed search function automative by the PG speed when this setting isn't set to 0.	tically
Maximum power loss duration	
Factory setting	q: 2.0
Settings 0.0–20.0 sec	
If the duration of a power loss is less than this parameter setting, the AC motor driv resume operation. If it exceeds the Maximum Allowable Power Loss Time, the AC drive output is then turned off (coast stop).	
The selected operation after power loss in Pr. 07-06 is only executed when the max allowable power loss time is \leq 5 seconds and the AC motor drive displays "LU". But if the AC motor drive is powered off due to overload, even if the maximum allow power loss time is \leq 5 seconds, the operation mode as set in Pr. 07-06 is not execute that case it starts up normally.	wable
✓ Base block time	
 Base block time Factory setting 	g: 0.5

When momentary power loss is detected, the AC drive will block its output and then wait for a specified period of time (determined by Pr. 07-08, called Base-Block Time) before resuming operation. This parameter should be set at a value to ensure that any residual regeneration voltage from the motor on the output has disappeared before the drive is activated again.


B.B. Search with minimum output frequency upward timing chart C2000_1103

🖌 Current		
		Factory setting: 100
Settings	20–200 %	
-	a momentary power loss, the AC motor drive will output current is greater than the value set by Pr	
	ecuting speed search, the V/f curve is operated by r the optimum accel./decel. and start speed searc	
nization fa	mum speed search level will affect the synchrono aster when this parameter is set to larger value. E protection.	• •
💉 Treatme	ent after fault	
		Factory setting: (
Settings	0: Stop operation 1: Speed search starts with current speed	
	2: Speed search starts with minimum output	frequency
	2: Speed search starts with minimum output trol mode, the AC motor drive will execute the speed speed when this setting isn't set to 0.	
by the PG	trol mode, the AC motor drive will execute the spec	ed search function automaticall
by the PG ■ Fault inclu	trol mode, the AC motor drive will execute the spec speed when this setting isn't set to 0.	ed search function automatically
by the PG ■ Fault inclu	trol mode, the AC motor drive will execute the spec speed when this setting isn't set to 0. udes: bb,oc,ov,occ. To restart after oc, ov, occ, Pr	ed search function automatically
by the PG ■ Fault inclu	trol mode, the AC motor drive will execute the spec speed when this setting isn't set to 0. udes: bb,oc,ov,occ. To restart after oc, ov, occ, Pr	ed search function automatically
by the PG Fault inclu Auto res	trol mode, the AC motor drive will execute the spece speed when this setting isn't set to 0. udes: bb,oc,ov,occ. To restart after oc, ov, occ, Pr start time after fault 0–10 c (oc, ov, occ) occurs, the AC motor drive can be	ed search function automatically 07-11 can not be set to 0. Factory setting: 0
 by the PG Fault inclu Auto res Settings After fault to 10 time Setting thi 	trol mode, the AC motor drive will execute the spece speed when this setting isn't set to 0. udes: bb,oc,ov,occ. To restart after oc, ov, occ, Pr start time after fault 0–10 c (oc, ov, occ) occurs, the AC motor drive can be	ed search function automatically 07-11 can not be set to 0. Factory setting: 0 reset/restarted automatically up
 by the PG Fault incluing Auto resident of the settings After fault to 10 time Setting this When enailed of the time 	trol mode, the AC motor drive will execute the spec speed when this setting isn't set to 0. udes: bb,oc,ov,occ. To restart after oc, ov, occ, Pr start time after fault 0-10 (oc, ov, occ) occurs, the AC motor drive can be s. is parameter to 0 will disable the reset/restart opera	ed search function automaticall : 07-11 can not be set to 0. Factory setting: (reset/restarted automatically u ation after any fault has occurred I0 setting after fault auto reset.
 by the PG Fault inclu Auto res Settings After fault to 10 time Setting thi When ena If the time user reset 	trol mode, the AC motor drive will execute the spece speed when this setting isn't set to 0. udes: bb,oc,ov,occ. To restart after oc, ov, occ, Pr start time after fault 0–10 c (oc, ov, occ) occurs, the AC motor drive can be es. is parameter to 0 will disable the reset/restart opera abled, the AC motor drive will restart with Pr. 07-1 e of reset/restart exceeds Pr. 07-11 setting, the fa	ed search function automatically : 07-11 can not be set to 0. Factory setting: 0 reset/restarted automatically up ation after any fault has occurred 10 setting after fault auto reset.
 by the PG Fault inclu ✓ Auto res Settings After fault to 10 time Setting thi When ena If the time user reset 	trol mode, the AC motor drive will execute the spece speed when this setting isn't set to 0. udes: bb,oc,ov,occ. To restart after oc, ov, occ, Pr start time after fault 0-10 (oc, ov, occ) occurs, the AC motor drive can be es. is parameter to 0 will disable the reset/restart operate abled, the AC motor drive will restart with Pr. 07-1 e of reset/restart exceeds Pr. 07-11 setting, the fa t manually and run the motor drive again.	ed search function automatically : 07-11 can not be set to 0. Factory setting: 0 reset/restarted automatically up ation after any fault has occurred 10 setting after fault auto reset.

- This parameter is used for starting and stopping a motor with a high inertia. A motor with high inertia will take 2–5 minutes or longer to stop completely. By setting this parameter, the user does not need to wait for the motor to come to a complete stop before restarting the AC motor drive. If a PG card and encoder is used on the drive and motor, then the speed search will start from the speed that is detected by the encoder and accelerate quickly to the commanded frequency. The output current is set by the Pr. 07-09.
- In PG control mode, the AC motor drive will execute the speed search function automatically by the PG speed when this setting isn't set to 0.

07-13	💉 Decel. time	e at momentary	v power loss (c	Eb function)			
	Settings	0: Disable 1–6: Auto de	celeration			Factory set	ting: 0
-	This parame	ter is used for		e selection for	momentary po	ower loss.	
07-14	💉 dEb return	time					
						Factory settin	g: 0.0
-	Settings	0.0-25.0 sec				,	<u> </u>
	dEb (Decelerati loss occurs.	on Energy Bac	kup) let motor	drive decelera	ites to stop wh	en momentary	power
	Lv se Soft start relay of	etting level tting level power side dEb action t frequency		Auto dec	eleration		

		Fan will be ON as the drive's power is turned ON.	
	■ Setting 1: 1	I minute after AC motor drive stops, fan will be OFF.	
	Setting 2: V will be OFF	When the AC motor drive runs and fan will be ON. AC motor drive stops an	d fan
	IGBT temp lower than		
	Setting 4: F	Fan is always OFF.	
07-20	💉 Emergen	cy stop (EF) & force stop	
		Factory settin	na: 0
	Settings	0: Coast to stop	. <u>g</u> . e
	C C	1: Stop by 1 st deceleration time	
		2: Stop by 2 nd deceleration time	
		3: Stop by 3 rd deceleration time	
		4: Stop by 4 th deceleration time	
		5: System deceleration (According to original deceleration time)6: Automatic deceleration (Pr. 01-46)	
		multi-function input terminal is set to 10 (EF) or 18 (Emergency stop) a he drive will stop according to the setting in Pr. 07-20.	nd is
07-21	💉 Auto ene	rgy-saving operation	
07-21	🖌 Auto ene	rgy-saving operation Factory settir	າg: 0
07-21	✓ Auto ene✓ Settings		າg: 0
07-21	Settings When Pr. 0 During con	Factory settin 0: Disable 1: Enable 07-21 is set to 1, the acceleration and deceleration will operate with full vol- istant speed operation, it will auto calculate the best voltage value by the he load. This function is not suitable for the ever-changing load or near full-	tage. load
07-21	 Settings When Pr. 0 During con power for th during oper When the o decrease b 	Factory settin 0: Disable 1: Enable 07-21 is set to 1, the acceleration and deceleration will operate with full vol- istant speed operation, it will auto calculate the best voltage value by the he load. This function is not suitable for the ever-changing load or near full-	tage. load load auto
07-21	 Settings When Pr. 0 During con power for th during oper When the o decrease b 	Factory settin 0: Disable 1: Enable 07-21 is set to 1, the acceleration and deceleration will operate with full vol- istant speed operation, it will auto calculate the best voltage value by the he load. This function is not suitable for the ever-changing load or near full- ration. butput frequency is constant, i.e. constant operation, the output voltage will by the load reduction. Therefore, the drive will operate with min. power, r voltage and current.	tage. load load auto
	 Settings When Pr. 0 During con power for the during oper When the conduction of 	Factory settin 0: Disable 1: Enable 07-21 is set to 1, the acceleration and deceleration will operate with full vol- istant speed operation, it will auto calculate the best voltage value by the he load. This function is not suitable for the ever-changing load or near full- ration. butput frequency is constant, i.e. constant operation, the output voltage will by the load reduction. Therefore, the drive will operate with min. power, r voltage and current.	tage. load load auto nulti-

■ This parameter is used for the fan control.

- When Pr. 07-21 is set to 1, this parameter can be used to adjust the gain of energy-saving. The factory setting is 100 %. If the result is not good, it can adjust by decreasing the setting. If the motor oscillates, it should increase the setting value.
- At some special application such as High speed spindle, the motor temperature rise is been highly concern. Thus, when the motor is not working with load, the motor current will requested to reduce to a lower level. To Lowering this parameter setting can meet this requirement.

07-23 ✓ Auto voltage regulation (AVR) function

	Factory setting:
Settings	0: Enable AVR
	1: Disable AVR
	2: Disable AVR during deceleration
of the AC n the AC mot input voltag its lifetime v	oltage of the motor is usually 220 V/200 V AC 60 Hz/50 Hz and the input volta notor drive may vary between 180 V to 264 V AC 50 Hz/60 Hz. Therefore, wh for drive is used without AVR function, the output voltage will be the same as t ge. When the motor runs at voltages exceeding the rated voltage with 12 %–20 will be shorter and it can be damaged due to higher temperature, failing insulati le torque output.
voltage. Fo to 264 V A0 200 V AC/5	on automatically regulates the AC motor drive output voltage to the motor rat r instance, if V/f curve is set at 200 V AC/50 Hz and the input voltage is at 200 C, then the motor Output Voltage will automatically be reduced to a maximum 50 Hz. If the input voltage is at 180 V to 200 V AC, output voltage to motor a r will be in direct proportion.
	when AVR function is enabled, the drive will calculate the output voltage by actu tage. The output voltage won't be changed by DC bus voltage.
	when AVR function is disabled, the drive will calculate the output voltage by D e. The output voltage will be changed by DC bus voltage. It may cause insufficie nt.
Setting 2: t speed to lo	he drive will disable the AVR during deceleration, such as operated from hi w speed.
	notor ramps to stop, the deceleration time is longer. When setting this parame uto acceleration/deceleration, the deceleration will be quicker.
When it is i	n FOCPG or TQCPG, it is recommended to set to 0 (enable AVR).
 Filter time 	e of torque command (V/F and SVC control mode)
	Factory setting: 0.0
Settings	0.001–10.000 sec

■ When the setting is too long, the control will be stable but the control response will be delay. When the setting is too short, the response will be quickly but the control may be unstable. User can adjust the setting by the control and response situation.

07-24

07-25	💉 Filter tim	ne of slip compensation (V/F and SVC	control mode)
			Factory setting: 0.100
	Settings	0.001-10.000 sec	
	It can set	Pr. 07-24 and 07-25 to change the res	ponse time of compensation.
		24 and 07-25 are set to 10seconds, th But the system may be unstable when t	he response time of compensation is the the setting is too short.
-26	💉 Torque d	compensation gain (V/F and SVC cont	rol mode)
			Factory setting: 0 (1 in SVC mode)
	Settings	0–10	
	stator wine current an	ding and causes insufficient voltage at	tput voltage is absorbed by the resistor of t motor induction and result in over output adjust output voltage by the load and keep mal operation.
	decreased DC resisto	d. It'll cause decrease torque at low spe	in direct proportion when the frequency is eed due to small AC resistor and the same on function will increase the output voltage
		07-26 is set to large, it may cause motor overheat or triggers protection fur	otor overflux and result in too large output nction.
7-27	✓ Slip com	npensation gain (V/F and SVC control ı	mode)
			Factory setting: 0.00
	Settings	0.00–10.00	, , ,

- The induction motor needs the constant slip to produce magnetic torque. It can be ignore in the higher motor speed, such as rated speed or 2–3 % slip.
- In the operation with variable frequency, the slip and the synchronous frequency will be in reverse proportion to produce the same magnetic torque. That is the slip will be larger with the reduction of synchronous frequency. The motor may stop when the synchronous frequency is decreased to a specific value. Therefore, the slip serious affects the accuracy of motor speed at low speed.
- In another situation, when the drive uses with induction motor, the slip will be increased by the increasing load. It also affects the accuracy of motor speed.
- This parameter can be used to set compensation frequency and reduce the slip to close the synchronous speed when the motor runs in the rated current to raise the drive accuracy. When the drive output current is larger than Pr. 05-05 No-load Current of Induction Motor 1 (A), the drive will compensation the frequency by this parameter.
- When the control method (Pr. 00-11) is changed from V/f mode to vector mode, this parameter will auto be set to 1.00. Otherwise, it will be set to 0.00. Please do the compensation of slip after overload and acceleration. The compensation value should be increased from small to large gradually. That is to add the output frequency with motor rated slip X Pr. 07-27 Slip Compensation Gain when the motor is rated load. If the actual speed ratio is slow than expectation, please increase the setting. Otherwise, decrease the setting.

07-28	Reserved		
07-29	💉 Slip devi	ation level	
			Factory setting: 0
	Settings	0–100.0 % 0: No detection	
07-30	× Detection	n time of slip deviation	
			Factory setting: 1.0
	Settings	0.0–10.0 sec	
07-31	💉 Over slip	treatment	
			Factory setting: 0
	Settings	0: Warn and keep operation	
		1: Warn and ramp to stop	
		2: Warn and coast to stop 3: No warning	
	The Dr 07		a and over align treatment when
	the drive is	-29 to Pr. 07-31 are to set allowable slip level/tim s running.	ie and over slip treatment when

07-32	💉 Motor hu	nting gain
		Factory setting: 1000
	Settings	0–10000 0: Disable
	by setting t	will have current wave motion in some specific area. It can improve this situation his parameter. (When it is high frequency or run with PG, it can be set to 0. when wave motion happens in the low frequency, please increase Pr. 07-32.)
07-33	💉 Autoresta	art internal of fault
		Factory setting: 60.0
	Settings	0.0-6000.0 sec
	and beging if numbers cleared and	set/restart after fault occurs, the drive will regards Pr. 07-33 as a time boundary g counting the numbers of faults occur within this time period. Within the period, s of faults occurred did not exceed the setting in Pr. 07-11, the counting will be d starts from 0 when next fault occurs. However, if the numbers of faults occurred time period have exceed the setting in Pr. 07-11, user will need to press RESET

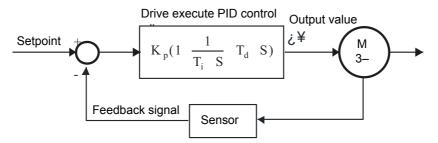
key manually for the drive to operate again.

12.9 High-function PID parameters

NOTE / This parameter can be set during operation.

08-00 / Input terminal for PID feedback

	Factory setting: 0
Settings	0: No function
-	1: Negative PID feedback: on analogue input acc. To setting 5 of Pr. 03-00 to Pr. 03-02.
	2: Negative PID feedback from PG card (Pr. 10-02, skip direction)
	3: Negative PID feedback from PG card (Pr. 10-02)
	4: Positive PID feedback from external terminal AVI (Pr. 03-00)
	5: Positive PID feedback from PG card (Pr. 10-02, skip direction)
	6: Positive PID feedback from PG card (Pr. 10-02)
	7: Negative PID feeback from communication protocol
	8: Positive PID feedback from communication protocol


- Negative feedback means: + target value feedback. It is used for the detection value will be increased by increasing the output frequency.
- When Pr. 03-00 to Pr. 03-02 have the same setting, then the AVI will be the prioritized selection.
- Positive feedback means: target value + feedback. It is used for the detection value will be decreased by increasing the output frequency.
- If Pr. 08-00 ≠ 7 and ≠ 8, the function of Pr. 08-06 is deactivated. The value of the setting remain the same after the derive is off.

Common applications for PID control

- Flow control: A flow sensor is used to feedback the flow data and performs accurate flow control.
- Pressure control: A pressure sensor is used to feedback the pressure data and performs precise pressure control.
- Air volume control: An air volume sensor is used to feedback the air volume data to have excellent air volume regulation.
- Temperature control: A thermocouple or thermistor is used to feedback temperature data for comfortable temperature control.
- Speed control: a speed sensor or encoder is used to feedback motor shaft speed or input another machine speed as a target value for closed loop speed control of master-slave operation.

■ PID control loop:

K_p: Proportional gain (P) T_i: Integral time (I) T_d: Derivative control (D) S: Operator

Concept of PID control

- Proportional gain (P): the output is proportional to input. With only proportional gain control, there will always be a steady-state error.
- Integral time (I): the controller output is proportional to the integral of the controller input. To eliminate the steady-state error, an "integral part" needs to be added to the controller. The integral time decides the relation between integral part and error. The integral part will be increased by time even if the error is small. It gradually increases the controller output to eliminate the error until it is 0. In this way a system can be stable without steady-state error by proportional gain control and integral time control.
- Differential control (D): the controller output is proportional to the differential of the controller input. During elimination of the error, oscillation or instability may occur. The differential control can be used to suppress these effects by acting before the error. That is, when the error is near 0, the differential control should be 0. Proportional gain (P) + differential control (D) can be used to improve the system state during PID adjustment.

When PID control is used in a constant pressure pump feedback application: Set the application's constant pressure value (bar) to be the set point of PID control. The pressure sensor will send the actual value as PID feedback value. After comparing the PID set point and PID feedback, there will be an error.

Thus, the PID controller needs to calculate the output by using proportional gain (P), integral time (I) and differential time (D) to control the pump. It controls the drive to have different pump speed and achieves constant pressure control by using a 4-20 mA signal corresponding to 0-10 bar as feedback to the drive.

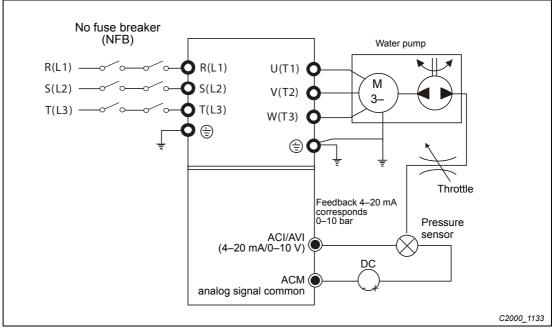


Fig. 12-65: Constant pump pressure control

Pr. 00-04 is set to 10 (Display PID analog feedback signal value (b) (%))

Pr. 01-12 Acceleration time will be set as required

Pr. 01-13 Deceleration time will be set as required

Pr. 00-21 = 0 to operate from the digital keypad

- Pr. 00-20 = 0, the set point is controlled by the digital keypad
- Pr. 08-00 = 1 (Negative PID feedback from analog input)

ACI analog input Pr. 03-01 set to 5, PID feedback signal.

Pr. 08-01-08-03 will be set as required:

- If there is no vibration in the system, increase Pr. 08-01 (Proportional gain (P))
- If there is no vibration in the system, reduce Pr. 08-02 (Integral time (I))
- If there is no vibration in the system, increase Pr. 08-03 (Differential time (D))
- Refer to Pr. 08-00 to 08-21 for PID parameters settings.

		Factory setting: 80.0
Settings	0.0–500.0 %	

- When the setting is 1.0, it means Kp gain is 100 %; setting is 0.5, Kp gain means 50 %.
- It is used to eliminate the system error. It is usually used to decrease the error and get the faster response speed. But if the value is set too high, it may cause the system oscillation and instability.
- If the other two gains (I and D) are set to zero, proportional control is the only one effective.

	Factory setting: 1.00
Settings	0.00–100.00 sec 0.00: Disable
doesn't ste integral tir oscillation integral co This parar it will have the integra external co When the	integral time is too small, it may cause system oscillation.
	gral time is set as 0.00, Pr. 08-02 will be disabled.
🖌 Derivativ	ve control (D)
# Derivativ	
0	Factory setting: 0.00
Settings	0.00–1.00 sec
	ential controller is used to show the change of system error and it is helpful to
shorten ac ence. Plea differentia change. T	the change of error. So the differential controller can be used to eliminate the error of system state. With the suitable differential time, it can reduce overshoot and djustment time. However, the differential operation will increase the noise interfer- ase note that too large differential will cause big noise interference. Besides, the I shows the change and the output of the differential will be 0 when there is no interfere, the differential control can't be used independently. It needs to be used two controllers to make a PD controller or PID controller.
shorten ac ence. Plea differentia change. T with other This parar change. T	e system state. With the suitable differential time, it can reduce overshoot and djustment time. However, the differential operation will increase the noise interfer- ase note that too large differential will cause big noise interference. Besides, the I shows the change and the output of the differential will be 0 when there is no herefore, the differential control can't be used independently. It needs to be used two controllers to make a PD controller or PID controller. The suitable differential time can reduce the overshoot of P and I controller to the oscillation and have a stable system. But too long differential time may cause
 shorten ac ence. Plea differentia change. T with other This parar change. T decrease system os The difference 	e system state. With the suitable differential time, it can reduce overshoot and djustment time. However, the differential operation will increase the noise interfer- ase note that too large differential will cause big noise interference. Besides, the I shows the change and the output of the differential will be 0 when there is no herefore, the differential control can't be used independently. It needs to be used two controllers to make a PD controller or PID controller. The suitable differential time can reduce the overshoot of P and I controller to the oscillation and have a stable system. But too long differential time may cause
 shorten ac ence. Plea differentia change. T with other This parar change. T decrease system os The different not recom 	e system state. With the suitable differential time, it can reduce overshoot and djustment time. However, the differential operation will increase the noise interfer- ase note that too large differential will cause big noise interference. Besides, the I shows the change and the output of the differential will be 0 when there is no herefore, the differential control can't be used independently. It needs to be used two controllers to make a PD controller or PID controller. The suitable differential time can reduce the overshoot of P and I controller to the oscillation and have a stable system. But too long differential time may cause scillation.
 shorten ac ence. Plea differentia change. T with other This parar change. T decrease system os The different not recommendent 	e system state. With the suitable differential time, it can reduce overshoot and djustment time. However, the differential operation will increase the noise interfer- ase note that too large differential will cause big noise interference. Besides, the I shows the change and the output of the differential will be 0 when there is no herefore, the differential control can't be used independently. It needs to be used two controllers to make a PD controller or PID controller. meter can be used to set the gain of D controller to decide the response of error "he suitable differential time can reduce the overshoot of P and I controller to the oscillation and have a stable system. But too long differential time may cause scillation. ential controller acts for the change of error and can't reduce the interference. It is mended to use this function in the serious interference.
 shorten ac ence. Plea differentia change. T with other This parar change. T decrease system os The different not recommended 	e system state. With the suitable differential time, it can reduce overshoot and djustment time. However, the differential operation will increase the noise interfer- ase note that too large differential will cause big noise interference. Besides, the I shows the change and the output of the differential will be 0 when there is no herefore, the differential control can't be used independently. It needs to be used two controllers to make a PD controller or PID controller. The suitable differential time can reduce the overshoot of P and I controller to the oscillation and have a stable system. But too long differential time may cause scillation.
 shorten ac ence. Plea differentia change. T with other This parar change. T decrease system os The different not recom ✓ Upper lin Settings This parar the Master 	e system state. With the suitable differential time, it can reduce overshoot and djustment time. However, the differential operation will increase the noise interfer- ase note that too large differential will cause big noise interference. Besides, the I shows the change and the output of the differential will be 0 when there is no herefore, the differential control can't be used independently. It needs to be used two controllers to make a PD controller or PID controller. meter can be used to set the gain of D controller to decide the response of error The suitable differential time can reduce the overshoot of P and I controller to the oscillation and have a stable system. But too long differential time may cause scillation. ential controller acts for the change of error and can't reduce the interference. It is mended to use this function in the serious interference. mit of integral control Factory setting: 100.0

08-05	💉 PID outpu	ut frequency limit
		Factory setting: 100.0
	Settings	0.0–110.0 %
	•	eter defines the percentage of output frequency limit during the PID control. The Dutput Frequency Limit = Maximum Output Frequency (Pr. 01-00) X Pr. 08-05 %.
08-06	💉 PID feed	back value by communication protocol
		Factory setting: 0.00
	Settings	-200.00 %-200.00 %
		feedback input is set as communication (Pr. 08-00 = 7 or 8), PID feedback value by this value.
08-07	💉 PID delay	y time
		Factory setting: 0.0
	Settings	0.0–35.0 sec
08-20	PID mode se	election
		Factory setting: 0
	Settings	0: Serial connection 1: Parallel connection

- When setting is 0, it uses conventional PID control structure.
- When setting is 1, proportional gain, integral gain and derivative gain are independent. The P, I and D can be customized to fit users' demand.
- Pr. 08-07 determines the primary low pass filter time when in PID control. Setting a large time constant may slow down the response rate of drive.
- Output frequency of PID control will filter by primary low pass function. This function could filtering a mix frequencies. A long primary low pass time means filter degree is high and vice versa.
- nappropriate setting of delay time may cause system error.
- PI Control: controlled by the P action only, and thus, the deviation cannot be eliminated entirely. To eliminate residual deviations, the P + I control will generally be utilized. And when the PI control is utilized, it could eliminate the deviation incurred by the targeted value changes and the constant external interferences. However, if the I action is excessively powerful, it will delay the responding toward the swift variation. The P action could be used solely on the loading system that possesses the integral components.
- PD Control: when deviation occurred, the system will immediately generate some operation load that is greater than the load generated single handedly by the D action to restrain the increment of the deviation. If the deviation is small, the effectiveness of the P action will be decreasing as well. The control objects include occasions with integral component loads, which are controlled by the P action only, and sometimes, if the integral component is functioning, the whole system will be vibrating. On such occasions, in order to make the P action's vibration subsiding and the system stabilizing, the PD control could be utilized. In other words, this control is good for use with loadings of no brake functions over the processes.
- PID Control: Utilize the I action to eliminate the deviation and the D action to restrain the vibration, thereafter, combine with the P action to construct the PID control. Use of the PID method could obtain a control process with no deviations, high accuracies and a stable system.

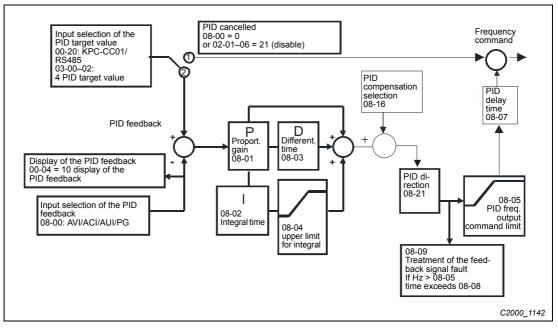
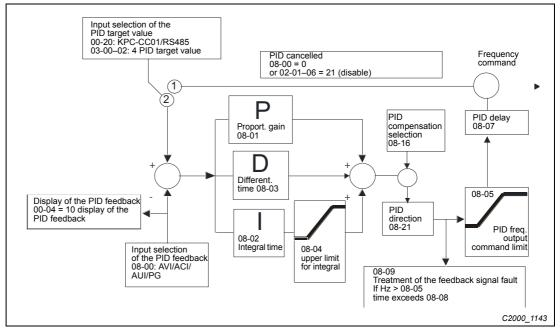
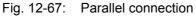
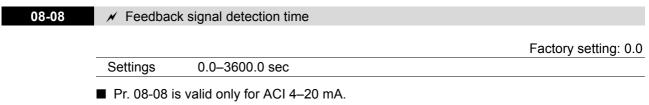





Fig. 12-66: Serial connection

This parameter sets the detection time of a faulty PID actual value. If detection time is set to 0.0, detection function is disabled.

9 💉 Feedba	ack signal fault treatment
	Factory setting: (
Settings	0: Warn and keep operation
	1: Warn and ramp to stop 2: Warn and coast to stop
	3: Warn and operate at last frequency
This para	meter is valid only for ACI 4–20 mA.
acts whe	en the feedback signals analog PID feedback is abnormal.
× Sleep r	eference
	Factory setting: 0.00
Settings	0.00–600.00 Hz
	alue of Pr. 08-10 determines if sleep reference and wake-up reference is enable. When Pr. 08-10 = 0, it means disable. When $08-10 \neq 0$, it means enable.
or disable	alue of Pr. 08-10 determines if sleep reference and wake-up reference is enable. e. When Pr. 08-10 = 0, it means disable. When $08-10 \neq 0$, it means enable. up reference
or disable	e. When Pr. 08-10 = 0, it means disable. When 08-10 \neq 0, it means enable.
or disable	e. When Pr. 08-10 = 0, it means disable. When $08-10 \neq 0$, it means enable.
or disable Wake-u Settings When Pr	e. When Pr. 08-10 = 0, it means disable. When 08-10 \neq 0, it means enable. up reference Factory setting: 0.00
or disable ✓ Wake-u Settings ■ When Pr settings f ■ When Pr	e. When Pr. 08-10 = 0, it means disable. When 08-10 ≠ 0, it means enable. up reference Factory setting: 0.00 0.00–600.00 Hz . 08-18 = 0, the unit of Pr. 08-10 and that of Pr. 08-11 become frequency. The
or disable Wake-u Settings When Pr settings t And the p	 e. When Pr. 08-10 = 0, it means disable. When 08-10 ≠ 0, it means enable. up reference Factory setting: 0.00 0.00–600.00 Hz 3. 08-18 = 0, the unit of Pr. 08-10 and that of Pr. 08-11 become frequency. The then become 0–600.0 Hz. 3. 08-18 = 1, the unit of Pr. 08-10 and that of Pr. 08-11 switch to percentage. The then become 0–600.0 Hz.
or disable Wake-u Settings When Pr settings t And the p	 e. When Pr. 08-10 = 0, it means disable. When 08-10 ≠ 0, it means enable. up reference Factory setting: 0.00 0.00-600.00 Hz 0.00-600.00 Hz 0.08-18 = 0, the unit of Pr. 08-10 and that of Pr. 08-11 become frequency. The then become 0-600.0 Hz. 0.08-18 = 1, the unit of Pr. 08-10 and that of Pr. 08-11 switch to percentage. The then switch to 0-200.00 %. bercentage is based on the input command not maximum. E. g. If the maximum is the command now is 30 kg, if 08-11 = 40 %, it is 12 kg.
or disable ✓ Wake-u Settings When Pr settings t When Pr settings t And the p 100 Kg, t The same	 e. When Pr. 08-10 = 0, it means disable. When 08-10 ≠ 0, it means enable. up reference Factory setting: 0.00 0.00-600.00 Hz 3. 08-18 = 0, the unit of Pr. 08-10 and that of Pr. 08-11 become frequency. The then become 0-600.0 Hz. 3. 08-18 = 1, the unit of Pr. 08-10 and that of Pr. 08-11 switch to percentage. The then switch to 0-200.00 %. bercentage is based on the input command not maximum. E. g. If the maximum is the command now is 30 kg, if 08-11 = 40 %, it is 12 kg. e to 08-10.
or disable Wake-u Settings When Pr settings When Pr settings And the p 100 Kg, t The same	 e. When Pr. 08-10 = 0, it means disable. When 08-10 ≠ 0, it means enable. up reference Factory setting: 0.00 0.00-600.00 Hz 3. 08-18 = 0, the unit of Pr. 08-10 and that of Pr. 08-11 become frequency. The then become 0-600.0 Hz. 3. 08-18 = 1, the unit of Pr. 08-10 and that of Pr. 08-11 switch to percentage. The then switch to 0-200.00 %. bercentage is based on the input command not maximum. E. g. If the maximum is the command now is 30 kg, if 08-11 = 40 %, it is 12 kg. e to 08-10.

When the frequency command is smaller than the sleep frequency and less than the sleep time, the frequency command is equal to the sleep frequency. However the frequency command remains at 0.00 Hz until the frequency command becomes equal to or bigger than the wake-up frequency.

)8-13			
0-13	A PID devia	ation level	
			Factory setting: 10.0
	Settings	1.0–50.0 %	, , ,
)8-14	× PID devia	ation time	
			Factory setting: 5.0
	Settings	0.1–300.0 sec	
8-15	💉 Filter time	e for PID feedback	
			Factory setting: 5.0
	Settings	0.1–300.0 sec	
		PID control function is normal, it should calculate et value.	within a period of time and close
	 When the F to the targe Refer to the reference Pr. 08-14 s 		ng PID feedback control, if PID D Deviation Level and exceeds
3-16	 When the F to the targe Refer to the reference Pr. 08-14 s (PID feedb 	et value. e PID control diagram for details. When executi target value – detection value > Pr. 08-13 PIE setting, it will be judged as the PID control fault.	ng PID feedback control, if PID D Deviation Level and exceeds
-16	 When the F to the targe Refer to the reference Pr. 08-14 s (PID feedb 	et value. e PID control diagram for details. When execution target value – detection value > Pr. 08-13 PIE setting, it will be judged as the PID control fault. back error) will activate.	ng PID feedback control, if PID D Deviation Level and exceeds
16	 When the F to the targe Refer to the reference Pr. 08-14 s (PID feedb 	et value. e PID control diagram for details. When execution target value – detection value > Pr. 08-13 PIE setting, it will be judged as the PID control fault. back error) will activate.	ng PID feedback control, if PID D Deviation Level and exceeds Multiple-funtion output MO = 15 Factory setting: 0
-16	 When the F to the targe Refer to the reference Pr. 08-14 s (PID feedb 	et value. e PID control diagram for details. When executive target value – detection value > Pr. 08-13 PIE setting, it will be judged as the PID control fault. back error) will activate. pensation selection 0: Parameter setting (Pr. 08-17)	ng PID feedback control, if PID D Deviation Level and exceeds Multiple-funtion output MO = 15 Factory setting: 0 e analog input.
8-16	 When the F to the targe Refer to the reference of Pr. 08-14 s (PID feedb) PID composition Settings Pr. 08-16 = Pr. 08-16 = 	et value. e PID control diagram for details. When executive target value – detection value > Pr. 08-13 PIE setting, it will be judged as the PID control fault. back error) will activate. pensation selection 0: Parameter setting (Pr. 08-17) 1: The PID compensation value is set via the	ng PID feedback control, if PID D Deviation Level and exceeds Multiple-funtion output MO = 15 Factory setting: 0 e analog input. 17 setting. log input (Pr. 03-00–03-02 = 13)
	 When the F to the targe Refer to the reference of Pr. 08-14 s (PID feedb) PID composition Settings Pr. 08-16 = Pr. 08-16 = 	et value. e PID control diagram for details. When executive target value – detection value > Pr. 08-13 PIE setting, it will be judged as the PID control fault. back error) will activate. pensation selection 0: Parameter setting (Pr. 08-17) 1: The PID compensation value is set via the = 0: PID compensation value is given via Pr. 08-1 = 1: The PID compensation value is given via analy y at Pr. 08-17 (at this moment, Pr. 08-17 become	ng PID feedback control, if PID D Deviation Level and exceeds Multiple-funtion output MO = 15 Factory setting: 0 e analog input. 17 setting. log input (Pr. 03-00–03-02 = 13)
8-16 8-17	 When the F to the targe Refer to the reference of Pr. 08-14 s (PID feedbook) PID com Settings Pr. 08-16 = and display 	et value. e PID control diagram for details. When executive target value – detection value > Pr. 08-13 PIE setting, it will be judged as the PID control fault. back error) will activate. pensation selection 0: Parameter setting (Pr. 08-17) 1: The PID compensation value is set via the = 0: PID compensation value is given via Pr. 08-1 = 1: The PID compensation value is given via analy y at Pr. 08-17 (at this moment, Pr. 08-17 become	ng PID feedback control, if PID D Deviation Level and exceeds Multiple-funtion output MO = 15 Factory setting: 0 e analog input. 17 setting. log input (Pr. 03-00–03-02 = 13)

■ The PID compensation value = Max. PID target value × Pr. 08-17. For example, the max. output frequency Pr. 01-00 = 60 Hz, Pr. 08-17 = 10.0 %, PID compensation value will increase output frequency 6.00 Hz. 60.00 Hz × 100.00 % × 10.0 % = 6.00 Hz.

08-18	Setting of slee	ep mode function
		Factory setting: 0
	Settings	0: Follow PID output command 1: Follow PID feedback signal
		8-18 = 0, the unit of Pr. 08-10 and that of Pr. 08-11 becomes frequency. The n become 0–600.00 Hz.
		B-18 = 1, the unit of Pr. 08-10 and that of Pr. 08-11 switches to percentage. The n switch to 0–200.00 %.
08-19	💉 Wake-up i	ntegral limit
		Factory setting: 50.0
	Settings	0.0–200.0 %
	The wake-u VFD wakes	p integral limit of the VFD is to prevent sudden high speed running when the up.
	The wake-up	p integral frequency limit = (01-00 × 08-19 %).
	The Pr. 08-1	9 is used to reduce the reaction time from sleep to wake-up.
08-21	Enable PID to	change the operation direction
		Factory setting: 0
	Settings	0: Disable change of direction 1: Enable change of direction
08-22	💉 Wake-up o	delay time
		Factory setting: 0.00
	Settings	0.00–600.00 sec.
	Refer to Pr.	08-18 for more information.
08-23	✓ PID control	ol bit
		Factory setting: 0
	Settings	Bit 0 = 1, PID reverse running must follow the setting of Pr. 00-23 Bit 0 = 0, PID reverse running follows PID's calculated value
	■ Bit 0 = 0, if th	Pr. 08-21 = 1, PID reverse running is enable. The PID calculated value is positive, it will be forward running. If the PID calculated the provense running.

There are three scenarios for sleep and wake-up frequency.

begin acceleration time to reach the frequency command.

 Frequency command (PID is not in use, Pr. 08 = 00. Only works in VF mode) When the output frequency ≤ the sleep frequency, and the VFD reaches the preset sleep time, then the VFD will be at the sleep mode. When the frequency command reaches the wake-up frequency, the VFD will start to count the wake-up delay time. Then when the VFD reaches the wake-up delay time, the VFD will

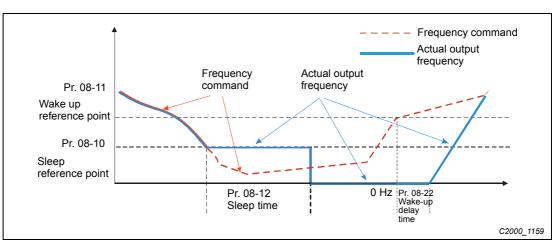


Fig. 12-68: Time history scenario 1

② Frequency command calculation of the internal PID.

When the PID calculation reaches the sleep frequency, the VFD will start to count the sleep time and the output frequency will start to decrease. If the VFD exceeds the preset sleep time, it will directly go to sleep mode which is 0 Hz. But if the VFD doesn't reach the sleep time, it will remain at the lower limit (if there is a preset of lower limit). Or it will remain at the lowest output frequency set at Pr. 01-07 and wait to reach the sleep time then go to sleep mode (0 Hz).

When the calculated frequency command reaches the wake-up frequency, the VFD will start to count the wake-up delay time. Once reaching the wake-up delay time, the VFD will start the acceleration time to reach the PID frequency command.

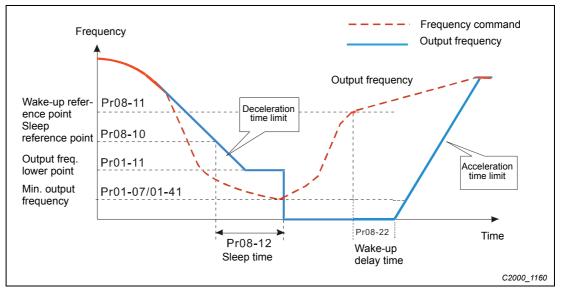


Fig. 12-69: Internal PID calculation frequency command

- ③ PID feedback rate percentage (Use PID, Pr. 08-00 \neq 0 and Pr. 08-18 = 1)
 - When the PID feedback rate reaches the sleep level percentage, the VFD starts to count the sleep time. The output frequency will also decrease. If the VFD exceeds the preset sleep time, it will go to sleep mode which is 0 Hz. But if the VFD doesn't reach the sleep time, it will remain at the lower limit (if there is a preset of lower limit.). Or it will remain at the lowest output frequency set at Pr. 01-07 and wait to reach the sleep time then go to sleep mode (0 Hz).

When PID feedback value reaches the wake up percentagethe motor drive will start to count the wake up delay time. Once reaches the wake up delay time, the motor drives starts the accelerating time to reach PID frequency command.

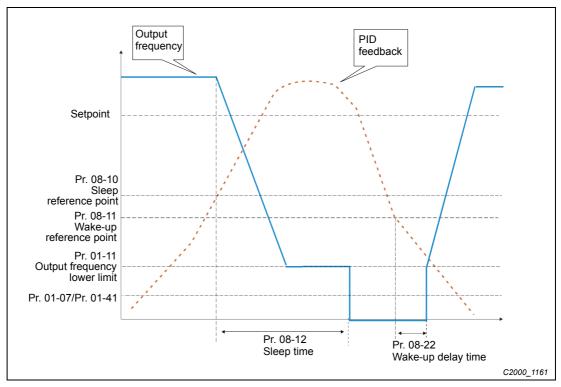


Fig. 12-70: Time history scenario 3

12.10 Communication parameters

NOTE	\checkmark This parameter can be set during operation.			
		ommunication devices, drive with PC by using 0 or IFD6500.	8 ← 1	Modbus RS-485 Pin 1–2,7,8: Reserved Pin 3, 6: GND Pin 4: SG- Pin 5: SG+
09-00	💉 COM1 con	nmunication address		
				Factory setting: 1
	Settings	1–254		r dotory conting. r
				n, the communication address for this drive nunication address must be different.
09-01	💉 COM1 tran	smission speed		
				Factory setting: 9.6
	Settings	4.8–115.2 Kbits/s		
	This paramet	ter is for set up the RS4	85 communic	cation transmission speed.
09-02	🖌 COM1 tran	smission fault treatme	nt	
				Factory setting: 3
	Settings	0: Warn and keep op 1: Warn and ramp to 2: Warn and coast to 3: No warning and co	stop stop	tion
	•	ter is to set the reaction set in Pr. 09-03.	of MODBUS 1	transmission errors with the host. Detection
09-03	💉 COM1 time	e-out detection		
				Factory setting: 0.0
	Settings	0.0–100.0 sec 0.0: Disable		
	It is used to s	set the communication t	ransmission t	ime-out.
09-04	✓ COM1 con	nmunication protocol		
				Factory setting: 1

Settings	1: 7, N, 2 for ASCII
	2: 7, E, 1 for ASCII
	3: 7, O, 1 for ASCII
	4: 7, E, 2 for ASCII
	5: 7, O, 2 for ASCII
	6: 8, N, 1 for ASCII
	7: 8, N, 2 for ASCII
	8: 8, E, 1 for ASCII
	9: 8, O, 1 for ASCII
	10: 8, E, 2 for ASCII
	11: 8, O, 2 for ASCII
	12: 8, N, 1 for RTU
	13: 8, N, 2 for RTU
	14: 8, E, 1 for RTU
	15: 8, O, 1 for RTU
	16: 8, E, 2 for RTU
	17: 8, O, 2 for RTU

- Control by PC or PLC (Computer Link)
- A VFD-C2000 can be set up to communicate on Modbus networks using one of the following modes: ASCII (American Standard Code for Information Interchange) or RTU (Remote Terminal Unit). Users can select the desired mode along with the RS485 serial port communication protocol in Pr. 09-00
- MODBUS ASCII (American Standard Code for Information Interchange): Each byte data is the combination of two ASCII characters. For example, a 1-byte data: 64 Hex, shown as '64' in ASCII, consists of '6' (36 Hex) and '4' (34 Hex).

12.10.1 Code description

Communication protocol is in hexadecimal, ASCII: "0", "9", "A", "F", every 16 hexadecimal represent ASCII code. For example:

Character	0	'1	'2	'3	4	5	6	7
ASCII code	30H	31H	32H	33H	34H	35H	36H	37H
Character	8	9	А	В	С	D	E	F
ASCII code	38H	39H	41H	42H	43H	44H	45H	46H

Tab. 12-13: Example for ASCII code

12.10.2 Data format

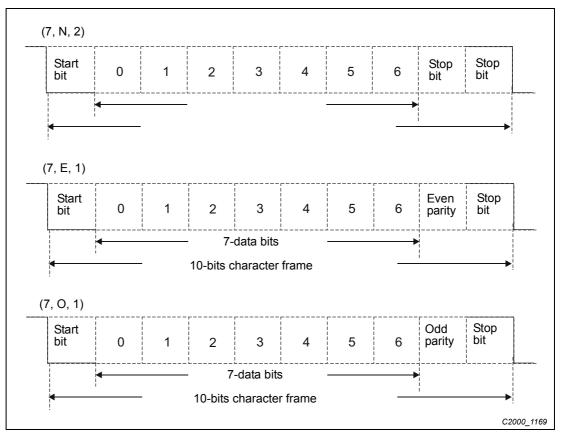


Fig. 12-71: 10-bit character frame (for ASCII)

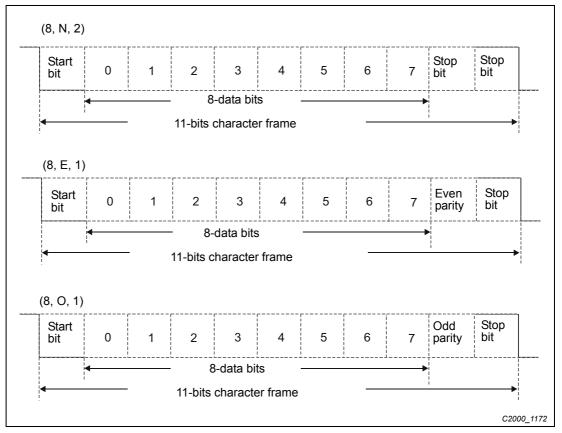


Fig. 12-72: 11-bit character frame (for RTU)

12.10.3 Communication protocol

STX	Start character = ':' (3AH)	
Address Hi	Communication address: 8-bit address consists of 2 ASCII codes	
Address Lo	Communication address. 0-bit address consists of 2 AGCII codes	
Function Hi	Command code: 8-bit command consists of 2 ASCII codes	
Function Lo	Command code: 8-bit command consists of 2 ASCII codes	
DATA (n-1)		
	Contents of data: Nx8-bit data consist of 2n ASCII codes n<=16, maximum of 32 ASCII codes	
DATA 0		
LRC CHK Hi	LRC check sum: 8-bit check sum consists of 2 ASCII codes	
LRC CHK Lo		
END Hi	End characters: END1 - CP (0DH) END0 - LE(0AH)	
END Lo	End characters: END1 = CR (0DH), END0 = LF(0AH)	

Tab. 12-14: Communication data frame: ASCII mode

START	A silent interval of more than 10 ms
Address	Communication address: 8-bit address
Function	Command code: 8-bit command
DATA (n-1)	
	Contents of data: n × 8-bit data, n<=16
DATA 0	
CRC CHK low	CRC check sum: 16-bit check sum consists of 2 8-bit characters
CRC CHK high	
END	A silent interval of more than 10 ms

Tab. 12-15: Communication data frame: RTU mode

Address (Communication address)

Valid communication addresses are in the range of 0 to 254. A communication address equal to 0, means broadcast to all AC drives (AMD). In this case, the AMD will not reply any message to the master device.

00H: broadcast to all AC drives

01H: AC drive of address 01

0FH: AC drive of address 15

10H: AC drive of address 16

:

FEH: AC drive of address 254

Function (Function code) and DATA (Data characters)

The format of data characters depends on the function code.

03H: read data from register

06H: write single register

EXAMPLE

■ Reading continuous 2 data from register address 2102H, AMD address is 01H.

ASCII mode

Command message				
STX	:			
Address	0			
Address	1			
Function	0			
T unction	3			
	2			
Starting register	1			
Starting register	0			
	2			
	0			
Number of register (count by word)	0			
(ocult by hora)	0			
	2			
LRC check	D			
LRC Check	7			
END	CR			
END	LF			

Response	massaga
STX	inessage
OIX	0
Address	1
	0
Function	3
	3
Number of register	0
(count by byte)	4
	1
	7
Content of starting register 2102H	7
Ũ	0
	0
	0
Content of register 2103H	0
	0
	0
LRC check	7
	·
END	CR
	LF

RTU mode

Command message			
ooninana m	cooluge		
Address	01H		
Function	03H		
Starting data register	21H		
	02H		
Number of register	00H		
(count by world)	02H		
CRC CHK low	6FH		
CRC CHK high	F7H		

Response message				
Address	01H			
Function	03H			
Number of register (count by byte)	04H			
Content of register	17H			
address 2102H	70H			
Content of register	00H			
address 2103H	00H			
CRC CHK low	FEH			
CRC CHK high	5CH			

ASCII mode				
Command	message	Response message		
STX	:	STX	:	
Address	0	Address	0	
Address	1	Address	1	
Function	0	Function	0	
runcuon	6	T unction	6	
	0		0	
Target register	1	Target register	1	
Target register	0	rarget register	0	
	0		0	
	1		1	
		Register content	7	
Register content	7	Register content	7	
	7		0	
	0	LRC check	7	
LRC check	7		1	
	1	END	CR	
END	CR	LIND	LF	
LIND	LF			

06H: single write, write single data to register.

EXAMPLE

Writing data 6000 (1770H) to register 0100H. AMD address is 01H.

RTU mode

essage	Response message	
01H	Address	01H
06H	Function	06H
01H	Targot registor	01H
00H	laiget legister	00H
17H	Pogistor contont	17H
70H	Register content	70H
86H	CRC CHK low	86H
22H	CRC CHK high	22H
	06H 01H 00H 17H 70H 86H	01HAddress06HFunction01HTarget register00HRegister content17HRegister content70HCRC CHK low

10H: write multiple registers

(write multiple data to registers) (at most 20 sets of data can be written simultaneously)

EXAMPLE

Set the multi-step speed Pr. 04-00 = 50.00 (1388H), Pr. 04-01 = 40.00 (0FA0H). AC drive address is 01H.

ASCII	mode
1001	mouc

Command	l message
STX	:
ADR 1	0
ADR 0	1
CMD 1	1
CMD 0	0
	0
Target register	5
larger register	0
	0
	0
Number of register	0
(count by word)	0
	2
Number of register	0
(count by byte)	4
	1
The first data content	3
	8
	8
	0
The second data	F
content	А
	0
LRC check	9
ENO CHOCK	А
END	CR
	LF

Response message		
STX	: :	
ADR 1	0	
ADR 0	1	
CMD 1	1	
CMD 0	0	
	0	
Target register	5	
larget legister	0	
	0	
	0	
Number of register	0	
(count by word)	0	
	2	
LRC check	E	
LIVE CHECK	8	
FND	CR	
LIND	LF	

RTU mode

Command message				
ADR	01H			
CMD	10H			
Target register	05H			
Target Tegister	00H			
Number of register	00H			
(Count by word)	02H			
Quantity of data (byte)	04			
The first data content	13H			
	88H			
The second data	0FH			
content	A0H			
CRC check low	9			
CRC check high	А			

Response message				
ADR	01H			
CMD 1	10H			
Target register	05H			
Talget Tegister	00H			
Number of register	00H			
(Count by word)	02H			
CRC check low	41H			
CRC check high	04H			

Check sum

ASCII mode:

LRC (Longitudinal Redundancy Check) is calculated by summing up, module 256, and the values of the bytes from ADR1 to last data character then calculating the hexadecimal representation of the 2's-complement negation of the sum.

For example:

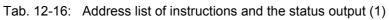
01H+03H+21H+02H+00H+02H=29H, the 2's-complement negation of 29H is D7H.

RTU mode:

CRC (Cyclical Redundancy Check) is calculated by the following steps:

- ① Load a 16-bit register (called CRC register) with FFFFH.
- (2) Exclusive OR the first 8-bit byte of the command message with the low order byte of the 16-bit CRC register, putting the result in the CRC register.
- ③ Examine the LSB of CRC register.
- ④ If the LSB of CRC register is 0, shift the CRC register one bit to the right with MSB zero filling, then repeat step 3. If the LSB of CRC register is 1, shift the CRC register one bit to the right with MSB zero filling, Exclusive OR the CRC register with the polynomial value A001H, then repeat step 3.
- (5) Repeat step 3 and 4 until eight shifts have been performed. When this is done, a complete 8-bit byte will have been processed.
- (6) Repeat step 2 to 5 for the next 8-bit byte of the command message. Continue doing this until all bytes have been processed. The final contents of the CRC register are the CRC value. When transmitting the CRC value in the message, the upper and lower bytes of the CRC value must be swapped, i.e. the lower order byte will be transmitted first.

The following is an example of CRC generation using C language.



EXAMPLE	Calculati	on program for cylical redur	ndancy check (CRC) written in C language		
		signed int crc_chk(unsig	ned char *data, unsigned char length)	0	
	{	int j;		2	
		unsigned int reg_crc = 0)	Xffff:	8	
		while (length) {	;	4	
		reg_crc ^= *data++;		6	
		for (j = 0; j < 8; j++) {		6	
		if (reg_crc & 0x01)	{	Ø	
		reg_crc = (reg_c	crc >> 1) ^ 0Xa001;	8	
		} else {		9	
		reg_crc = reg_c	rc >> 1;	0	
		}			
		}			
		}			
		return reg_crc;	// return register CRC	0	
	}				
	Number	Explanation of each step of	of the program example		
	0	function is "crc_chk" used fo "unsigned char length" are h "unsigned char* data" is the	eturned by the function is unsigned integer and the r or program call. The two arguments "unsigned char nanded over to the function. pointer on the first element to be executed. e number of the executed elements.		
	2	"j" is of data type integer and is used for counting the 8 shift cycles later on.			
	3	The hexadecimal value FFF	F is assigned to the variable "reg_crc".		
	4	zero. Is the variable equal ze	e "length" (it contains the number of elements), if it is ero the loop will be finished, otherwise the loop will le "length" will be decreased by 1.		
	6	is read. Afterwards every bit pared bit by bit. At unequal b	nter position, pointing on the first element during the position of the variable "reg_crc" and of the element bits the corresponding bit in "reg_crc" is set to 1, at e inter will be increased, pointing on the next element	nt are com- equal bits i	
	6	The loop has 8 cycles (0 to 7	7) for executing every bit of the byte.		
	0	If the first bit has the value 1 During the shift process the	, all bits in "reg_crc" are shifted right wards by one first bit is lost and the last bit with the value 0 is add	position. led.	
	0	During the shift process the The Exclusive OR operation means, that every bit position the bit is set to 1, otherwise	first bit is lost and the last bit with the value 0 is add is done with the hexadecimal value "A001" (0Xa00 n of "reg_crc" and "A001" are compared. If both bits it is set to 0. The operation result is written to "reg_c	led. 1) what are equal crc".	
		During the shift process the The Exclusive OR operation means, that every bit position the bit is set to 1, otherwise If the first bit has not the valu During the shift process the fi the Exclusive OR operation	first bit is lost and the last bit with the value 0 is add is done with the hexadecimal value "A001" (0Xa00 n of "reg_crc" and "A001" are compared. If both bits it is set to 0. The operation result is written to "reg_u ie 1, all bits in "reg_crc" are shifted right wards by or first bit is lost and the last bit with the value 0 will be	led. 1) what are equal crc". ne position added. Bu	

The shown function outputs the CRC value (reg_crc) as an integer value without sign.

12.10.4 Address list

Content	Register		Function
AC drive parameters	GGnnH	GG means pa address of Pi	arameter group, nn means parameter number, for example, the r. 4-01 is 0401H.
		Bit 1–0	00B: No function 01B: Stop 10B: Run 11B: JOG+RUN
		Bit 3–2	Reserved
		BRO L	00B: No function
	2000H		01B: FWD
		Bit 5–4	10B: REV
			11B: Change direction
			00B: 1st accel/decel.
		Bit 7–6	01B: 2nd accel/decel
			10B: 3rd accel/decel
			11B: 4th accel/decel
			000B: master speed
			0001B: 1st step speed frequency 0010B: 2nd step speed frequency
			0011B: 3rd step speed frequency
			0100B: 4th step speed frequency
			0101B: 5th step speed frequencyy
	2000H		
			0110B: 6th step speed frequency
Command write only		Bit 11–8	0111B: 7th step speed frequency
		Dit II-0	1000B: 8th step speed frequency
			1001B: 9th step speed frequency
			1010B: 10th step speed frequency
			1011B: 11th step speed frequencyy
			1100B: 12th step speed frequency
			1101B: 13th step speed frequency
			1110B: 14th step speed frequency
			1111B: 15th step speed frequency
		Bit 12	1: Enable bit06-11 function
			00B: No function
			01B: Operated by digital keypad
		Bit 14–13	10B: Operated by Pr. 00-21 setting
			11B: Change operation source
		Bit 15	Reserved
	2001H		ommand (XXX.XXHz)
		Bit 0	1: EF (external fault) on
	2002H	Bit 0	1: Reset
		Bit 2	1: B.B ON
		Bit 15–3	Reserved
		Bit 15-5	I VESELVEU

Contont	Pagiatar		Eurotion	
Content	Register	High byte: W	Function	
	2100H	Low byte: Eri	ror code	
			AC Drive operation status	
			00B: Drive stops	
		Bit 1–0	01B: Drive decelerating	
			10B: Drive standby	
			11B: Drive operating	
		Bit2	1: JOG Command	
			Operation direction	
			00B: FWD run	
		Bit4–3	01B: From REV run to FWD run	
	2101H		10B: REV run	
			11B: From FWD run to REV run	
		Bit 8	1: Master frequency controlled by communication interface	
		Bit 9	1: Master frequency controlled by analog signal	
		Dit 9		
		Bit 10	1: Operation command controlled by communication interface	
		Bit 11	1: Parameter locked	
		Bit 12	1: Enable to copy parameters from keypad	
		Bit 15–13	Reserved	
	2102H	Frequency co	ommand (XXX.XX Hz)	
	2103H	Output frequency (XXX.XX Hz)		
	2104H	Output current (XX.XXA). When current is higher than 655.35, it will shift decimal as (XXX.XA). The decimal can refer to high byte of 211F.		
Status monitor	2105H	DC-BUS Voltage (XXX.XV)		
read only	2106H	Output voltag	ge (XXX.XV)	
	2107H	Current step	number of multi-step speed operation	
	2108H	Reserved		
	2109H	Counter valu		
	210AH		r angle (XXX.X)	
	210BH	Output torque		
	210CH		speed (XXXXXrpm)	
	210DH 210EH		G feed back pulses (0–65535) G2 pulse commands (0–65535)	
	210EH 210FH	Power output (X.XXX KWH)		
	210FT		n display (Pr. 00-04)	
			on frequency (Pr. 01-00) or Max. user defined value	
		When Pr. 00-	-26 is 0, this value is equal to Pr. 01-00 setting	
	211BH		-26 is not 0, and the command source is Keypad, this value = r. 00-26/Pr. 01-00	
		communicati	-26 is not 0, and the command source is RS485 on, this value =	
	211FH		r. 00-26 / Pr. 01-00 ecimal of current value (display)	
	2200H	Display outpu	ut current (A). When current is higher than 655.35,it will shift (XX.XA). The decimal can refer to high byte of 211F.	
	2201H	Display coun		
	2202H	Actual output	t frequency (XXXXXHz)	
	2203H	•	age (XXX.XV)	
	2200H	Output voltage		
	2205H	Power angle	(^^^.)	

Tab. 12-16: Address list of instructions and the status output (2)

Content	Register	Function
	2206H	Indication of the current output power of U, V, W (xxxxx kW)
	2207H	Display motor speed in rpm estimated by the drive or encoder feedback (XXXXXrpm)
	2208H	Display positive/negative output torque in %, estimated by the drive (t0.0: positive torque, -0.0: negative torque) (XXX.X%)
	2209H	Display PG feedback (as Pr. 00-04 NOTE 1)
	220AH	PID feedback value after enabling PID function (XXX.XX%)
	220BH	Display signal of AVI analog input terminal, 0-10V corresponds to 0.00–100.00 % (1.) (as Pr. 00-04 NOTE 2)
	220CH	Display signal of ACI analog input terminal, 4-20 mA/0–10 V corresponds to 0.00–100.00 % (2.) (as Pr. 00-04 NOTE 2)
	220DH	Display signal of AUI analog input terminal, -10 V–10 V corresponds to – 100.00–100 % (3.) (as Pr. 00-04 NOTE 2)
	220EH	IGBT temperature of drive power module (XXX.X°C)
	220FH	The temperature of capacitance (XXX.X°C)
	2210H	The status of digital input (ON/OFF), refer to Pr. 02-12 (as Pr. 00-04 NOTE 3)
	2211H	The status of digital output (ON/OFF), refer to Pr. 02-18 (as Pr. 00-04 NOTE 4)
	2212H	The multi-step speed that is executing (S)
	2213H	The corresponding CPU pin status of digital input (d.) (as Pr. 00-04 NOTE 3)
	2214H	The corresponding CPU pin status of digital output (O.) (as Pr. 00-04 NOTE 4)
Status monitor read only	2215H	Number of actual motor revolution (PG1 of PG card) (P.) it will start from 9 when the actual operation direction is changed or keypad display at stop is 0. Max. is 65535
	2216H	Pulse input frequency (PG2 of PG card) (XXX.XXHz)
	2217H	Pulse input position (PG card PG2), maximum setting is 65535.
	2218H	Position command tracing error
	2219H	Indication of the current output power of U, V, W (xxxxx kW)
	221AH	GFF (XXX.XX%)
	221BH	DCbus voltage ripples (XXX.XV)
	221CH	PLC register D1043 data (C)
	221DH	Pole of Permanent Magnet Motor
	221EH	User page displays the value in physical measure
	221FH	Output value of Pr. 00-05 (XXX.XXHz)
	2220H	Number of motor turns when drive operates (keeping when drive stops, and reset to zero when operation)
	2220H	Operation position of motor (keeping when drive stops, and reset to zero when operation)
	2221H	Operation position of motor (keeping when drive stops, and reset to zero when operation)
	2222H	Fan speed of the drive (XXX%)
	2223H	Control mode of the drive 0: speed mode 1: torque mode
	2224H	Carrier frequency of the drive (XXKHZ)
	2225H	Reserve

Tab. 12-16: Address list of instructions and the status output (3)

Content	Register	Function
		Drive status
		bit 1–0 00b: No direction
		01b: Forward
		10b: Reverse
	2226H	bit 3–2 01b: Driver ready 10b: Error
		bit 4 0b: Motor drive did not output
		1b: Motor drive did not output
		bit 5 0b: No alarm
		1b: Have alarm
Status monitor	2227H	Drive's estimated output torque (positive or negative direction) (XXXX Nt-m)
read only	2228H	Torque command (XXX.X%)
	2229H	KWH display (XXXX.X)
	222AH	PG2 pulse input in low word
	222BH	PG2 pulse input in high word
	222CH	Motor actual position in low word
	222DH	Motor actual position in high word
	222EH	PID reference (XXX.XX%)
	222FH	PID offset (XXX.XX%)
	2230H	PID output frequency (XXX.XXHz)

Tab. 12-16: Address list of instructions and the status output (4)

12.10.5 Exception response

The is expected to return a normal response after receiving command messages from the master device. The following depicts the conditions when no normal response is replied to the master device.

The does not receive the messages due to a communication error; thus, the has no response. The master device will eventually process a timeout condition.

The receives the messages without a communication error, but cannot handle them. An exception response will be returned to the master device and an error message "CExx" will be displayed on the keypad of . The xx of "CExx" is a decimal code equal to the exception code that is described below.

In the exception response, the most significant bit of the original command code is set to 1, and an exception code which explains the condition that caused the exception is returned.

EXAMPLE

ASCII mode			
STX	:		
Address	0		
Address	1		
Function	8		
runction	6		
Exception code	0		
	2		
LRC CHK	7		
LIKE OF IK	7		
END	CR		
LIND	LF		

RTU mode				
Address	01H			
Function	86H			
Exception code	02H			
CRC CHK Low	C3H			
CRC CHK High	A1H			

The explanation of exception codes

Exception code	Explanation
1	Function code is not supported or unrecognized.
2	Address is not supported or unrecognized.
3	Data is not correct or unrecognized.
4	Fail to execute this function code

09-05 – 09-08	Reserved				
09-09	✓ Response	e delay time			
					Factory setting: 2.0
	Settings	0.0–200.0 ms			
NOTE	This paramete as shown in th RS485 BUS	•	e delay time afte	r AC drive receives control Response delay time	Response message of the AC drive
I					C2000_1176
09-10	💉 Main freq	uency of the com	munication		
					Factory setting: 60.00
	Settings	0.00–600.00 H	Iz		
	into Pr. 09- will regard f	10 when abnorma	l turn-off or mon in Pr. 09-10 if n	nentary power loss. A o new frequency com	last frequency command fter reboots the power, it imand is inputted. When se of frequence command

needs to be set as MODBUS), this parameter is also be changed.

09-11	✓ Block transfer 1
09-12	✓ Block transfer 2
09-13	✓ Block transfer 3
09-14	✓ Block transfer 4
09-15	✓ Block transfer 5
09-16	✓ Block transfer 6
09-17	✓ Block transfer 7
09-18	✓ Block transfer 8
09-19	✓ Block transfer 9
09-20	✓ Block transfer 10
09-21	✓ Block transfer 11
09-22	✓ Block transfer 12
09-23	✓ Block transfer 13
09-24	✓ Block transfer 14
09-25	✓ Block transfer 15
09-26	✗ Block transfer 16

Factory setting: 0

Settings

0-65535

■ There is a group of block transfer parameter available in the (Pr. 09-11 to Pr. 09-26). Through communication code 03H, user can use them (Pr. 09-11 to Pr. 09-26) to save those parameters that you want to read.

09-27 -Reserved 09-29

09-30 Communication decoding method

Factory setting: 1

Settings

0: Decoding method 1 1: Decoding method 2

	Decoding method 1	Decoding method 2
Digital keypd	Digital keypad controls the drive action re	egardless decoding method 1 or 2.
External terminal	External terminal controls the drive action	n regardless decoding method 1 or 2.
RS-485	Refer to address: 2000h–20FFh	Refer to address: 6000h–60FFh
CANopen	Refer to index: 2020-01h-2020-FFh	Refer to index: 2060-01h-2060-FFh
Communication card	Refer to address: 2000h–20FFh	Refer to address: 6000h – 60FFh
PLC	PLC commands the drive action regardle	ss decoding method 1 or 2.
	External terminal RS-485 CANopen Communication card	Digital keypdDigital keypad controls the drive action reExternal terminalExternal terminal controls the drive actionRS-485Refer to address: 2000h–20FFhCANopenRefer to index: 2020-01h–2020-FFhCommunication cardRefer to address: 2000h–20FFh

Tab. 12-17: Decoding methods

✓ Internal communication protocol

09-31

	<i>i</i> internal e		
			Factory setting: 0
	Settings	0: Modbus 485 -1: Internal communication slave 1 -2: Internal communication slave 2 -3: Internal communication slave 3 -4: Internal communication slave 4 -5: Internal communication slave 5 -6: Internal communication slave 6 -7: Internal communication slave 7 -8: Internal communication slave 8 -9: Reserve -10: Internal communication master -11: Reserve -12: Internal PLC Control	
	Terminal of	defined as internal communication, see CH16-10 for info f Internal Communication. defined as internal PLC control, see CH16-12 for Remo AODRW)	
09-32 09-34	Reserved		
09-33	✓ PLC com	imand force to 0	
			Factory setting: 0
	Settings	0–65535	Tactory Setting. 0
		ne action that before PLC scans time sequence, the frequences to be cleared as 0 or not.	uence command or speed
	Bit Ex	planation	
	Bit0 Be	fore PLC scan, set up PLC target frequency = 0	
		fore PLC scan, set up the PLC target torque = 0	
	Bit2 Be	fore PLC scan, set up the speed limit of torque control mode = 0	
09-35	PLC address	6	
			Factory setting: 2
	Settings	1–254	
09-36	CANopen sl	ave address	
			Factory setting: 0
	Settings	0: Disable 1–127	
09-37	CANopen sp	peed	
	or intopen sp		

_			Factory setting: 0
-	Settings	0: 1M 1: 500k 2: 250k 3: 125k 4: 100k (Delta only) 5: 50k	
09-38	Reserved		
09-39	CANopen war	rning record	
			Factory setting: 0
-	Settings	bit 0: CANopen guarding time out bit 1: CANopen Heartbeat time out bit 2: CANopen SYNC time out bit 3: CANopen SDO time out bit 4: CANopen SDO buffer overflow bit 5: Can bus Off bit 6: Error protocol of CANOPEN bit 8: The setting values of CANopen indexs are fail bit 9: The setting value of CANopen address is fail bit 10: The checksum value of CANopen indexs is fail	
09-40	CANopen dec	coding method	
			Factory setting: 1
-	Settings	0: Delta defined decoding method 1: CANopen Standard DS402 protocol	
00.44			
09-41	CANopen sta	tus	
-	0.44		Factory setting: 0
-	Settings	 0: Node reset state 1: Com reset state 2: Boot up state 3: Pre operation state 4: Operation state 5: Stop state 	
09-42	CANopen cor	trol status	
		Facto	ry setting: Read only
-	Settings	0: Not ready for use state 1: Inhibit start state 2: Ready to switch on state 3: Switched on state 4: Enable operation state 7: Quick stop active state 13: Err reaction activation state 14: Error state	

09-43	Reset CANop	en index	
			Factory setting: 65535
	Settings	bit0: reset address 20XX to 0 bit1: reset address 264X to 0 bit2: reset address 26AX to 0 bit3: reset address 60XX to 0	
09-44	Reserved		
09-45	CANopen ma	ster function	
			Factory setting: 0
	Settings	0: Disable 1: Enable	
09-46	CANopen ma	ster address	
			Factory setting: 100
	Settings	1–127	
09-47 – 09-59	Reserved		
00.00	lala a tifi a a ti a a a	for communication could	
09-60	Identifications	for communication card	
			Factory setting: ##
	Settings	0: No communication card 1: DeviceNet slave 2: Profibus-DP slave 3: CANopen Slave/master 4: Modbus-TCP slave 5: EtherNet/IP slave 6–8: Reserved	

09-61	Firmware vers	sion of communication card	
			Factory setting: ##
	Settings	Read only	
09-62	Product code		
			Factory setting: ##
	Settings	Read only	
	As it connec Profibus: ID	nmunication cards have their own product codes with diffe ets to different kind of motor drive, it will have different pro- number of a communication card. Each Profibus sellir ID number at the Profibus International to be a unique p	oduct code. ng in the market must
09-63	Fault code		
			Factory setting: ##
	Settings	Read only	
	■ For more info	ormation about Fault codes, refer to Pr. 06-17–06-22 and	Chapter 14.
09-64 — 09-69	Reserved		
09-70	✓ Address or	f communication card	
			Factory setting: 1
	Settings	DeviceNet: 0-63 Profibus-DP: 1-125	

		Factory setting: 2
Settings	Standard DeviceNet:	<u> </u>
	0: 125 Kbps	
	1: 250 Kbps	
	2: 500 Kbps	
	Non standard DeviceNet: (Delta only) 0: 10 Kbps	
	1: 20 Kbps	
	2: 50 Kbps	
	3: 100 Kbps	
	4: 125 Kbps	
	5: 250 Kbps	
	6: 500 Kbps	
	7: 800 Kbps 8: 1 Mbps	
	0.1 1000	
✓ Other set	tting of deviceNet speed	
		Factory setting: (
Settings	0: Standard DeviceNet	
	1: Non standard DeviceNet	
It needs to	use with Pr. 09-71.	
	he baud rate can only be set to 0, 1, 2 or 3.	
Setting 0: t		
-	-	e as CANopen
-	setting of DeviceNet communication rate can be the sam	e as CANopen
Setting 1: s (setting 0-8	setting of DeviceNet communication rate can be the sam	e as CANopen
■ Setting 1: s	setting of DeviceNet communication rate can be the sam	e as CANopen
Setting 1: s (setting 0-8	setting of DeviceNet communication rate can be the sam	e as CANopen
 Setting 1: s (setting 0-8 Reserved 	setting of DeviceNet communication rate can be the sam	e as CANopen
Setting 1: s (setting 0-8 Reserved	setting of DeviceNet communication rate can be the sam 3).	
 Setting 1: s (setting 0-8 Reserved IP config 	setting of DeviceNet communication rate can be the sam 3). uration of the communication card	e as CANopen Factory setting: 0
Setting 1: s (setting 0-8 Reserved	setting of DeviceNet communication rate can be the sam 3).	
 Setting 1: s (setting 0-8 Reserved IP config Settings 	etting of DeviceNet communication rate can be the sam 3). uration of the communication card 0: Static IP	

09-76	 IP address 1 of the communication card 	
09-77	✓ IP address 2 of the communication card	
09-78	IP address 3 of the communication card	
09-79	IP address 4 of the communication card	
		Factory setting: 0
	Settings 0–255	
	■ Pr. 09-76–09-79 needs to use with communication card.	
09-80	 Address Mask 1 of the Communication Card 	
09-81	 Address Mask 2 of the Communication Card 	
09-82	 Address Mask 3 of the Communication Card 	
09-83	✓ Address Mask 4 of the Communication Card	
		Eastery setting: 0
	Settings 0–255	Factory setting: 0
	Settings 0–255	
09-84	 Getway address 1 of the communication card 	
09-85	 Getway address 2 of the communication card 	
09-86	 Getway address 3 of the communication card 	
09-87	 Getway address 4 of the communication card 	
		Factory setting: 0
	Settings 0–255	
09-88	✓ Password for communication card (Low word)	
09-89	 Password for communication card (High word) 	
		Factory setting: 0
	Settings 0–255	r dotory setting. o
09-90	✓ Reset communication card	
		Factory setting: 0
	Settings 0: Disable	
	1: Reset, return to factory setting	

09-91	✓ Additiona	I setting for communication card
		Factory setting: 1
	Settings	Bit 0: Enable IP filter Bit 1: Internet parameters enable (1bit) When IP address is set up, this bit need to be enabled to write down the parameters. This bit will change to disable when it finishes saving the update of internet parameters. Bit 2: Login password enable (1bit) When enter login password, this bit will be enabled. After updating the parameters of communication card, this bit will change to disable.
09-92	Status of cor	nmunication card
		Factory setting: 0
	Settings	Bit 0: password enable When the communication card is set with password, this bit is enabled. When the password is clear, this bit is disabled.

12.11 PID control

NOTE	🖌 This pa	arameter can be set during opera	ation.
NOTE	/* This pe	a ameter ban be bet daring opere	ation.

In this parameter group, ASR is the abbreviation for Adjust Speed Regulator and PG is the abbreviation for Pulse Generator.

10-00	Encoder type	selection
10-00	Encoder type	
		Factory setting: 0
	Settings	0: Disable 1: ABZ
		2: ABZ (Delta encoder for Delta Servo motor) 3: Resolver
		4: ABZ/UVW
		5. MI8 single phase pulse input
		ension card EMC-PG01L and EMC-PG01O, set Pr. 10-00 = 1. These extension or IM motor only.
	to D (Delta	G01U, when setting Pr. 10-00 = 2 (Delta encoder) make sure SW1 is switched type). If the setting for Pr. 10-00, 10-01 and 10-02 has changed, please turn off power and reboots to prevent PM motor stall. This mode is suggested for PM
	■ For EMC-P	G01R, when setting Pr. 10-00 = 3; also set Pr. 10-01 to 1024 ppr.
		G01U, when setting Pr. 10-00 = 4 (standard ABZ/UVW encoder) make sure SW1 to S (standard type). This mode is applicable for both IM and PM motor.
	"5: Single-p	g MI8 single phase pulse input as frequency command, the Pr. 10-02 must set hase input". This only can be use with VF, VFPG, SVC, IM/PM FOC sensor-less, C sensor-less control mode.
	When using mode only.	g MI8 single phase pulse as speed feedback, the drive must at VFPG control
10-01	Encoder puls	e
		Factory setting: 600
	Settings	1–20000
	the motor s control, i.e.	nerator (PG) or encoder is used as a sensor that provides a feedback signal of speed. This parameter defines the number of pulses for each cycle of the PG the number of pulses for a cycle of A phase/B phase.
	be more ac	
	pole origin	t input to Pr. 10-00 may result drive over current, motor stall, PM motor magnetic detection error. If Pr. 10-00 setting has changed, please trace the magnetic pole Pr. 05-00 = 4 (static test for PM motor magnetic pole and PG origin again).

10-07 × Electrical gear at motor side B2

Factory setting: 100

Settings 1–65535

■ Parameters 10-04 to 10-07 can be used with the multi-function input terminal (set to 48) to switch to Pr. 10-04–10-05 or Pr. 10-06–10-07 as shown as follows

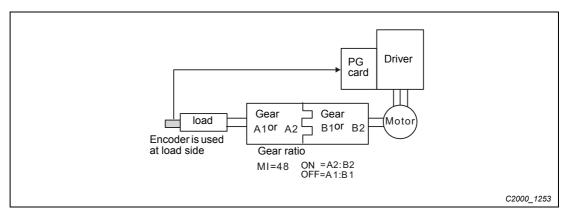
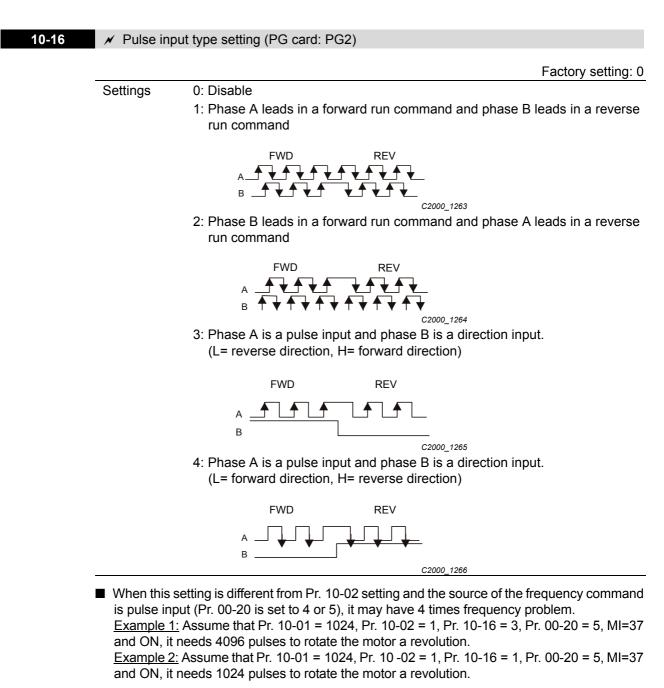
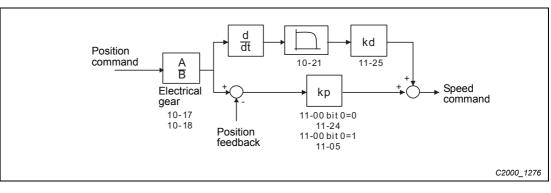
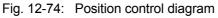


Fig. 12-73: Gear with encoder at the load side

0: No function


10-08	✓ Treatme	ent for encoder/speed observer feedback fault	
			Factory setting: 2
	Settings	0: Warn and keep operating	
	-	1: Warn and RAMP to stop	
		2: Warn and COAST to stop	
10-09	💉 Detectio	n time of encoder/speed observer feedback fault	
			Factory setting: 1.0
	Settings	0.0–10.0 sec.	


When encoder loss, encoder signal error, pulse signal setting error or signal error, if time
exceeds the detection time for encoder feedback fault (Pr. 10-09), the encoder signal error
will occur. Refer to the Pr. 10-08 for encoder feedback fault treatment.


When speed controller signal is abnormal, if time exceeds the detection time for encoder speed controller fault (Pr. 10-09), the feedback fault will occur. Refer to the Pr. 10-08 for encoder feedback fault treatment.

10-10	🖌 Encoder	/speed observer stall level	
			Factory setting: 115
	Settings	0–120 % 0: No function	
	•	neter determines the maximum e lax. output frequency Pr. 01-00 =1	ncoder feedback signal allowed before a fault 00 %)
10-11	× Detectio	n time of encoder/speed observer	stall
			Factory setting: 0.1
	Settings	0.0–2.0 sec.	
10-12	✓ Treatme	nt for encoder/speed observer sta	I
			Factory setting: 2
	Settings	0: Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop	
		motor drive output frequency e r. 10-11, it will operate as Pr. 10-	xceeds Pr. 10-10 setting and detection time I2 setting.
10-13	✓ Encoder	speed observer slip range	
			Factory setting: 50
	Settings	0–50 % 0: Disable	
10-14	🖌 Detectio	n time of encoder/speed observer	slip
	Settings	0.0–10.0 sec.	Factory setting: 0.5
10-15	🖌 Treatme	nt for encoder/speed observer sta	II and slip error
			Factory setting: 2
	Settings	0: Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop	
	When the time exce	eds Pr. 10-14; it will start to accum er feedback signal error will occur	equency) exceeds Pr. 10-13 setting, detection ulate time. If detection time exceeds Pr. 10-14, Refer to Pr. 10-15 encoder stall and slip error

10-17	✓ Electrical	I gear A
10-18	× Electrical	I gear B
		Factory setting: 100
	Settings	1–65535
	Rotation s electrical g	peed = pulse frequency/encoder pulse (Pr.10-01) * PG electrical gear A/PG gear B.
10-19	🖌 Positionir	ng for encoder position
		Factory setting: 0
	Settings	0–65535 pulse
	 It needs to When it is s 	neter determines the internal position in the position mode. be used with multi-function input terminal setting = 35 (enable position control). set to 0, it is the Z-phase position of encoder.
10-20	✓ Range fo	or encoder position attained
		Factory setting: 10
	Settings	0–65535 pulse
	For examp When the	neter determines the range for internal positioning position attained. ble: position is set by Pr.10-19 Positioning for encoder position and Pr. 10-20 is set reaches the position if the position is within 990-1010 after finishing the positioning.
10-21	💉 Filter time	e (PG2)
		Factory setting: 0.100
	Settings	0.000–65.535 sec
	command	00-20 is set to 5 and multi-function input terminal is set to 37 (OFF), the pulse will be regarded as frequency command. This parameter can be used to suppress if speed command.
10-22	Speed mode	e (PG2)
		Eastany acting: 0
	Settings	Factory setting: 0 0: Electronic frequency 1: Mechanical frequency (base on pole pair)
10-23	Reserved	
10-24		
10-24	/ FUCAIG	QC function control Factory setting: 0
	Settings	0–65535

Bit No.	Description
0	ASR control at sensorless torque (a): use PI as ASR (1): use P as ASR
1–10	NA
11	Activate DC braking when executing zero torque command (a): ON , (1): OFF
12	FOC Sensorless mode, cross zero means speed goes from negative to positive or positive to negative (forward to reverse direction or reverse to forward direction). (a): determine by stator frequency , (1): determine by speed command
13	NA
14	NA
15	Direction control at open loop status (a): Switch ON direction control (c): Switch OFF direction control
Гаb. 12-18: С	Description of bit 0-bit 15
•	= 0 set to be used in closed loop, other bit settings are for open loop. dwidth of speed observer
✓ FOC ban	dwidth of speed observer Factory setting: 40
•	dwidth of speed observer
 FOC band Settings Setting specific 	dwidth of speed observer Factory setting: 40. 20.0–100.0 Hz
 FOC band Settings Setting spectreate great 	dwidth of speed observer Factory setting: 40. 20.0–100.0 Hz red observer to higher bandwidth could shorten the speed response time but w
 FOC band Settings Setting spectrate great 	dwidth of speed observer Factory setting: 40. 20.0–100.0 Hz red observer to higher bandwidth could shorten the speed response time but w ater noise interference during the speed observation.
 FOC band Settings Setting spectrate great 	dwidth of speed observer Factory setting: 40 20.0–100.0 Hz red observer to higher bandwidth could shorten the speed response time but water noise interference during the speed observation.
 FOC band Settings Setting spectrate greaters FOC minitian Settings This paramasetting ensiting ensiting 	dwidth of speed observer Factory setting: 40 20.0–100.0 Hz red observer to higher bandwidth could shorten the speed response time but w ater noise interference during the speed observation. imum stator frequency Factory setting: 2 0.0–10.0 % fN eter is used to set the minimum level of stator frequency at operation status. Th
 FOC band Settings Setting spectreate greater of the setting setting setting ensity current and setting ensity current en	dwidth of speed observer Factory setting: 40. 20.0–100.0 Hz red observer to higher bandwidth could shorten the speed response time but w ater noise interference during the speed observation. Factory setting: 2. 0.0–10.0 % fN eter is used to set the minimum level of stator frequency at operation status. Th ures the stability and accuracy of observer and avoid interferences from voltage
 FOC band Settings Setting spectrate greater of the setting setting setting setting ensities current and setting ensities current ensites current ensities current ensities cur	dwidth of speed observer Factory setting: 40.0 20.0–100.0 Hz red observer to higher bandwidth could shorten the speed response time but wi ater noise interference during the speed observation. Factory setting: 2.0 0.0–10.0 % fN eter is used to set the minimum level of stator frequency at operation status. This ures the stability and accuracy of observer and avoid interferences from voltage d motor parameter. fN is motor rated frequency.

This parameter sets the low-pass filter time constant of a flux observer at start up. If the motor can not be activated during the high-speed operation, please lower the setting in this parameter.

40.00		
10-28	✓ FOC gain of excitation current rise time	
		Factory setting: 100
	Settings 33–100 % Tr (Tr: rotor time constant)	
	This parameter sets the drive's excitation current rise time when a torque mode. When the drive's activation time is too long at torque m parameter to a shorter time constant.	
10-29	✓ Top limit of frequency deviation	
		Factory setting: 20.00
	Settings 0.00–200.00 Hz	
	Pr. 10-29 is for setting the maximum of frequency deviation.	
	When this parameter is set too large, resulting in abnormal PG feedba	ack malfunction.
	If the application need higher setting of Pr. 10-29, please note that: Hig value will result in larger motor slip, which will cause PG Error (PGF case, set Pr. 10-10 and Pr. 10-13 as 0 will disable PGF3 and PGF4 de make sure the PG wiring and application is correct. Or it may lose the Too Higher Pr. 10-29 setting is not a common setting.	3, PGF4) easily. In this etection, but it needs to
10-30	Resolver pole pair	
		Factory setting: 1
	Settings 1–50	Tactory Setting. T
	■ To use Pr. 10-30 function, user must set Pr. 10-00 = 3 (resolver enc	coder) first.
10-33	Reserved	
10-38	Reserved	
10-31	✓ I/F mode, current command	
		Factory setting: 40
	Settings 0–150 % Irated (rated current % of the motor)	Factory Setting. 40
10-32	 PM sensorless observer bandwidth for high speed zone 	
	Settings 0.00–600.00 Hz	Factory setting: 5.00
	Settings 0.00–600.00 Hz	
10-34	✓ PM sensorless observer low-pass filter gain	
		Factory setting: 1.00
	Settings 0.00–655.35 Hz	· •

10-35	💉 ARM (Kp)			
	Sottingo	0.00.2.00		Factory setting: 1.00
	Settings	0.00–3.00		
10-36	💉 ARM (Ki)			
				Factory setting: 0.20
	Settings	0.00–3.00		, , , , , , , , , , , , , , , , , , , ,
10-37		less control word		
10-37				
				Factory setting: 0000
	Settings	0000-FFFFh		
	Bit No.	Function	Descrip	tion
	0	Reserved		
	1	Reserved		
	2	Choose a control mode to statrt.	 ③: Start by IF mode ①: Start by VF mode 	
	3	Choose a mode to stop.	 (i): Stop by IF mode (i): Stop by VF mode 	
	4	Reserved		
	5	Choose a control mode to stop	 (i): When lower than Pr. 10-40, (i): When lower than Pr. 10-40, 	
	6	Reserved	0	- F
	7	Reserved		
	Tab. 12-19: De	escription of bit 0-bit 7		
10-39	× Frequency	point when switch from I/F n	node to PM sensorless mod	de
				Factory setting: 20.00
	Settings	0.00–600.00 Hz		Tactory Setting. 20.00
10-40	N Frequency	point when switch from PM	sensorless observation mo	de to I/F mode
				Factory setting: 20.00
	Settings	0.00–600.00 Hz		
10-41	✓ I/F mode	low pass-filter time		
	,			
	0			Factory setting: 0.2
	Settings	0.0-6.0 sec		

	Factory
S	ettings 0–20 ms
	PM sensorless (I/f + FOC) adjustment procedure
~	
(1)	When executing static test for PM (IPM) (05-00 = 13), VFD software can be used to adjustment procedure. To download VFD software go to:
	http://www.delta.com.tw/product/em/download/download main.asp?act=3&pid=1&cid=1&tpid=3
2	Testing PM high frequency standstill VFD (calculating of Rs, Ld, Lg)
	Procedures:
	 Set control mode as VF mode (Pr. 00-10 = 0, Pr. 00-11 = 0)
	 Output frequency of motor 1 (Pr. 01-01)
	 Output voltage of motor 1 (Pr. 01-02)
	 Induction motor and permanent magnet motor selection (Pr. 05-33 = 1 or 2)
	 Full-load current of permanent magnet motor (Pr. 05-34
	 Set static test for PM (IPM) (05-00 = 13), then run the drive.
	 Set control mode as PM sensorless mode (parameters 00-10 = 0, 00-11 = 6)
4	Set VFD parameters
	 Pr. 05-35 rated power of permanent magnet motor
	 Pr. 05-36 rated speed of permanent magnet motor
	 Pr. 05-37 pole number of permanent magnet motor
	 Pr. 05-38 inertia of permanent magnet motor
(5)	Set ASR parameters
	 Pr. 11-00 bit0 = 1: Auto tuning for ASR and APR
	 Pr. 11-02: ASR1/ASR2 switch frequency, it is recommended to set Pr. 10-39 hi 10 Hz.
	 Pr. 11-03: ASR1 low-speed bandwidth and Pr. 11-04, ASR2 high-speed band not set low-speed bandwidth too high to avoid dissipation of the estimator.
6	Set speed estimator and speed control's parameter.
	 Pr. 10-39 frequency when switch from I/F Mode to PM sensorless mode.
	 Pr. 10-32 PM sensorless observer bandwidth for high speed zone
7	Zero-load test
	- Refer to switch point procedure of I/F and FOC as shown in the image below.

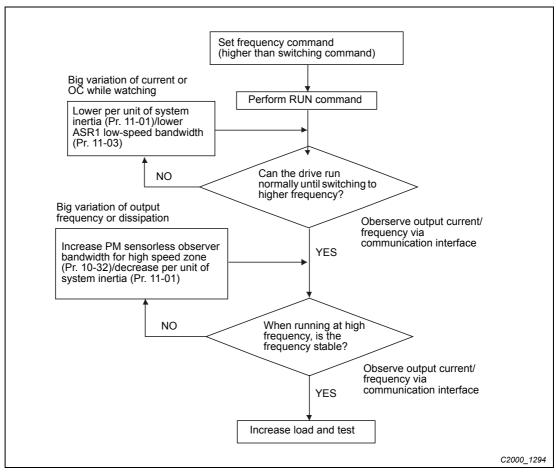


Fig. 12-75: Procedure for switching between I/F mode and FOC mode

Factory setting: 0

IPM control method SOP

- 1) Set up IPM motor: Pr. 05-33 = 2
- ② Set up motor parameter according to the motor Nameplate
 - Pr. 01-01 Output frequency of motor 1 (base frequency and motor rated frequency)
 - Pr. 01-02 Output voltage of motor 1 (base frequency and motor rated frequency)
 - Pr. 05-34 Full-load current of permanent magnet motor
 - Pr. 05-35 Rated power of permanent magnet motor
 - Pr. 05-36 Rated speed of permanent magnet motor
 - Pr. 05-37 Pole number of permanent magnet motor
- ③ Execute auto-tuning

Set up Pr. 05-00 = 13 for IPM motor tuning and press run (static-tuning). When the tuning is done, the following parameters will be obtained.

- Pr. 05-39 Stator resistance of PM motor
- Pr. 05-40 Permanent magnet motor Ld
- Pr. 05-41 Permanent magnet motor Lq
- ④ Set up control mode: Pr. 00-10 = 0 velocity mode, Pr. 00-11 = 7 IPM sensor-less.
- (5) Turn OFF the power and power ON again.
- 6 Modify the ASR Kp and Ki according to system need.

10-43 PG card version

Settings	0-655.35		

- NOTE Version reference:
 - PG02U 21.XX
 - PG01U31.XX
 - PG010/PG01L 11.XX
 - PG020/PG02L14.XX
 - PG01R41.XX

10-44– 10-48	Reserve
10-49	✓ Zero voltage time while start up
	Factory setting: 00.000 sec.
	Settings 00.000–60.000 sec.
	When the motor is in static status at the startup, the accuracy to estimate angles will be increased. In order to make the motor in "static status", the drive 3 phase U, V, W output 0 V to motor to reach this goal. The Pr. 10-49 setting time is the length of time when three-phase output 0 V.
	It is possible that even when this parameter is being applied but the motor at the installation site cannot go in to the "static status" caused by the inertia or by any external force. So, if the motor doesn't go into a completer "static status" in 0.2 sec. increase appropriately this setting value.
	This parameter is functional only when the setting of Pr. 07-12 speed search during startup \neq 0.
10-50	✓ Reverse angle limit (electrical angle)
	Factory setting: 10.00 degree
	Settings 0.00–30.00 degree
	While forward run is starting, if there is a sudden reverse run and the reverse angle is bigger than the Pr. 10-50 setting, then, drive will has a ScRv error.
	This parameter is valid only when Pr. 07-28 = 11 enable textile machine's function. (for use in textile machines - special parameter)

10-51	✓ Injection frequency
	Factory setting: 500 Hz
	Settings 0–2000 Hz
	■ This parameter is a high frequency injection command when the motor drive is under IPM HFI sensor-less control mode and it doesn't often need to be adjusted. But, if a motor's rated frequency (i.e. 400 Hz) is too close to the frequency setting of this parameter (i.e. 500 Hz), the accuracy of angles detected will be affected. Therefore, refer to the setting of Pr. 01-01 before adjusting this parameter.
10-52	✓ Injection magnitude
	Factory setting: 15/30 V
	Settings 0.0–200.0 V
	This parameter is the high frequency injection command's amplitude when the motor drive is under IPM HFI sensor-less control mode.
	By increase the setting value of this parameter, the accuracy of angles detected will also be increased. However, if the setting value is too big, it will cause a louder electromagnetic noise.

12.12 Advanced parameters

NOTE *N* This parameter can be set during operation.

In this parameter group, ASR is the abbreviation for Adjust Speed Regulator (Auto Speed Regulation).

11-00 System control Factory setting: 0 Bit 0: Auto tuning for ASR and APR Settings Bit 1: Inertia estimate (only in FOCPG mode) Bit 2: Zero servo Bit 3: Dead time compensation closed Bit 7: Selection to save or not save the frequency Bit 8: Maximum speed of point to point position control NOTES ■ Bit 0 = 0: Pr. 11-06 to 11-11 will be valid and Pr. 11-03–11-05 are invalid. Bit 0 = 1: system will generate an ASR setting. At this moment, Pr. 11-06–11-11 will be invalid and Pr. 11-03-11-05 are valid. Bit 1 = 0: no function. Bit 1 = 1: Inertia estimate function is enabled. (Bit 1 setting would not activate the estimation process, please set Pr. 05-00=12 to begin FOC/TQC sensorless inertia estimating) Bit 2 = 0: no function. Bit 2 = 1: when frequency command is less than Fmin (Pr. 01-07), it will use zero servo function.

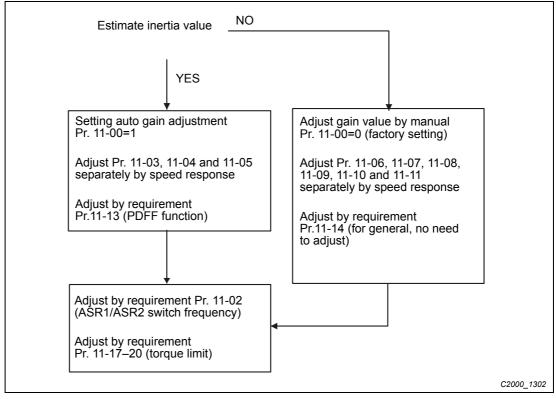


Fig. 12-76: Adjustment of operating functions

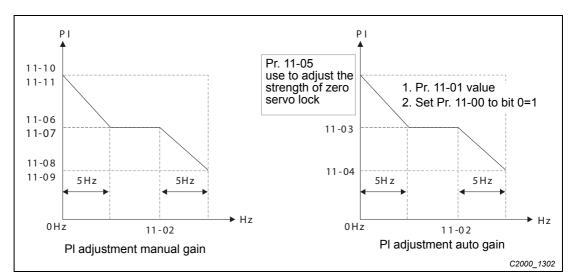


Fig. 12-77: PI gain adjustment

NOTES

- Bit 7 = 0: frequency is saved before power turns off. When power turns on again, the display frequency will be the memorized frequency.
- Bit 7 = 1: frequency is not saved before power turns off. When power turns ON again, the display frequency will be 0.00 Hz.
- Bit 8 = 0: maximum speed for point-to-point position control is control by the setting of Pr. 11-43.
- Bit 8 = 1: maximum speed for point-to-point position control is control by the multi-step speed setting of the external terminal device. When multi-step speed of the external device is set to 0, the maximum operation speed will bet the setting of Pr. 11-43.

11-01 Per unit of system inertia

Settings

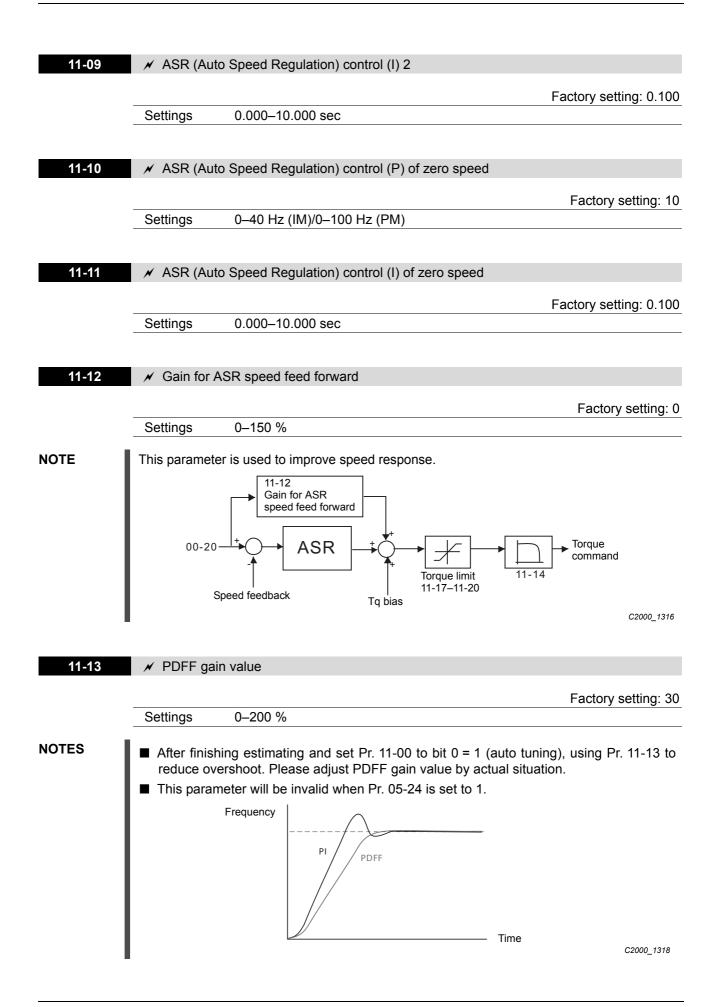
Factory setting: 400

NOTE

To get the system inertia from Pr. 11-01, user needs to set Pr. 11-00 to bit 1 = 1 and execute continuous forward/reverse running.

Unit of induction motor system inertia is 0.001 kg-m²:

1-65535 (256 = 1PU)


Power	Setting	Power	Setting	Power	Setti
1HP	2.3	20HP	95.3	100HP	1056
2HP	4.3	25HP	142.8	125HP	1275
3HP	8.3	30HP	176.5	150HP	1900
5HP	14.8	40HP	202.5	175HP	2150
7.5HP	26.0	50HP	355.5	215HP	2800
10HP	35.8	60HP	410.8	300HP	3550
15HP	74.3	75HP	494.8		

The base value for induction motor system inertia is set by Pr. 05-38 and the unit is in 0.001 kg-m².

11-02	✓ ASR1/ASF	R2 switch frequency	
			Factory setting: 7.00
	Settings	5.00–600.00 Hz	
11-03	✓ ASR1 low-	speed bandwidth	
			Factory setting: 10
	Settings	1–40 Hz (IM)/1–100 Hz (PM)	r dotory setting. To
	ge		
11-04	✓ ASR2 high	-speed bandwidth	
	Settings	1–40 Hz (IM)/1–100 Hz (PM)	Factory setting: 10
	Settings		
11-05	✓ Zero-spee	d bandwidth	
	Sottingo		Factory setting: 10
	Settings	1–40 Hz (IM)/1–100 Hz (PM)	
NOTES	parameters you set, the high-speed ■ Position co	ating inertia and set Pr. 11-00 to bit 0 = 1 (auto tu Pr. 11-03, 11-04 and 11-05 separately by speed respo a faster response you will get. Pr. 11-02 is the switch fr bandwidth. Introl pulse command (MIx = 37) and P2P position cor The higher the value, the lower the steady-state error.	nse. The larger number equency for low-speed/
11-06	💉 ASR (Auto	Speed Regulation) control (P) 1	
			Factory setting: 10
	Settings	0–40 Hz (IM)/1–100 Hz (PM)	Tactory Setting. To
11-07	ASR (Auto	Speed Regulation) control (P) 1	
		0.000 40.000	Factory setting: 0.100
	Settings	0.000-10.000 sec	
11-08	💉 ASR (Auto	Speed Regulation) control (PI) 2	
			Factory setting: 10
	Settings	0–40 Hz (IM)/0–100 Hz (PM)	

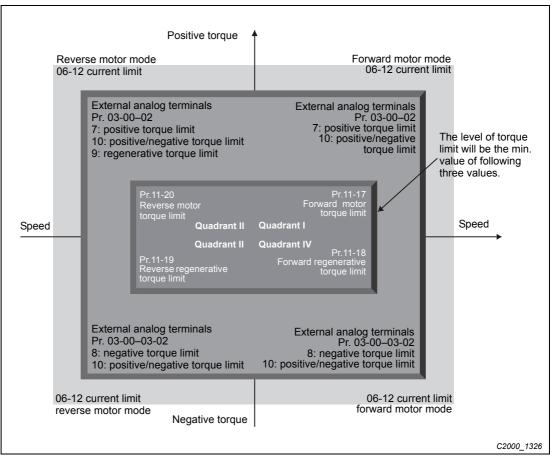
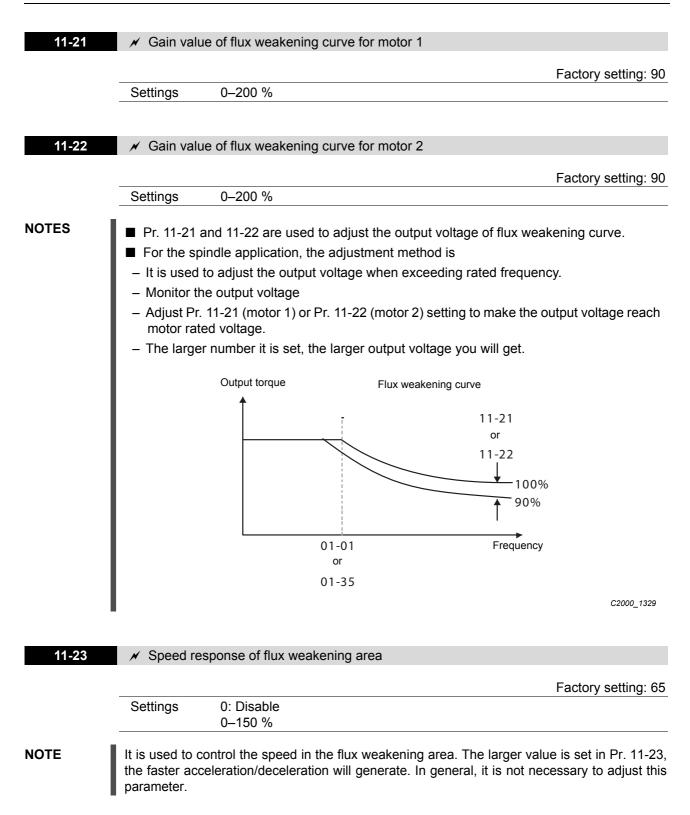
11-14	💉 Low-pass	filter time of ASR output	
			Factory setting: 0.008
	Settings	0.000–0.350 sec	
NOTE	It is used to se	t the filter time of ASR command.	
11-15	💉 Notch filte	r depth	
			Factory setting: 0
	Settings	0–20 db	
11-16	✓ Notch filte	r frequency	
			Factory setting: 0.00
	Settings	0.00–200.00 Hz	
NOTES	to suppress ■ The larger r	neter is used to set resonance frequency of mechanica s the resonance of mechanical system. number you set Pr. 11-15, the better suppression resona filter frequency is the resonance of mechanical freque	ance function you will get.
11-17		notor torque limit	
11-18 11-19		egenerative torque limit	
11-19		notor torque limit egenerative torque limit	
			Factory setting: 500
	Settings	0–500 %	, , , , , , , , , , , , , , , , , , , ,

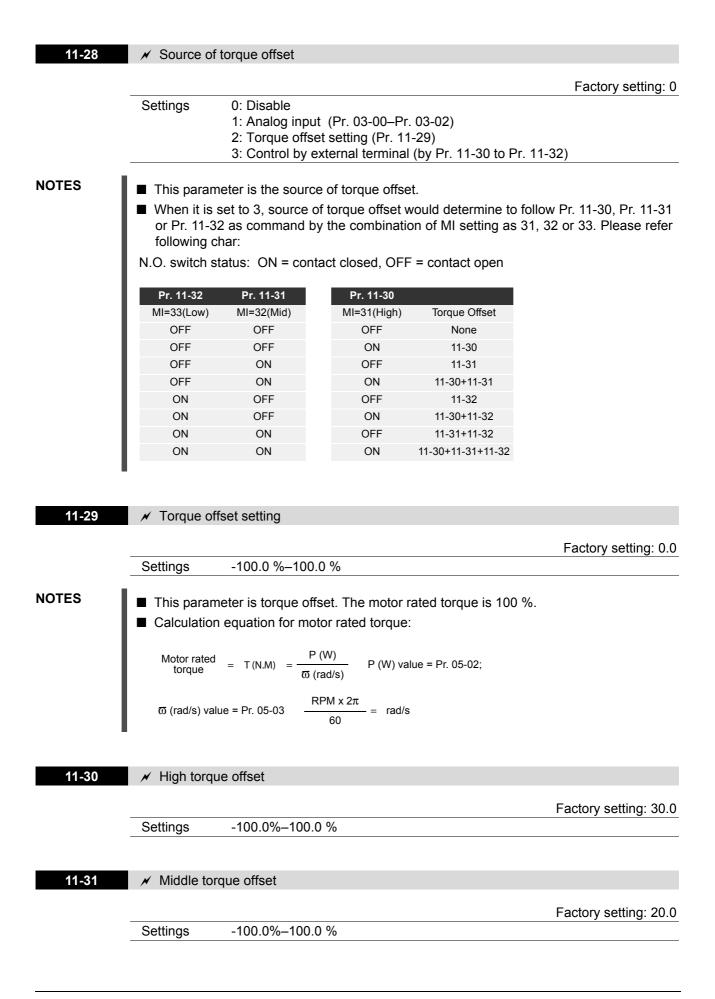
NOTES

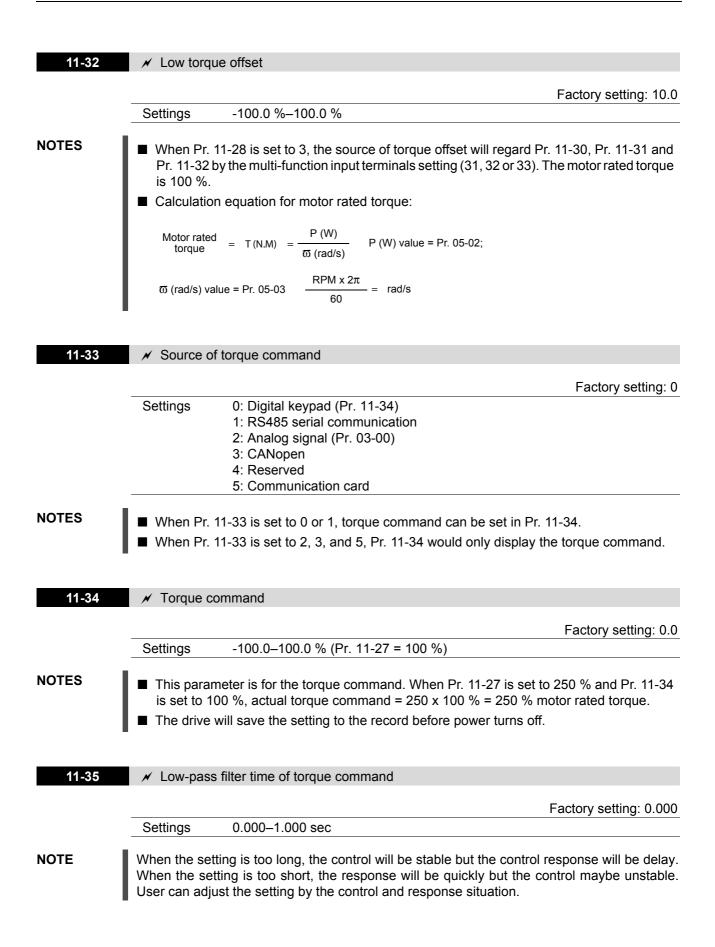
- The motor drive rated current is 100 %. The settings for Pr. 11-17 to Pr. 11-20 will compare with Pr. 03-00 = 7, 8, 9, 10. The minimum of the comparison result will be torque limit. Please refer the chart as below.
 - Calculation equation for motor rated torque:

Motor rated torque = $T(N.M) = \frac{P(W)}{\varpi (rad/s)}$ P (W) value = Pr. 05-02; $\varpi (rad/s)$ value = Pr. 05-03 $\frac{RPM \times 2\pi}{60}$ = rad/s

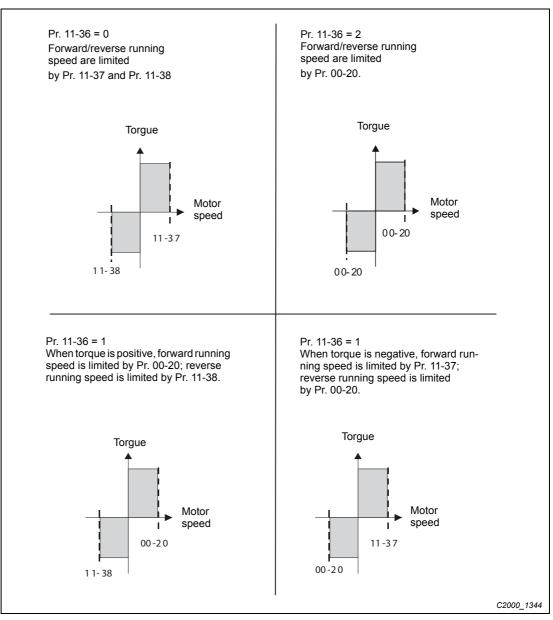
- FOCPG and FOC sensor-less control mode The drive rated current = 100 %. The setting value of parameters Pr. 11-17–Pr. 11-20 will compare to Pr. 03-00 = 7, 8, 9 and 10. The smallest value will become the torque limit value. Please refer to the torque limit diagram.
- TQCPG and TQC Sensor-less control mode The drive rated current = 100 %. The setting value of parameters Pr. 11-17–Pr. 11-20 will compare to Pr. 06-12. The smallest value will become the torque limit value.
- VF, VFPG and SVC control mode The Pr. 11-17–Pr. 11-20 are output current limit and its 100 % = drive rated current. The smallest value between the Pr. 11-17–Pr. 11-20 and Pr. 06-12 will become output current limit. If the output current has reach this limit during acceleration or normal running, drive will enable "over current stall" function. Until the output frequence drops to limit value, drive can run normally.


Fig. 12-78: Torque limiting in forward and reverse mode



11-24	🖌 APR gain			
	J			Factory potting: 10.00
	Settings	0.00-40.00 (IM)/0-100	0.00 Hz (PM)	Factory setting: 10.00
NOTE	Kip gain of inte	rnal position (MI = 35)	<u>,</u>	
11-25	💉 Gain value	of APR feed forward		
				Factory acting: 20
	Settings	0–100		Factory setting: 30
NOTE	set a larger val			control pulse command (MI = 37). To lifferential and speed up the position
11-26	💉 APR curve	time		
				Factory setting: 3.00
	Settings	0.00-655.35 sec		
NOTE	It is valid when the position tim		erminal is set to 3	5 (ON). The larger it is set, the longer
11-27	💉 Max. torqu	e command		
				Factory setting: 100
	Settings	0–500 %		
NOTES		mit of torque command equation for motor rated P (W)	l torque:	
	torque	ϖ (rad/s) RPM x 2π	P (W) value = Pr. 05-	02;
I		60 60 Filler		



11-36	Speed limit selection				
		F	actory setting: 0		
	Settings	0: Set by Pr. 11-37 (forward speed limit) and Pr. 11-38 (reverse speed limit) 1: Set by Pr. 11-37,11-38 and Pr. 00-20 (source of master frequency command)			
		2: Set by Pr. 00-20 (source of master frequency command).			
NOTES	 (Pr. 11-36, Pr. 11-36=1 When the t speed limit When the t 	torque command is positive, the forward speed limit is Pr. 00- is Pr. 11-38. torque command is negative, the forward speed limit is Pr. 11-	acceleration. 20 and reverse		
	 speed limit is Pr. 00-20. Unwind application, Torque command direction is different to motor operating direction this indicates that the motor is being load dragging. At this moment, the speed limit must be Pr. 11-37 or Pr. 11-38. When the torque command direction and speed limit have san direction, the speed limit will refer to the setting of Pr. 00-20. 				
		eypad display, please refer to the "LED function descriptions" "Digital Keypad". In torque control, F page of keypad display the			
			e present speed		

11-37	✓ Forward	speed limit (torque mode)	
			Factory setting: 10
	Settings	0–120 %	
11-38	💉 Reverse	speed limit (torque mode)	
			Factory setting: 10
	Settings	0–120 %	
NOTE		neters are used in the torque mode to lim r. 01-00 max. output frequency = 100 %)	it the running direction and opposite

💉 Zero to	orque command mode				
		Factory setting: 0			
Settings	0: Torque mode 1: Speed mode				
 This parameter only works in TQCPG IM and TQCPG PM, and it defines the mode when speed limit is 0 % or 0 Hz. When Pr. 11-39 is set as 0 (the torque mode), and speed limit is 0 % or 0 Hz, the motor will generate excitation current but no torque current. When Pr. 11-39 is set as 1 (the speed mode), if torque command is 0 % and speed limit is 0 Hz, the can still produce torque current through speed controller (at this moment, the torque limit is Pr. 06-12) and the control mode will change from TQCPG to FOCPG mode. The motor will have a holding torque. If the speed command is not 0, motor drive will change to be 0. 					
			✗ Comm	nand source of point-to-po	bint position control
					Factory setting: 0
Settings	0: External termina 1: Reserved 2: RS485 3: CAN 4: PLC 5: Communication	1			
Reserved ★ Syster	n control flag				
		Factory setting: 0000			
Settings	0000–FFFFh	Factory setting: 0000			
Settings Bit No.	0000–FFFFh Function				
-		Description 0: Speed control at torque mode, the highest current limit is torque command. 1: Speed control at torque mode, the highest current limit is Pr. 06-12			
Bit No.	Function Current limit selection of	Description 0: Speed control at torque mode, the highest current limit is torque command.			
Bit No. 0	Function Current limit selection of speed control at torque mode	Description 0: Speed control at torque mode, the highest current limit is torque command. 1: Speed control at torque mode, the highest current limit is Pr. 06-12 0: FWD/REV cannot be controlled by 02-12 bit 0 & 1			
Bit No. 0 1 2–15	Function Current limit selection of speed control at torque mode FWD/REV action control	Description 0: Speed control at torque mode, the highest current limit is torque command. 1: Speed control at torque mode, the highest current limit is Pr. 06-12 0: FWD/REV cannot be controlled by 02-12 bit 0 & 1 1: FWD/REV can be controlled by 02-12 bit 0 & 1			
Bit No. 0 1 2–15 Tab. 12-20:	Function Current limit selection of speed control at torque mode FWD/REV action control Reserved	Description 0: Speed control at torque mode, the highest current limit is torque command. 1: Speed control at torque mode, the highest current limit is Pr. 06-12 0: FWD/REV cannot be controlled by 02-12 bit 0 & 1 1: FWD/REV can be controlled by 02-12 bit 0 & 1 Pr. 11-42			
Bit No. 0 1 2–15 Tab. 12-20:	Function Current limit selection of speed control at torque mode FWD/REV action control Reserved Functions of bits from F	Description 0: Speed control at torque mode, the highest current limit is torque command. 1: Speed control at torque mode, the highest current limit is Pr. 06-12 0: FWD/REV cannot be controlled by 02-12 bit 0 & 1 1: FWD/REV can be controlled by 02-12 bit 0 & 1 Pr. 11-42			

11-45

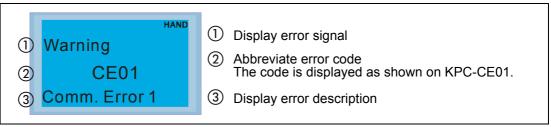
Decel. time

K

C2000_1354

11-44 ✓ Accel. time of point-to-point position control Factory setting: 1.00 Settings 0.00-655.35 sec Tactory setting: 3.00 Settings Settings Out-655.35 sec Factory setting: 3.00 Settings Out-655.35 sec Factory setting: 3.00 Settings Out-655.35 sec Max. frequency Nav. frequency Speed 11-43

Fig. 12-80: Accelleration and deceleration time for point-to-point positioning


11-44

Accel. time

4

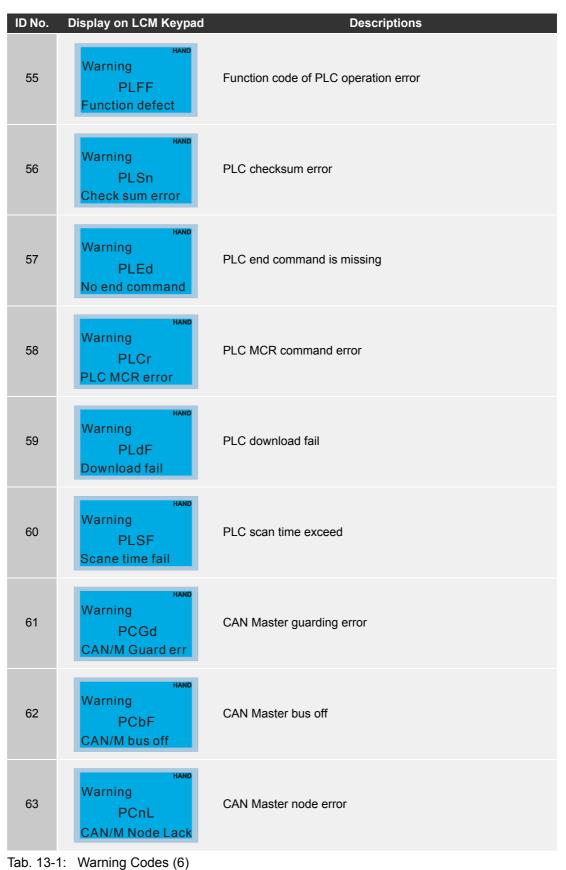
13 Warning Codes

C2000_1562

ID No.	Display on LCM Keypad	Descriptions
1	HAND Warning CE01 Comm. Error 1	Modbus function code error
2	HAND Warning CE02 Comm. Error 2	Address of Modbus data is error
3	Warning CE03 Comm. Error 3	Modbus data error
4	HAND Warning CE04 Comm. Error 4	Modbus communication error
5	HAND Warning CE10 Comm. Error 10	Modbus transmission time-out
6	HAND Warning CP10 Keypad time out	Keypad transmission time-out
7	Warning SE1 Save Error 1	Keypad COPY error 1 Keypad simulation error, including communication delays, communication error (keypad recived error FF86) and parameter value error.
Tab 13-1	Warning Codes (1)	

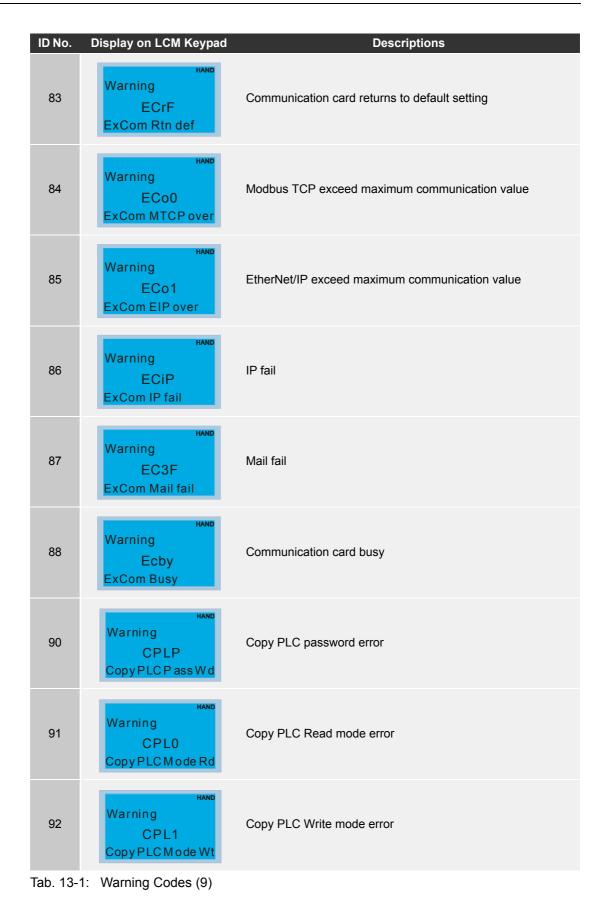
Tab. 13-1:Warning Codes (1)

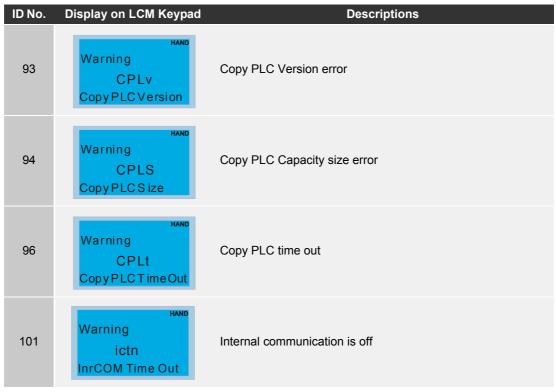
Tab. 13-1: Warning Codes (2)

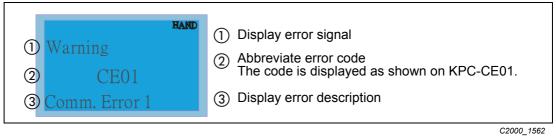


ID No.	Display on LCM Keypad	Descriptions
30	Warning SE3 Copy Model Err 3	Keypad COPY error 3 Copy between two frequency inverters with different output power ranges.
36	HAND Warning CGdn Guarding T-out	CAN guarding time-out 1
37	HAND Warning CHbn Heartbeat T-out	CAN heartbeat time-out 2
38	HAND Warning CSYn SYNC T-out	CAN synchrony time-out
39	HAND Warning CbFn Can Bus Off	CAN bus off
40	HAND Warning Cldn CAN/S Idx exceed	CAN index error
41	HAND Warning CAdn CAN/S Addres set	CAN station address error
42	HAND Warning CFrn CAN/S FRAM fail	CAN memory error
43	HAND Warning CSdn SDO T-out	CAN SDO transmission time-out
Tab 13-1	: Warning Codes (4)	

Tab. 13-1: Warning Codes (4)







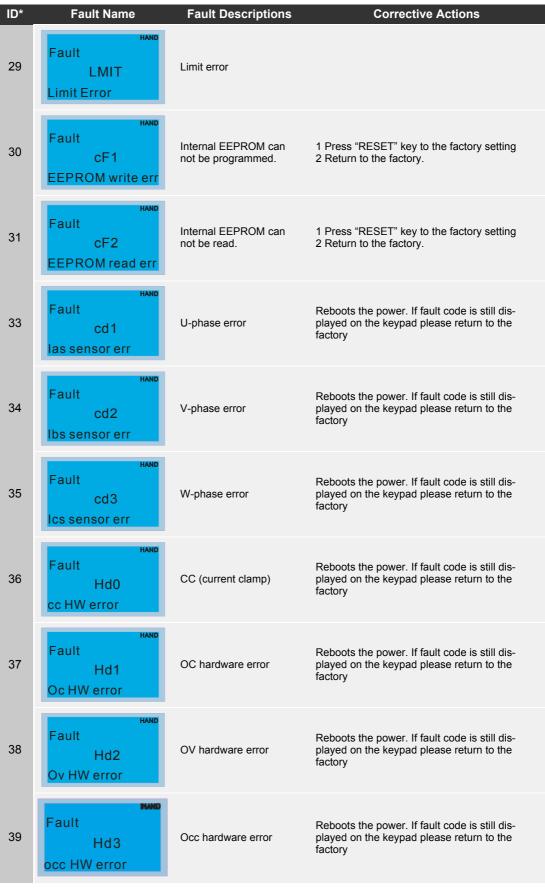
Tab. 13-1: Warning Codes (10)

14 Fault Codes and Descriptions

----_-

* Refer to setting of Pr06-17-Pr06-22. ID* **Fault Name Fault Descriptions Corrective Actions** 1 Short-circuit at motor output: Check for possi-Over-current during ble poor insulation at the output. Fault acceleration 2 Acceleration Time too short: Increase the 1 (Output current exceeds Acceleration Time ocA triple rated current dur-3 AC motor drive output power is too small: Oc at accel ing acceleration.) Replace the AC motor drive with the next higher power model. 1 Short-circuit at motor output: Check for possi-Over-current during ble poor insulation at the output. Fault 2 Deceleration Time too short: Increase the deceleration 2 (Output current exceeds Deceleration Time. ocd triple rated current dur-3 AC motor drive output power is too small: Replace the AC motor drive with the next ing deceleration.) Oc at decel higher power model. 1 Short-circuit at motor output: Check for possi-Over-current during ble poor insulation at the output. Fault steady state operation 2 Sudden increase in motor loading: Check for 3 (Output current exceeds possible motor stall. ocn triple rated current dur-3 AC motor drive output power is too small: Replace the AC motor drive with the next Oc at normal SPD ing constant speed.) higher power model. When (one of) the output terminal(s) is grounded, short circuit current is more than 50 % of AC motor drive rated current, the AC motor drive power module may be damaged. NOTE: The short circuit protection is provided Fault for AC motor drive protection, not for protecting 4 Ground fault the user. GFF 1 Check the wiring connections between the Ground fault AC motor drive and motor for possible short circuits, also to ground. 2 Check whether the IGBT power module is damaged. 3 Check for possible poor insulation at the output. Short-circuit is detected Fault between upper bridge 5 Return to the factory occ and lower bridge of the IGBT module Short Circuit Fault Hardware failure in cur-6 Return to the factory ocS rent detection Oc at stop

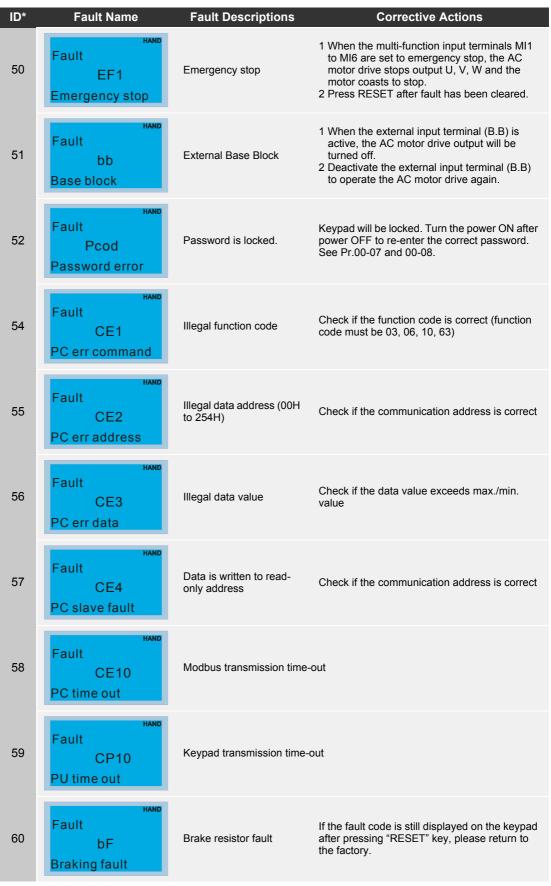
Tab. 14-1: Fault Codes and descriptions (1)


ID*	Fault Name	Fault Descriptions	Corrective Actions
7	Fault ovA Ov at accel	DC BUS over-voltage during acceleration (230 V: DC 450 V; 460 V: DC 900 V)	 Check if the input voltage falls within the rated AC motor drive input voltage range. Check for possible voltage transients. If DC BUS over-voltage due to regenerative voltage, please increase the acceleration time or add an optional brake resistor.
8	Fault ovd Ov at decel	DC BUS over-voltage during deceleration (230 V: DC 450 V; 460 V: DC 900 V)	 Check if the input voltage falls within the rated AC motor drive input voltage range. Check for possible voltage transients. If DC BUS over-voltage due to regenerative voltage, please increase the Deceleration Time or add an optional brake resistor.
9	Fault ovn Ov at normal SPD	DC BUS over-voltage at constant speed (230 V: DC 450 V; 460 V: DC 900 V)	 Check if the input voltage falls within the rated AC motor drive input voltage range. Check for possible voltage transients. If DC BUS over-voltage due to regenerative voltage, please increase the Deceleration Time or add an optional brake resistor.
10	Fault ovS Ov at stop	Hardware failure in volt- age detection	 Check if the input voltage falls within the rated AC motor drive input voltage range. Check for possible voltage transients.
11	Fault LvA Lv at accel	DC BUS voltage is less than Pr.06-00 during acceleration	1 Check if the input voltage is normal 2 Check for possible sudden load
12	Fault Lvd Lv at decel	DC BUS voltage is less than Pr.06-00 during deceleration	1 Check if the input voltage is normal 2 Check for possible sudden load
13	Fault Lvn Lv at normal SPD	DC BUS voltage is less than Pr.06-00 in con- stant speed	1 Check if the input voltage is normal 2 Check for possible sudden load
14	Fault LvS Lv at stop	DC BUS voltage is less than Pr.06-00 at stop	1 Check if the input voltage is normal 2 Check for possible sudden load
15	Fault OrP Phase lacked	Phase Loss	Check Power Source Input if all 3 input phases are connected without loose contacts. For models 40 hp and above, please check if the fuse for the AC input circuit is blown.
16	Fault oH1 IGBT over heat	IGBT overheating IGBT temperature exceeds protection level	 Ensure that the ambient temperature falls within the specified temperature range. Make sure that the ventilation holes are not obstructed. Remove any foreign objects from the heat- sinks and check for possible dirty heat sink fins. Check the fan and clean it. Provide enough spacing for adequate ventilation.

Tab. 14-1: Fault Codes and descriptions (2)

ID*	Fault Name	Fault Descriptions	Corrective Actions
17	Hand Fault 0H2 Heat Sink oH	Heatsink overheating Capacitance tempera- ture exceeds cause heatsink overheating.	 Ensure that the ambient temperature falls within the specified temperature range. Make sure heat sink is not obstructed. Check if the fan is operating Check if there is enough ventilation clearance for AC motor drive.
18	HAND Fault tH1o Thermo 1 open	IGBT Hardware Error	Return to the factory
19	HAND Fault tH2o Thermo 2 open	Capacitor Hardware Error	Return to the factory
21	HAND Fault Over load	Overload The AC motor drive detects excessive drive output current.	 Check if the motor is overloaded. Take the next higher power AC motor drive model.
22	Fault EoL1 Thermal relay 1	Electronics thermal relay 1 protection	 Check the setting of electronics thermal relay (Pr.06-14) Take the next higher power AC motor drive model
23	Fault EoL2 Thermal relay 2	Electronics thermal relay 2 protection	 Check the setting of electronics thermal relay (Pr.06-28) Take the next higher power AC motor drive model
24	HAND Fault oH3 Motor over heat	Motor overheating The AC motor drive detecting internal tem- perature exceeds the setting of Pr.06-30 (PTC level) or Pr.06-57 (PT100 level 2).	 Make sure that the motor is not obstructed. Ensure that the ambient temperature falls within the specified temperature range. Change to a higher power motor.
26	HAND Fault Over torque 1	These two fault codes will be displayed when output current exceeds the over-torque detection level (Pr.06-07 or Pr.06-	1 Check whether the motor is overloaded. 2 Check whether motor rated current setting (Pr.05-01) is suitable
27	Fault ot2 Over torque 2	10) and exceeds over- torque detection (Pr.06- 08 or Pr.06-11) and it is set to 2 or 4 in Pr.06-06 or Pr.06-09.	3 Take the next higher power AC motor drive model.
28	Fault uC Under torque	Low current detection	Check Pr.06-71, Pr.06-72, Pr.06-73.

Tab. 14-1: Fault Codes and descriptions (3)

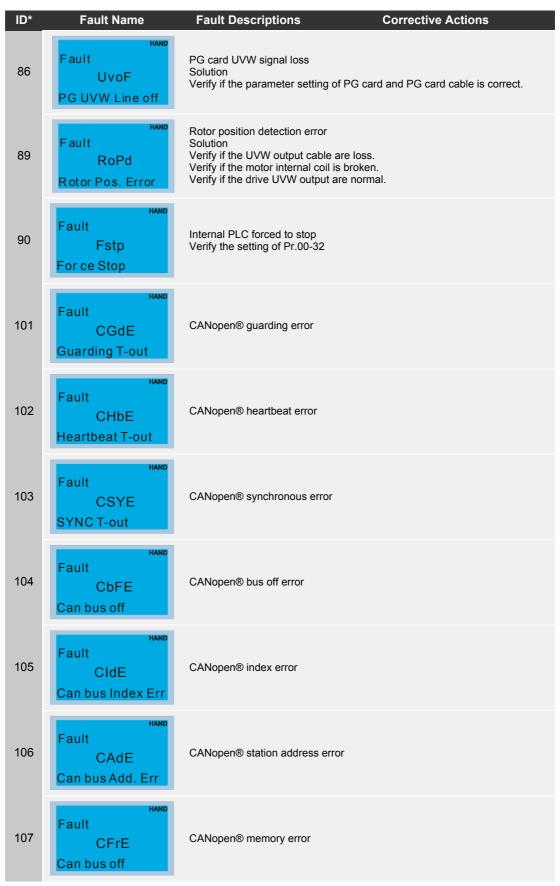


Tab. 14-1: Fault Codes and descriptions (4)

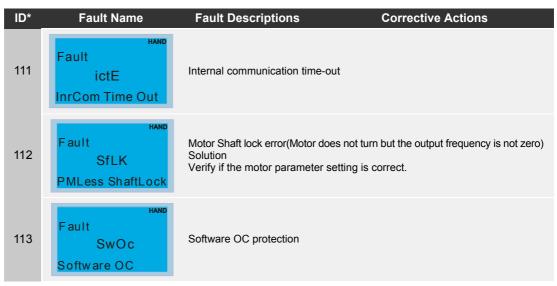
ID*	Fault Name	Fault Descriptions	Corrective Actions
40	Fault AUE Auto tuning err	Auto tuning error	1 Check cabling between drive and motor 2 Try again.
41	Fault AFE PID Fbk error	PID loss (ACI)	1 Check the wiring of the PID feedback 2 Check the PID parameters settings
42	Fault PGF1 PG Fbk error	PG feedback error	Check if encoder parameter setting is accurate when it is PG feedback control.
43	Fault PGF2 PG Fbk loss	PG feedback loss	Check the wiring of the PG feedback
44	Fault PGF3 PG Fbk over SPD	PG feedback stall	 Check the wiring of the PG feedback Check if the setting of PI gain and deceleration is suitable Return to the factory
45	Fault PGF4 PG Fbk deviate	PG slip error	 Check the wiring of the PG feedback Check if the setting of PI gain and deceleration is suitable Return to the factory
46	Fault PGr1 PG Referror	Pulse input error	1 Check the pulse wiring 2 Return to the factory
47	Fault PGr2 PG Ref loss	Pulse input loss	1 Check the pulse wiring 2 Return to the factory
48	Fault ACE ACI loss	ACI loss	1 Check the ACI wiring 2 Check if the ACI signal is less than 4mA
49	Fault EF External fault	External Fault	 Input EF (N.O.) on external terminal is closed to GND. Output U, V, W will be turned off. Give RESET command after fault has been cleared.

Tab. 14-1: Fault Codes and descriptions (5)

Tab. 14-1: Fault Codes and descriptions (6)



61FaultMon ydcY-connection/A-connection A-connection 2 Check the wiring of the Y-connection/ A-connection 2 Check the parameters settings62FaultWen Pr 07.13 is not set to 0 and momentary power of or power out, t will objeay eEb during accel/decel.stop.1 Set Pr 07.13 to 0 2 Check if nput power is stable63FaultWen Pr 07.13 is not set to 0 and momentary power of or power out, t will objeay eEb during accel/decel.stop.1 Check if motor parameter is correct (please decrease the load if overload 2 Check the settings of Pr 07.29 and Pr 07.3064FaultIt will be displayed when pr 07.30 setting.1 Check if motor parameter is correct (please decrease the load if overload 2 Check the settings of Pr 07.29 and Pr 07.3064FaultIt will be displayed when pr 07.30 setting.1 Check if motor parameter is correct (please decrease the load if overload 2 Check the settings of Pr 07.29 and Pr 07.3065FaultSettingCheck if PG Card Check if PG Card Check if PG Card Check if PG Card is not setting to the encoder are accurate.68FaultNote SpdFbk Dir RevRotaing direction is different from the commanding direction deteced by the sensorless are correct.69FaultNote SpdFbk over SPDOverspeed rotation deteced by the sensorless obadwidth and verify if parameters relating to the sensorless are correct.70FaultSolution SolutionVerify if the parameter setting of the motor drive is correct Increase the estimator's bandwidth and verify if parameters relating to the sensorless.72FaultSolution Solution<	ID*	Fault Name	Fault Descriptions	Corrective Actions
62 Fault When Pr/07-13 is not set to 0 and momentary power off or power dur, t will display dEd during 1 Set Pr.07-13 to 0 63 Dec. Energy back 1 Check if input power is stable 63 Fault It will be displayed when stip exceeds Pr.07-20 et inpart in and time exceeds Pr.07-30 setting. 1 Check if motor parameter is correct (please decrease the load if overload 2 Check the settings of Pr.07-29 and Pr.07-30 64 Fault Fault Electric valve switch error when executing Soft Start. (This warning is for frame E and higher frame of AC drives) 64 Fault Do not disconnect RST when drive is still operating. 65 Fault Check if PC Gard Check if PC Gard is insert to the right slot and parameter settings for encoder are accurate. 68 SdRv Solution Verify if the parameter setting of the motor drive is correct Increase the estimator's bandwidth and verify if parameters relating to the sensorless. Solution 69 Fault SdOr Overspeed rotation detected by the sensorless Solution 70 Fault StoDe StoDe StoT1-SCM1 internal hardware detect error 72 Fault StoLess 1 Sto1-SCM1 internal hardware detect error	61	Fault ydc		Δ-connection
 Fault oSL oSL oesting and time exceeds Pr.07-30 setting. Check the settings of Pr.07-29 and Pr.07-30 Check the settings of Pr.07-29 and Pr.07-30 Check the settings of Pr.07-29 and Pr.07-30 Fault ryF Do not disconnect RST when drive is still operating. Fault PGF5 Do not disconnect RST when drive is still operating. Fault Fault PGF5 PG HW Error Rotaing direction is different from the commanding direction deteced by the sensorless. Solution Solution Verify if the parameter setting of the motor drive is correct increase the estimator's bandwidth and verify if parameters relating to the sensorless are correct. Solution Verify if the parameter setting of the motor drive is correct increase the estimator's bandwidth and verify if parameters relating to the sensorless are correct. Solution Verify if the parameter setting of the motor drive is correct increase the estimator's bandwidth and verify if parameters relating to the sensorless are correct. Solution Verify if the gains of the speed circuit is reasonable. Fault Solution Verify if the gains of the speed circuit is reasonable. Fault Solution Verify if the gains of the speed circuit is reasonable. Fault Solution Verify if the gains of the speed circuit is reasonable. Fault Solution Verify if the gains of the speed circuit is reasonable. Fault Solution Verify if the gains of the speed circuit is reasonable. Fault Solution Verify if the gains of the speed circuit is reasonable.<td>62</td><td>Fault dEb</td><td>to 0 and momentary power off or power cut, it will display dEb during</td><td></td>	62	Fault dEb	to 0 and momentary power off or power cut, it will display dEb during	
64 Fault Electric valve switch error when executing Soft Start. (This warning is for frame E and higher frame of AC drives) 65 MC Fault Do not disconnect RST when drive is still operating. 65 Fault Hardware error of PG Card Check if PG Card is insert to the right slot and parameter settings for encoder are accurate. 68 Fault Rotaing direction is different from the commanding direction deteced by the sensorless. Solution 69 Fault Overspeed rotation detected by the sensorless Solution 69 Fault Overspeed rotation detected by the sensorless Solution 70 Fault Big difference between the rotating speed and the command deteced by the sensorless are correct. 71 Fault StdDe 72 Fault StdDe 73 Fault Stol	63	Fault oSL	slip exceeds Pr.07-29 setting and time exceeds	(please decrease the load if overload
 Fault Fault Fault Big difference between the rotating speed and the command deteced by the sensorless. Solution Verify if the parameter setting of the motor drive is correct Increase the estimator's bandwidth and verify if parameters relating to the sensorless are correct. SdOr SdOr Sdor SdOr Sdor Solution Verify if the parameter setting of the motor drive is correct Increase the estimator's bandwidth and verify if parameters relating to the sensorless are correct. SdOr SdOr SdOr SdOr SdOr SdOr Solution Verify if the parameter setting of the motor drive is correct Increase the estimator's bandwidth and verify if parameters relating to the sensorless are correct. Verify if the gains of the speed circuit is reasonable. Big difference between the rotating speed and the command deteced by the sensorless Solution Verify if the parameter setting of the motor drive is correct Increase the estimator's bandwidth and verify if parameters relating to the sensorless Solution Verify if the parameter setting of the motor drive is correct Increase the estimator's bandwidth and verify if parameters relating to the sensorless Solution Verify if the parameter setting of the motor drive is correct Increase the estimator's bandwidth and verify if parameters relating to the sensorless Solution Verify if the parameter setting of the speed circuit is reasonable. 	64	Fault ryF	(This warning is for frame E	and higher frame of AC drives)
 Fault SdRv SdRv SdRv SdRv SdRv SdRv SdV SpdFbk Dir Rev Fault SdOr SdOr<	65	Fault PGF5	Check if PG Card is insert t	
 Fault Solution Verify if the parameter setting of the motor drive is correct Increase the estimator's bandwidth and verify if parameters relating to the sensorless are correct. Verify if the gains of the speed circuit is reasonable. Fault SdDe SdDe SdDe SdDe SdDe SdDe SdDe SdDe SdDe Sensorless are correct. Verify if the parameter setting of the motor drive is correct Increase the estimator's bandwidth and verify if parameters relating to the sensorless SdDe SdDe SdDe SdDe Solution Verify if the parameter setting of the motor drive is correct Increase the estimator's bandwidth and verify if parameters relating to the sensorless are correct. Verify if the gains of the speed circuit is reasonable. 	68	Fault SdRv	sensorless. Solution Verify if the parameter setti Increase the estimator's ba	ng of the motor drive is correct
 Fault SdDe SdDe SpdFbk deviate Fault Fault Fault STOL Fault Fault For severe sets for severe se	69	Fault SdOr	Solution Verify if the parameter setti Increase the estimator's ba sensorless are correct.	ng of the motor drive is correct ndwidth and verify if parameters relating to the
72 Fault STOLoss 1 Fault	70	Fault SdDe	sensorless Solution Verify if the parameter setti Increase the estimator's ba sensorless are correct.	ng of the motor drive is correct ndwidth and verify if parameters relating to the
Fault	72	Fault STOL	STO1–SCM1 internal hard	ware detect error
S1-emergy stop Tab. 14-1: Fault Codes and descriptions (7)		Fault S1 S1-emergy stop		al safety


Tab. 14-1: Fault Codes and descriptions (7)

Tab. 14-1: Fault Codes and descriptions (8)

Tab. 14-1: Fault Codes and descriptions (9)

Tab. 14-1: Fault Codes and descriptions (10)

15 CANopen Overview

Built-in EMC-COP01 card is included in VFDXXXC23E/VFDXXXC43E models.

The built-in CANopen function is a kind of remote control. Master can control the by using CANopen protocol. CANopen is a CAN-based higher layer protocol. It provides standardized communication objects, including real-time data (Process Data Objects, PDO), configuration data (Service Data Objects, SDO), and special functions (Time Stamp, Sync message, and Emergency message). And it also has network management data, including Boot-up message, NMT message, and Error Control message. Refer to CiA website http://www.can-cia.org/ for details. The content of this instruction sheet may be revised without prior notice. Please consult our distributors or download the most updated version at http://www.delta.com.tw/industrialautomation.

NOTE

DELTA reserves the right to make technical changes of this manual at any time without special notification. The current version of this manual is available on the website <u>http://www.delta.com.tw/industrialautomation</u> for download.

Delta CANopen supporting functions:

- Support CAN2.0A Protocol;
- Support CANopen DS301 V4.02;
- Support DSP-402 V2.0.

Delta CANopen supporting services:

- PDO (Process Data Objects): PDO1– PDO4
- SDO (Service Data Object):
 - Initiate SDO Download;
 - Initiate SDO Upload;
 - Abort SDO;
 - SDO message can be used to configure the slave node and access the Object Dictionary in every node.
- SOP (Special Object Protocol):
 - Support default COB-ID in Predefined Master/Slave Connection Set in DS301 V4.02;
 - Support SYNC service;
 - Support Emergency service.
- NMT (Network Management):
 - Support NMT module control;
 - Support NMT Error control;
 - Support Boot-up.

Delta CANopen not supporting service:

■ Time Stamp service

15.1 CANopen overview

15.1.1 CANopen protocol

CANopen is a CAN-based higher layer protocol, and was designed for motion-oriented machine control networks, such as handling systems. Version 4.02 of CANopen (CiA DS301) is standardized as EN 50325-4. The CANopen specifications cover application layer and communication profile (CiA DS301), as well as a framework for programmable devices (CiA 302), recommendations for cables and connectors (CiA 303-1) and SI units and prefix representations (CiA 303-2).

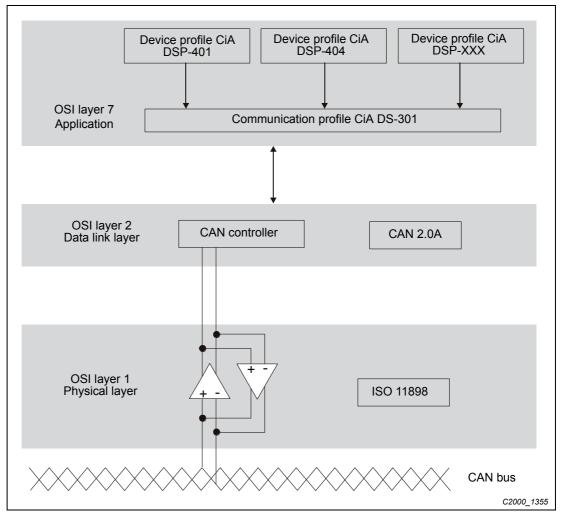


Fig. 15-1: CANopen structure®

15.1.2 CANopen communication protocol

It has services as follows:

- NMT (Network Management Object)
- SDO (Service Data Objects)
- PDO (Process Data Object)
- EMCY (Emergency Object)

NMT (Network Management Object)

The Network Management (NMT) follows a Master/Slave structure for executing NMT service. Only one NMT master is in a network, and other nodes are regarded as slaves. All CANopen nodes have a present NMT state, and NMT master can control the state of the slave nodes. The state diagram of a node is shown as follows:

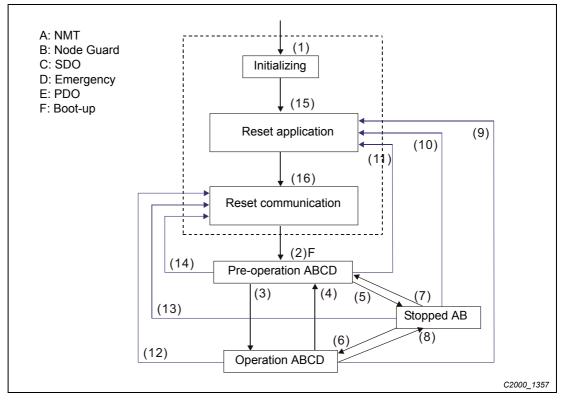


Fig. 15-2: NMT status diagram

1 After power is applied, it is auto in initialization state

- 2 Enter pre-operational state automatically
- 3 and 6: Start remote node
- ④ and ⑦: Enter pre-operational state
- 5 and 8: Stop remote node
- (9), (1) and (1): Reset node
- 2, (3) and (4): Reset communication
- Enter reset application state automatically
- B Enter reset communication state automatically

	Initializing	Pre-operational	Operational	Stopped
PDO			•	
SDO		•	•	
SYNC		•	•	
Time Stamp		•	•	
EMCY		•	•	
Boot-up	•			
NMT		•	•	•

Tab. 15-1: Exchangeable communication objects

SDO (Service Data Objects)

SDO is used to access the Object Dictionary in every CANopen node by Client/Server model. One SDO has two COB-ID (request SDO and response SDO) to upload or download data between two nodes. No data limit for SDOs to transfer data. But it needs to transfer by segment when data exceeds 4 bytes with an end signal in the last segment.

The Object Dictionary (OD) is a group of objects in CANopen node. Every node has an OD in the system, and OD contains all parameters describing the device and its network behavior. The access path of OD is the index and sub-index, each object has a unique index in OD, and has sub-index if necessary.

PDO (Process Data Object)

PDO communication can be described by the producer/consumer model. Each node of the network will listen to the messages of the transmission node and distinguish if the message has to be processed or not after receiving the message. PDO can be transmitted from one device to one another device or to many other devices. Every PDO has two PDO services: a TxPDO and a RxPDO. PDOs are transmitted in a non-confirmed mode.

PDO Transmission type is defined in the PDO communication parameter index (1400h for the 1st RxPDO or 1800h for the 1st TxPDO), and all transmission types are listed in the following table:

	PDO*										
Type Number	Cyclic	Acyclic	Synchronous	Asynchro- nous	RTR only						
0		•	•								
1-240 ^①	•		•								
241-251			Reserved								
252 ^②			•		٠						
253 ³				•	•						
254 ^④				•							
255 ^⑤				•							

Tab. 15-2: Process data objects

 $\overset{(1)}{\circ}$ The type number indicates the number of SYNC message between two PDO transmissions.

⁽²⁾ The type number indicates the data is updated (but not sent) immediately after receiving SYNC.

 $\stackrel{(3)}{\underset{}{\sim}}$ The type number indicates the data is updated immediately after receiving RTR.

 $\overset{\textcircled{0}}{\bigcirc}$ The type number Delta CANopen doesn't support this transmission format.

⁽⁵⁾ The type number indicates the data is asynchronous transmission.

* All PDO transmission data must be mapped to index via Object Dictionary.

EMCY (Emergency Object)

When errors occurred inside the hardware, an emergency object will be triggered an emergency object will only be sent when an error is occurred. As long as there is nothing wrong with the hardware, there will be no emergency object to be served as a warning of an error message.

15.2 Wiring for CANopen

An external adapter card: EMC-COP01 is used for CANopen wiring to connect CANopen to VFD C2000. The link is enabled by using RJ45 cable. The two farthest ends must be terminated with 120 Ω terminating resistors.

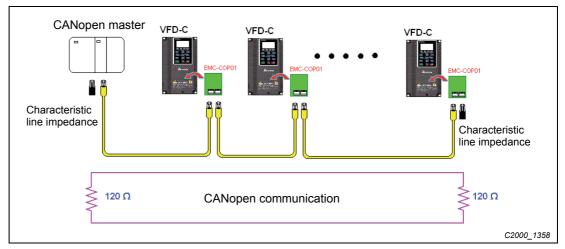


Fig. 15-3: Frequency inverter connection via CAN-Bus

RJ-45 pin definition

	PIN	Signal	Description
	1	CAN_H	CAN_H bus line (dominant high)
	2	CAN_L	CAN_L bus line (dominant low)
	3	CAN_GND	Ground / 0V /V-
8~1	6	CAN_GND	Ground / 0V /V-
plug			

Tab. 15-3: Pin assignment of the RJ45 sleeve for CAN-Bus connection

15.3 CANopen communication interface description

15.3.1 CANopen control mode selection

There are two control modes for CANopen; Pr. 09-40 set to 1 is the factory setting mode DS402 standard and Pr. 09-40 set to 0 is Delta's standard setting mode.

Actually, there are two control modes according to Delta's standard, one is the old control mode (Pr. 09-30 = 0). This control mode can only control the motor drive under frequency control. Another mode is a new standard (Pr. 09-30 = 1).

This new control mode allows the motor drive to be controlled under all sorts of mode. Currently, C2000 support speed, torque, position and home mode. The definition of relating control mode are:

CANopen		Control mode											
control		Speed	Т	orque	Pos	sition	н	ome					
mode selection	Index	Description	Index	Descrip- tion	Index	Descrip- tion	Index	Des- cription					
DS402 standard	6042-00	Target rotating speed (RPM)	6071-00	Target torque (%)	607A-00	Target position	_	_					
Pr. 09-40 = 1	_	_	6072-00	Max.torque limit (%)	_	_	_	_					
Delta stand- ard (Old definition) Pr. 09-40 = 1, Pr. 09-30 = 0	2020-02	Target rotating speed (Hz)	_	_	_	_	_	_					
Delta stand- ard (New definition) Pr. 09-40 = 0, Pr. 09-30 = 1	2060-03	Target rotating speed (Hz)	2060-07	Target torque (%)	2060-05	Target position	_	-					
	2060-04	Torque limit (%)	2060-08	Speed limit (Hz)	—	_	—	—					

Tab. 15-4: Indexes for target values and limits

CANopen control mode	Operation control				
selection	Index	Description			
DS402 standard	6040-00	Operation command			
Pr. 09-40 = 1	_	_			
Delta standard (Old definition) Pr. 09-40 = 1, Pr. 09-30 = 0	2020-01	Operation command			
Delta standard (New definition)	2060-01	Operation command			
Pr. 09-40 = 0, Pr. 09-30 = 1	_	_			

Tab. 15-5: Indexes for operation control instructions

CANopen control mode		Other
selection	Index	Description
DS402 standard	605A-00	Quick stop processing mode
Pr. 09-40 = 1	605C-00	Disable operation processing mode
Delta standard (Old definition) Pr. 09-40 = 1, Pr. 09-30 = 0	—	_
Delta standard (New definition)	—	—
Pr. 09-40 = 0, Pr. 09-30 = 1	_	—

Tab. 15-6: Indexes for other instructions

NOTE However, you can use some index regardless DS402 or Delta's standard. For example:

- Index which are defined as RO attributes.
- Index correspond to parameters such as (2000–200B-XX)
- Accelerating/decelerating index: 604F and 6050

15.3.2 DS402 standard control mode

Related set up of (by following DS402 standard)

If you want to use DS402 standard to control the motor drive, please follow the steps below:

- ① Wiring for hardware (refer to chapter 15-2 Wiring for CANopen)
- ② Operation source setting: set Pr. 00-21 to 3 for CANopen communication card control.
- ③ Frequency source setting: set Pr. 00.20 to 6. (Choose source of frequency command from CANopen setting.)
- ④ Source of torque setting is set by Pr. 11-33. (Choose source of torque command from CANopen setting.)
- (5) Position source setting: set Pr. 11-40 (Choose source of position command from CANopen setting.)
- 6 Set DS402 as control mode: Pr. 09-40 = 1
- ⑦ CANopen station setting: set Pr. 09-36 (Range of setting is 1–127. When Pr. 09-36 = 0, CANopen slave function is disabled.) (Note: If error arise (CAdE or CANopen memory error) as station setting is completed, press Pr. 00-02 = 7 for reset.)
- (a) CANopen baud rate setting: set Pr. 09.37 (CANBUS Baud Rate: 1M(0), 500K(1), 250K(2), 125K(3), 100K(4) and 50K(5))
- Set multiple input functions to Quick Stop (it can also be enable or disable, default setting is disable). If it is necessary to enable the function, set MI terminal to 53 in one of the following parameter: Pr. 02.01–Pr. 02.08 or Pr. 02.26–Pr. 02.31. (Note: This function is available in DS402 only.)

The status of the motor drive (by following DS402 standard)

According to the DS402 definition, the motor drive is divided into 3 blocks and 9 status as described below:

3 blocks

Power Disable: That means without PWM output.

Power Enable: That means with PWM output.

Fault: One or more than one error has occurred.

9 status

Start: Power On

Not ready to switch on: The motor drive is initiating.

Switch On Disable: When the motor drive finishes the initiation, it will be at this mode.

Ready to switch on: Warming up before running.

Switch On: The motor drive has the PWM output now, but the reference command is not effective.

Operate Enable: Able to control normally.

Quick Stop Active: When there is a Quick Stop request, you have to stop running the motor drive.

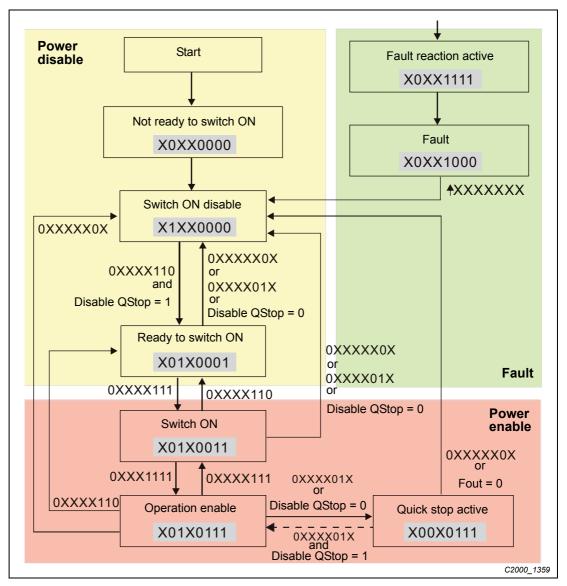
Fault Reaction Active: The motor drive detects conditions which might trigger error(s).

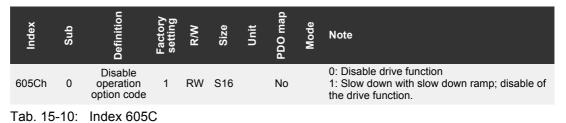
Fault: One or more errors has occurred to the motor drive.

Therefore, when the motor drive is turned on and finishes the initiation, it will remain at Ready to Switch on status. To control the operation of the motor drive, you need to change this status to Operate Enable status. The way to change it is to command the control word's bit 0–bit 3 and bit7 of the Index 6040H and to pair with Index Status Word (Status Word 0X6041). The control steps and index definition are described as below:

15-	-9	8		7	(6–4	3		2		1		0
Reser	rved	Halt	Fa	ult reset	Оре	eration	Enat operat		Quick sto	р	Enable voltage	Swi	tch ON
Tab. 1	5-7: Ir	ndex 60)40										
15–14	13–12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	Operation	Internal limit active	Target reached	Remote	Reserved	Warning	Switch on disabled	Quick stop	Voltage enabled	Fault	Operation enable	Switch on	Ready to switch on

Tab. 15-8: Index 6041




Fig. 15-4: Fault processing and status messages

Set command 6040 = 0xE, then set another command 6040 = 0xF. Then the motor drive can be switched to Operation Enable. The Index 605A decides the dashed line of Operation Enable when the control mode changes from Quick Stop Active (dotted line). (When the setting value is 0–2, this dashed line is active. But when the setting value of 605A is not 0–2, once he motor derive is switched to Quick Stop Active, it will not be able to switch back to Operation Enable.)

Index	Sub	Definition	Factory setting	R/W	Size	Unit	PDO map	Mode	Note
									0: disable drive function.
									1: slow down on slow down ramp.
									2: slow down on quick stop ramp.
605Ah	0	Quick stop option code	2	RW	S16		No		5: slow down on slow down ramp and stay in QUICK STOP.
									6: slow down on quick stop ramp and stay in QUICK STOP.
									7: slow down on the current limit and stay in QUICK STOP.

Tab. 15-9: Index 605A

Besides, when the control section switches from Power Enable to Power Disable, use 605C to define parking method.

Various mode control method (by following DS402 standard)

Control mode of C2000, supporting speed, torque, position and home control are described as below.

Speed mode

- ① Let be at the speed control mode: Set Index 6060 to 2.
- ② Switch to Operation Enable mode: Set 6040 = 0xE, then set 6040 = 0xF.
- ③ To set target frequency: Set target frequency of 6042, since the operation unit of 6042 is rpm, there is a transformation:

$$n = f \times \frac{120}{p}$$

n: rotation speed (rpm) (rounds/minute) P: motor's pole number (Pole) f: rotation frequency (Hz)

For example:

Set 6042H = 1500 (rpm), if the motor drive's pole number is 4 (Pr. 05-04 or Pr. 05-16), then the motor drive's operation frequency is 1500 (120/4) = 50Hz. Besides, the 6042 is defined as a signed operation. The plus or minus sign means to rotate clockwise or counter clockwise

④ To set acceleration and deceleration: Use 604F (Acceleration) and 6050 (Deceleration).

(5) Trigger an ACK signal: In the speed control mode, the bit 6–4 of Index 6040 needs to be controlled. It is defined as below:

		Index 6040		SUM
	Bit 6	Bit 5	Bit 4	50M
.	1	0	1	Locked at the current signal.
Speed mode (Index 6060=2)	1	1	1	Run to reach targeting signal.
		Other		Decelerate to 0 Hz.

Tab. 15-11: Speed control with bits 6 to 4 at index 6040

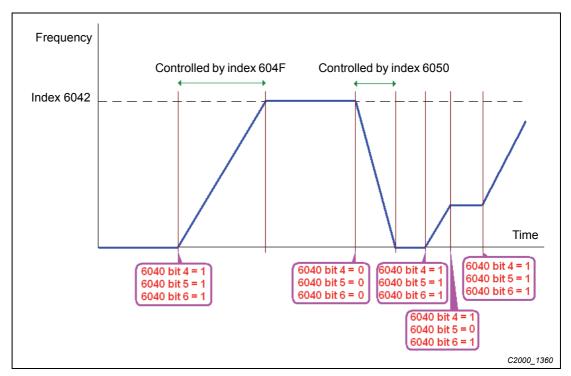


Fig. 15-5: Example for speed control

NOTES

■ To know the current rotation speed, read 6043. (unit: rpm)

To know if the rotation speed can reach the targeting value; read bit 10 of 6041. (0: Not reached; 1: Reached)

Torque mode

- ① Let be at the torque control mode: Set Index6060 = 4.
- ② Switch the current mode to Operation Enable, set 6040 = 0xE, then set 6040 = 0xF.
- ③ To set targeting torque: Set 6071 as targeting torque and 6072 as the largest output torque.

Torque mode		Index 6040		SUM
(Index 6060 = 4)	Bit 6	Bit 5	Bit 4	301
	х	Х	х	RUN to reach the targeting torque.

Tab. 15-12: Status of bits 6 to 4 is not relevant

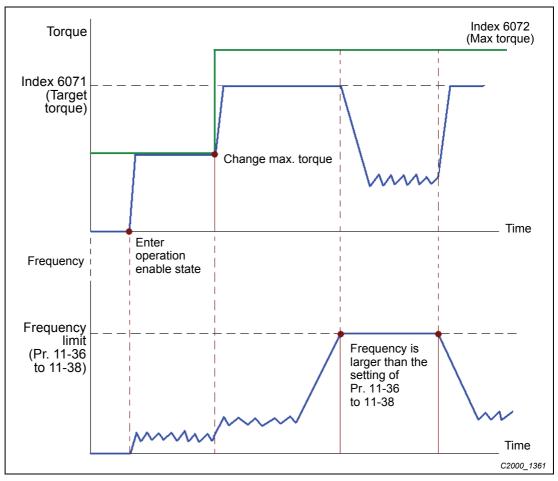


Fig. 15-6: Example for torque control

NOTES

- The standard DS402 doesn't regulate the highest speed limit. Therefore if the motor drive defines the control mode of DS402, the highest speed will go with the setting of Pr. 11-36 to Pr. 11-38.
- To know the current torque, read 6077 (unit: 0.1 %).
- To know if reaching the targeting torque, read bit 10 of 6041. (0: Not reached; 1: Reached)

Position mode

- Set the parameter of a trapezium curve to define position control (Pr. 11-43 Max. Frequency of Point- to-Point Position Control, Pr. 11-44 Accel. Time of Point-to Point Position Control and Pr. 11-45 Decel. Time of Point-to Point Position Control)
- (2) Let be at the position control mode: Then set Index 6060 = 1.
- ③ Switch the current mode to Operation Enable, set 6040 = 0xE and then set 6040 = 0xF.
- ④ To set targeting position: set 607A as the targeting position.
- (5) Trigger an ACK signal: Set 6040 = 0x0F then set 6040 = 0x1F. (Bit4 changes from 0 to 1).

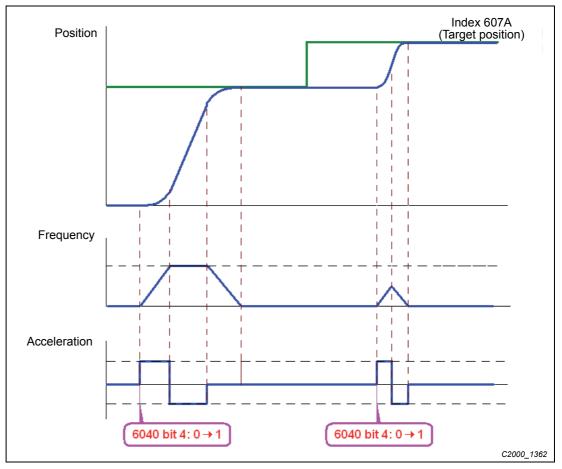


Fig. 15-7: Example for torque control

NOTES

- To know the current position, read 6064.
- To know if the position reaches the targeting position, read bit 10 of 6041 (0: reached, 1: Not reached.
- To know if the position is over the limited area, read bit 11 of 6041 (0: in the limit, 1: over the limit).

Home mode

- 1 Set Pr. 00-12 to choose a home method.
- ② Set the left and right limits correspond to the position of MI terminal.
- (3) To switch control mode to Home mode: Set Index 6060 = 6.
- ④ To switch from current mode to Operation Enable: Set 6040 = 0xE, then set 6040 = 0xF.
- (5) To trigger an ACK signal: Set 6040 = 0x0F, then set 6040 = 0x1F (Bit4 changes from 0 to 1 and the motor drive will be back to home.)

NOTE

To know if the home mode is completed, read bit 12 of 6041. (0: reached, 1: Not reached)

15.3.3 By using Delta standard (Old definition, only support speed mode)

Various mode control method (by following Delta standard, old definition)

If you want to use the Delta standard (Old definition) to control the motor drive, please follow the steps below:

- ① Wiring for hardware (Refer to chapter 15.2 Wiring for CANopen)
- ② Operation source setting: set Pr. 00-21 to 3 for CANopen communication card control.
- ③ Frequency source setting: set Pr. 00.20 to 6. (Choose source of frequency command from CANopen setting.)
- ④ Set Delta Standard (Old definition, only support speed mode) as control mode: Pr. 09-40
 = 0 and 09-30 = 0.
- (5) CANopen station setting: set Pr. 09-36 (Range of setting is 1–127. When Pr. 09-36 = 0, CANopen slave function is disabled.) (Note: If error arised (CAdE or CANopen memory error) as station setting is completed, press Pr. 00-02 = 7 for reset.)
- 6 CANopen baud rate setting: set Pr. 09.37 (CANBUS Baud Rate: 1M(0), 500K(1), 250K(2), 125K(3), 100K(4) and 50K(5)).

By speed mode

- ① Set the target frequency: Set 2020-02, the unit is Hz, with a number of 2 decimal places. For example 1000 is 10.00.
- ② Operation control: Set 2020-01 = 0002H for Running, and set 2020-01 = 0001H for Stopping.

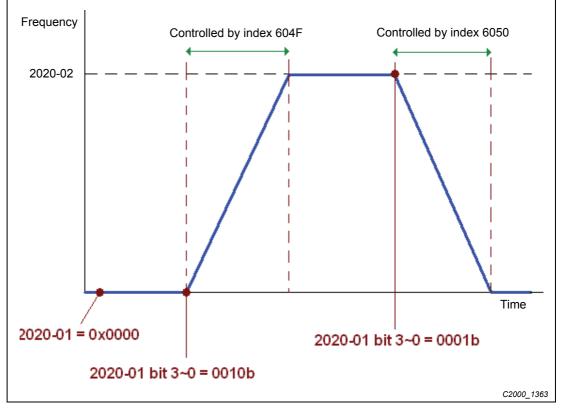


Fig. 15-8: Speed control

15.3.4 By using Delta standard (New definition)

Related set up of (Delta new standard)

If you want to use the Delta standard (New definition) to control the motor drive, please follow the steps below:

- ① Wiring for hardware (Refer to chapter 15.2 Wiring for CANopen).
- ② Operation source setting: set Pr. 00-21 to 3 for CANopen communication card control.
- ③ Frequency source setting: set Pr. 00.20 to 6. (Choose source of frequency command from CANopen setting.)
- ④ Source of torque setting is set by Pr. 11-33. (Choose source of torque command from CANopen setting.)
- (5) Position source setting: set Pr. 11-40 = 3 (Choose source of position command from CANopen setting.)
- 6 Set Delta Standard (New definition) as control mode: Pr. 09-40 = 0 and 09-30 = 1.
- ⑦ CANopen station setting: set Pr. 09-36 (Range of setting is 1–127. When Pr. 09-36=0, CANopen slave function is disabled.)
- NOTE

If error arised (CAdE or CANopen memory error) as station setting is completed, press Pr. 00-02=7 for reset.)

(a) CANopen baud rate setting: set Pr. 09.37 (CANBUS Baud Rate: 1M(0), 500K(1), 250K(2), 125K(3), 100K(4) and 50K(5)

Various mode control method (Delta new standard)

Speed mode

- ① Let be at the speed control mode: Set Index 6060 = 2.
- ② Set the target frequency: set 2060-03, unit is Hz, with a number of 2 decimal places. For example 1000 is 10.00Hz.
- ③ Operation control: set 2060-01 = 0080H for Server on, and set 2060-01 = 0081H for Running.

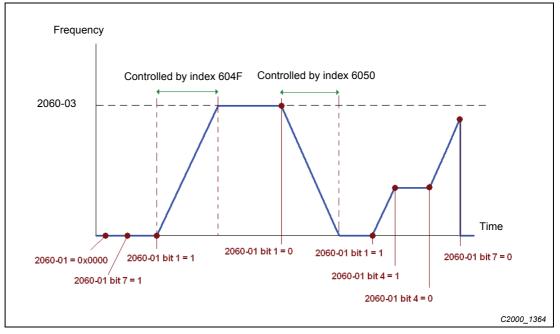


Fig. 15-9: Example for speed control by the new Delta standard

Torque mode

- ① Let be at torque control mode: set Index 6060 = 4.
- ② Set target torque: set 2060-07, unit is %, a number of 1 decimal place. For example 100 is 10.0 %.
- ③ Operation control: Set 2060-01 = 0080H for Server on, then the motor drive will start to run to reach target torque.

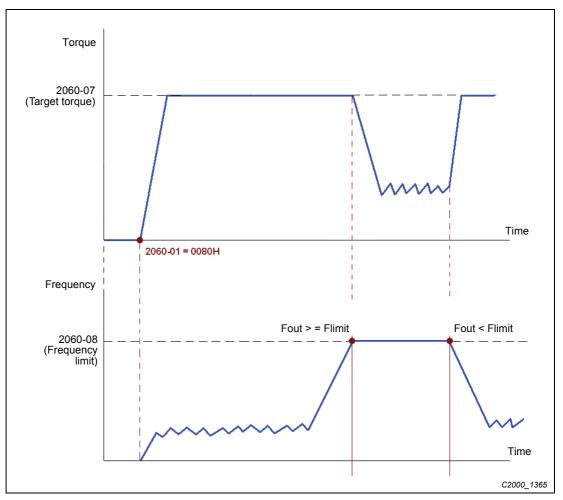


Fig. 15-10: Example for torque control by the new Delta standard

NOTES

- To know what the current torque is, read 2061-07 (unit is 0.1 %).
- To know whether the torque has reached the setting value, read the bit 0 of 2061-01 (0: Not reached, 1: Reached).
- When doing torque output and if the motor drive's speed reaches the speed limit, the output torque will decrease to ensure the speed is under the limit.

Position mode

- Set the parameter of a trapezium curve to define position control (Pr. 11-43 Max. Position Control Frequency), Pr. 11-44 Accel. Time of Position Control, Pr. 11-45 Decel. Time of Position Control)
- (2) Let be at the position control mode, set Index 6060 = 1.
- ③ Set 2060-01 = 0080h, then motor drive will have server on.

- ④ Set target position: set 2060-05 = target position.
- (5) Set 2060-01 =0081h to trigger the motor drive to run to the target position.
- (6) To move to another position, simply repeat step (3) to (5).

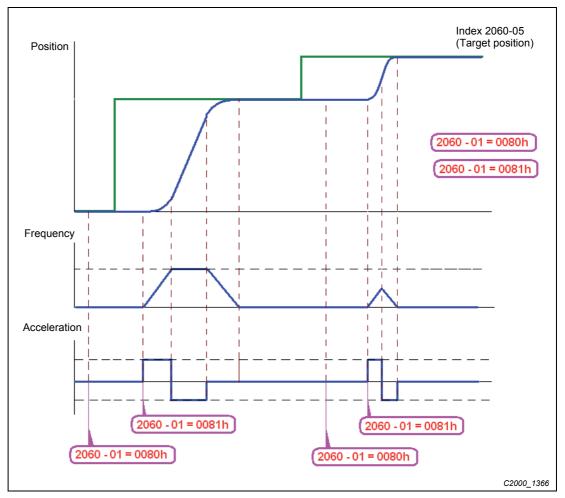


Fig. 15-11: Example for position control by the new Delta standard

NOTES

To know the current position, read 2061-05.

■ To know if reaching the target position, read bit 0 of 2061 (0: Not reached, 1: Reached).

Home mode

- ① Set Pr. 00-12 to choose how to return home.
- ② Set the left and right limits correspond to the position of MI terminal.
- ③ To switch C2000 control mode to Home mode: Set Index 6060 = 6.
- ④ Set 2060-01 = 0080h, then motor drive will have server on.
- (5) Set the ACK signal: set 2060-01 = 0081h, then the motor drive will start to go back home.
- **NOTE** To know if returning home is completed, read bit 12 of 6041 (0: Not reached, 1: Reached).

15.3.5 DI/DO AI AO are controlled via CANopen

To control the DO AO of the motor drive through CANopen, follow the steps below:

- ① To set the DO to be controlled, define this DO to be controlled by CANopen. For example, set Pr. 02-14 to control RY2.
- (2) To set the DO to be controlled, define this AO to be controlled by CANopen. For example, set Pr. 03-23 to control AFM2.
- ③ To control the mapping index of CANopen. If you want to control DO, then you will need to control Index2026-41. If you want to control AO, then you will need to control 2026-A1 or 2026-A2. If you want to set RY2 as ON, set the bit 1 of Index 2026-41 = 1, then RY2 will output 1. If you want to control AFM2 output = 50.00 %, then you will need to set Index 2026-A2 = 5000, then AFM2 will output 50 %.

FWD == R 2026-01 bit 0 REV == R 2026-01 bit 1 MI 1 == R 2026-01 bit 3 MI 2 == R 2026-01 bit 3 MI 3 == R 2026-01 bit 4 MI 4 == R 2026-01 bit 4 MI 5 == R 2026-01 bit 5 MI 5 == R 2026-01 bit 7 MI 5 == R 2026-01 bit 7 MI 7 == R 2026-01 bit 7 MI 7 == R 2026-01 bit 7 MI 7 == R 2026-01 bit 7 MI 10 == R 2026-01 bit 7 MI 11 == R 2026-01 bit 7 MI 12 == R 2026-01 bit 7 MI 13 == R 2026-01 bit 7 MI 14 == R 2026-01 bit 7 MI 14 == R 2026-10 bit 7 MO 1 <td< th=""><th></th><th>Terminal</th><th>Related parameters</th><th>R/W</th><th>Mapping index</th></td<>		Terminal	Related parameters	R/W	Mapping index
MI 1 == R 2026-01 bit 2 MI 2 == R 2026-01 bit 3 MI 3 == R 2026-01 bit 4 MI 4 == R 2026-01 bit 5 MI 5 == R 2026-01 bit 6 MI 6 == R 2026-01 bit 7 MI 7 == R 2026-01 bit 7 MI 10 == R 2026-01 bit 7 MI 11 == R 2026-01 bit 10 MI 11 == R 2026-01 bit 11 MI 12 == R 2026-01 bit 12 MI 13 == R 2026-01 bit 13 MI 14 == R 2026-01 bit 13 MI 15 == R 2026-01 bit 14 MI 14 == R 2026-01 bit 13 MO1		FWD	==	R	2026-01 bit 0
MI 2 == R 2026-01 bit 3 MI 3 == R 2026-01 bit 4 MI 4 == R 2026-01 bit 5 MI 5 == R 2026-01 bit 6 MI 6 == R 2026-01 bit 7 MI 7 == R 2026-01 bit 7 MI 7 == R 2026-01 bit 7 MI 10 == R 2026-01 bit 7 MI 10 == R 2026-01 bit 7 MI 10 == R 2026-01 bit 7 MI 11 == R 2026-01 bit 10 MI 11 == R 2026-01 bit 11 MI 12 == R 2026-01 bit 12 MI 13 == R 2026-01 bit 13 MI 14 == R 2026-01 bit 13 MI 15 == R 2026-01 bit 14 MI 15 == R 2026-01 bit 15 RY1 P2-13 = 50 RW 2026-41 bit 3		REV	==	R	2026-01 bit 1
MI 3 == R 2026-01 bit 4 MI 4 == R 2026-01 bit 5 MI 5 == R 2026-01 bit 6 MI 6 == R 2026-01 bit 7 MI 7 == R 2026-01 bit 7 MI 7 == R 2026-01 bit 7 MI 10 == R 2026-01 bit 9 MI 10 == R 2026-01 bit 10 MI 11 == R 2026-01 bit 11 MI 12 == R 2026-01 bit 12 MI 13 == R 2026-01 bit 13 MI 14 == R 2026-01 bit 14 MI 15 == R 2026-01 bit 14 MI 14 == R 2026-01 bit 15 RY1 P2-13 = 50 RW 2026-01 bit 15 RY2 P2-14 = 50 RW 2026-41 bit 10 MO1 P2-16 = 50 RW 2026-41 bit 3 MO2 P2-17 = 50 RW 2026-41 bit 5 <td></td> <td>MI 1</td> <td>==</td> <td>R</td> <td>2026-01 bit 2</td>		MI 1	==	R	2026-01 bit 2
MI 4 == R 2026-01 bit 5 MI 5 == R 2026-01 bit 6 MI 6 == R 2026-01 bit 7 MI 7 == R 2026-01 bit 8 MI 8 == R 2026-01 bit 9 MI 10 == R 2026-01 bit 10 MI 11 == R 2026-01 bit 11 MI 12 == R 2026-01 bit 12 MI 13 == R 2026-01 bit 12 MI 13 == R 2026-01 bit 13 MI 14 == R 2026-01 bit 14 MI 15 == R 2026-01 bit 14 MI 14 == R 2026-01 bit 15 RY1 P2-13 = 50 RW 2026-41 bit 0 RY2 P2-14 = 50 RW 2026-41 bit 1 P2-15 = 50 RW 2026-41 bit 3 MO2 P2-17 = 50 RW 2026-41 bit 3 MO3 P2-18 = 50 RW 2026-41 bit 3		MI 2	==	R	2026-01 bit 3
MI 5 == R 2026-01 bit 6 MI 6 == R 2026-01 bit 7 MI 7 == R 2026-01 bit 8 MI 8 == R 2026-01 bit 9 MI 10 == R 2026-01 bit 10 MI 11 == R 2026-01 bit 10 MI 12 == R 2026-01 bit 11 MI 12 == R 2026-01 bit 12 MI 13 == R 2026-01 bit 12 MI 13 == R 2026-01 bit 13 MI 14 == R 2026-01 bit 14 MI 15 == R 2026-01 bit 14 MI 15 == R 2026-01 bit 15 RY1 P2-13 = 50 RW 2026-41 bit 0 RY2 P2-14 = 50 RW 2026-41 bit 2 MO1 P2-16 = 50 RW 2026-41 bit 3 MO2 P2-17 = 50 RW 2026-41 bit 3 MO3 P2-18 = 50 RW 2026-41 bit 5 <td></td> <td>MI 3</td> <td>==</td> <td>R</td> <td>2026-01 bit 4</td>		MI 3	==	R	2026-01 bit 4
DI Mi 6 == R 2026-01 bit 7 Mi 7 == R 2026-01 bit 8 Mi 8 == R 2026-01 bit 9 Mi 10 == R 2026-01 bit 10 Mi 11 == R 2026-01 bit 11 Mi 12 == R 2026-01 bit 12 Mi 13 == R 2026-01 bit 13 Mi 14 == R 2026-01 bit 13 Mi 13 == R 2026-01 bit 14 Mi 14 == R 2026-01 bit 15 Mi 15 == R 2026-01 bit 15 RY1 P2-13 = 50 RW 2026-41 bit 0 RY2 P2-14 = 50 RW 2026-41 bit 1 P2-15 = 50 RW 2026-41 bit 2 M01 P2-16 = 50 RW 2026-41 bit 3 M02 P2-17 = 50 RW 2026-41 bit 4 DO M03 P2-18 = 50 RW 2026-41 bit 5 M04 P2-19 = 50 RW </td <td></td> <td>MI 4</td> <td>==</td> <td>R</td> <td>2026-01 bit 5</td>		MI 4	==	R	2026-01 bit 5
DI MI 7 == R 2026-01 bit 8 MI 8 == R 2026-01 bit 10 MI 10 == R 2026-01 bit 10 MI 11 == R 2026-01 bit 11 MI 12 == R 2026-01 bit 12 MI 13 == R 2026-01 bit 13 MI 14 == R 2026-01 bit 14 MI 15 == R 2026-01 bit 15 RY1 P2-13 = 50 RW 2026-01 bit 15 RY2 P2-14 = 50 RW 2026-41 bit 0 RV2 P2-15 = 50 RW 2026-41 bit 1 RV2 P2-14 = 50 RW 2026-41 bit 2 M01 P2-16 = 50 RW 2026-41 bit 3 M02 P2-17 = 50 RW 2026-41 bit 4 M03 P2-18 = 50 RW 2026-41 bit 5 M04 P2-19 = 50 RW 2026-41 bit 6 M05 P2-20 = 50 RW 2026-41 bit 7 M06 P2-21 = 5		MI 5	==	R	2026-01 bit 6
MI 7 == R 2026-01 bit 8 MI 8 == R 2026-01 bit 9 MI 10 == R 2026-01 bit 10 MI 11 == R 2026-01 bit 11 MI 12 == R 2026-01 bit 12 MI 13 == R 2026-01 bit 12 MI 13 == R 2026-01 bit 13 MI 14 == R 2026-01 bit 14 MI 15 == R 2026-01 bit 15 RY1 P2-13 = 50 RW 2026-41 bit 0 RY2 P2-14 = 50 RW 2026-41 bit 1 RY2 P2-15 = 50 RW 2026-41 bit 2 MO1 P2-16 = 50 RW 2026-41 bit 3 MO2 P2-17 = 50 RW 2026-41 bit 5 MO4 P2-19 = 50 RW 2026-41 bit 5 MO4 P2-19 = 50 RW 2026-41 bit 6 MO5 P2-20 = 50 RW 2026-41 bit 7 MO6 P2-21 = 50 RW		MI 6	==	R	2026-01 bit 7
MI 10 == R 2026-01 bit 10 MI 11 == R 2026-01 bit 11 MI 12 == R 2026-01 bit 12 MI 13 == R 2026-01 bit 13 MI 14 == R 2026-01 bit 13 MI 14 == R 2026-01 bit 14 MI 15 == R 2026-01 bit 15 RY1 P2-13 = 50 RW 2026-41 bit 0 RY2 P2-14 = 50 RW 2026-41 bit 1 P2-15 = 50 RW 2026-41 bit 2 MO1 P2-16 = 50 RW 2026-41 bit 3 MO2 P2-17 = 50 RW 2026-41 bit 4 MO3 P2-18 = 50 RW 2026-41 bit 5 MO4 P2-19 = 50 RW 2026-41 bit 5 MO4 P2-19 = 50 RW 2026-41 bit 6 MO5 P2-20 = 50 RW 2026-41 bit 7 MO6 P2-21 = 50 RW 2026-41 bit 8 MO7 P2-22 = 50	DI	MI 7	==	R	2026-01 bit 8
MI 11 == R 2026-01 bit 11 MI 12 == R 2026-01 bit 12 MI 13 == R 2026-01 bit 13 MI 14 == R 2026-01 bit 14 MI 15 == R 2026-01 bit 14 MI 15 == R 2026-01 bit 15 RY1 P2-13 = 50 RW 2026-41 bit 0 RY2 P2-14 = 50 RW 2026-41 bit 1 P2-15 = 50 RW 2026-41 bit 3 1 MO1 P2-16 = 50 RW 2026-41 bit 3 MO2 P2-17 = 50 RW 2026-41 bit 4 MO3 P2-18 = 50 RW 2026-41 bit 5 MO4 P2-19 = 50 RW 2026-41 bit 6 MO5 P2-20 = 50 RW 2026-41 bit 7 MO6 P2-21 = 50 RW 2026-41 bit 7 MO6 P2-21 = 50 RW 2026-41 bit 8 MO7 P2-22 = 50 RW 2026-41 bit 9 MO7 P2-23 = 50		MI 8	==	R	2026-01 bit 9
Mi 12 == R 2026-01 bit 12 Mi 13 == R 2026-01 bit 13 Mi 14 == R 2026-01 bit 14 Mi 15 == R 2026-01 bit 15 RY1 P2-13 = 50 RW 2026-01 bit 15 RY1 P2-13 = 50 RW 2026-41 bit 0 RY2 P2-14 = 50 RW 2026-41 bit 1 P2-15 = 50 RW 2026-41 bit 2 2026-41 bit 3 M01 P2-16 = 50 RW 2026-41 bit 3 M02 P2-17 = 50 RW 2026-41 bit 4 M03 P2-18 = 50 RW 2026-41 bit 5 M04 P2-19 = 50 RW 2026-41 bit 6 M05 P2-20 = 50 RW 2026-41 bit 7 M06 P2-21 = 50 RW 2026-41 bit 9 M07 P2-22 = 50 RW 2026-41 bit 9 M07 P2-23 = 50 RW 2026-41 bit 10 AI ACI == R Value of 2026-61 <t< td=""><td></td><td>MI 10</td><td>==</td><td>R</td><td>2026-01 bit 10</td></t<>		MI 10	==	R	2026-01 bit 10
Mi 13 == R 2026-01 bit 13 Mi 14 == R 2026-01 bit 14 Mi 15 == R 2026-01 bit 15 RY1 P2-13 = 50 RW 2026-01 bit 15 RY1 P2-13 = 50 RW 2026-41 bit 0 RY2 P2-14 = 50 RW 2026-41 bit 1 P2-15 = 50 RW 2026-41 bit 2 10 MO1 P2-16 = 50 RW 2026-41 bit 3 MO2 P2-17 = 50 RW 2026-41 bit 4 MO2 P2-17 = 50 RW 2026-41 bit 5 MO2 P2-18 = 50 RW 2026-41 bit 5 MO3 P2-18 = 50 RW 2026-41 bit 6 MO5 P2-20 = 50 RW 2026-41 bit 7 MO6 P2-21 = 50 RW 2026-41 bit 7 MO6 P2-22 = 50 RW 2026-41 bit 7 MO6 P2-22 = 50 RW 2026-41 bit 9 MO7 P2-23 = 50 RW 2026-41 bit 10 AVI		MI 11	==	R	2026-01 bit 11
$ \begin{array}{c c c c c c } \hline MI 14 & == & R & 2026-01 \ bit 14 \\ \hline MI 15 & == & R & 2026-01 \ bit 15 \\ \hline RY1 & P2-13 = 50 & RW & 2026-41 \ bit 0 \\ \hline RY2 & P2-14 = 50 & RW & 2026-41 \ bit 1 \\ \hline P2-15 = 50 & RW & 2026-41 \ bit 2 \\ \hline MO1 & P2-16 = 50 & RW & 2026-41 \ bit 3 \\ \hline MO2 & P2-17 = 50 & RW & 2026-41 \ bit 5 \\ \hline MO2 & P2-17 = 50 & RW & 2026-41 \ bit 5 \\ \hline MO4 & P2-19 = 50 & RW & 2026-41 \ bit 6 \\ \hline MO5 & P2-20 = 50 & RW & 2026-41 \ bit 7 \\ \hline MO6 & P2-21 = 50 & RW & 2026-41 \ bit 7 \\ \hline MO6 & P2-21 = 50 & RW & 2026-41 \ bit 7 \\ \hline MO6 & P2-22 = 50 & RW & 2026-41 \ bit 7 \\ \hline MO7 & P2-22 = 50 & RW & 2026-41 \ bit 9 \\ \hline MO7 & P2-22 = 50 & RW & 2026-41 \ bit 9 \\ \hline MO7 & P2-23 = 50 & RW & 2026-41 \ bit 10 \\ \hline AVI & == & R & Value of 2026-61 \\ \hline AUI & == & R & Value of 2026-62 \\ \hline AUI & == & R & Value of 2026-63 \\ \hline AO & AFM1 & P3-20 = 20 & RW & Value of 2026-A1 \\ \hline \end{array} $		MI 12	==	R	2026-01 bit 12
MI 15==R2026-01 bit 15RY1P2-13 = 50RW2026-41 bit 0RY2P2-14 = 50RW2026-41 bit 1P2-15 = 50RW2026-41 bit 2MO1P2-16 = 50RW2026-41 bit 3MO2P2-17 = 50RW2026-41 bit 4MO3P2-18 = 50RW2026-41 bit 5MO4P2-19 = 50RW2026-41 bit 6MO5P2-20 = 50RW2026-41 bit 7MO6P2-21 = 50RW2026-41 bit 8MO7P2-22 = 50RW2026-41 bit 10AV==RValue of 2026-61AIACI==RValue of 2026-62AUI==RValue of 2026-63AOAFM1P3-20 = 20RWValue of 2026-A1		MI 13	==	R	2026-01 bit 13
RY1 P2-13 = 50 RW 2026-41 bit 0 RY2 P2-14 = 50 RW 2026-41 bit 1 P2-15 = 50 RW 2026-41 bit 2 MO1 P2-16 = 50 RW 2026-41 bit 3 MO2 P2-17 = 50 RW 2026-41 bit 4 MO2 P2-17 = 50 RW 2026-41 bit 5 MO3 P2-18 = 50 RW 2026-41 bit 5 MO4 P2-19 = 50 RW 2026-41 bit 6 MO5 P2-20 = 50 RW 2026-41 bit 7 MO6 P2-21 = 50 RW 2026-41 bit 7 MO6 P2-22 = 50 RW 2026-41 bit 7 MO6 P2-22 = 50 RW 2026-41 bit 9 MO7 P2-23 = 50 RW 2026-41 bit 9 MO7 P2-23 = 50 RW 2026-41 bit 10 AI ACI == R Value of 2026-61 AI ACI == R Value of 2026-62 AUI == R Value of 2026-63 <t< td=""><td></td><td>MI 14</td><td>==</td><td>R</td><td>2026-01 bit 14</td></t<>		MI 14	==	R	2026-01 bit 14
RY2 P2-14 = 50 RW 2026-41 bit 1 P2-15 = 50 RW 2026-41 bit 2 2026-41 bit 2 M01 P2-16 = 50 RW 2026-41 bit 3 M02 P2-17 = 50 RW 2026-41 bit 4 DO M03 P2-18 = 50 RW 2026-41 bit 5 M04 P2-19 = 50 RW 2026-41 bit 6 M05 P2-20 = 50 RW 2026-41 bit 7 M06 P2-21 = 50 RW 2026-41 bit 7 M06 P2-22 = 50 RW 2026-41 bit 8 M07 P2-22 = 50 RW 2026-41 bit 9 M07 P2-23 = 50 RW 2026-41 bit 10 AVI == R Value of 2026-61 AI ACI == R Value of 2026-62 AUI == R Value of 2026-63 AVI == R Value of 2026-63 AUI == R Value of 2026-63		MI 15	==	R	2026-01 bit 15
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		RY1	P2-13 = 50	RW	2026-41 bit 0
P2-15 = 50 RW 2026-41 bit 2 MO1 P2-16 = 50 RW 2026-41 bit 3 MO2 P2-17 = 50 RW 2026-41 bit 4 DO MO3 P2-18 = 50 RW 2026-41 bit 5 MO4 P2-19 = 50 RW 2026-41 bit 6 MO5 P2-20 = 50 RW 2026-41 bit 7 MO6 P2-21 = 50 RW 2026-41 bit 8 MO7 P2-22 = 50 RW 2026-41 bit 9 MO7 P2-22 = 50 RW 2026-41 bit 9 MO7 P2-22 = 50 RW 2026-41 bit 9 MO7 P2-23 = 50 RW 2026-41 bit 9 MO7 P2-23 = 50 RW 2026-41 bit 10 AI ACI == R Value of 2026-61 AI ACI == R Value of 2026-62 AUI == R Value of 2026-63 AFM1 P3-20 = 20 RW Value of 2026-A1			P2-14 = 50	RW	2026-41 bit 1
MO2 P2-17 = 50 RW 2026-41 bit 4 DO MO3 P2-18 = 50 RW 2026-41 bit 5 MO4 P2-19 = 50 RW 2026-41 bit 6 MO5 P2-20 = 50 RW 2026-41 bit 7 MO6 P2-21 = 50 RW 2026-41 bit 8 MO7 P2-22 = 50 RW 2026-41 bit 9 MO7 P2-22 = 50 RW 2026-41 bit 9 MO7 P2-23 = 50 RW 2026-41 bit 10 AVI == R Value of 2026-61 AI ACI == R Value of 2026-62 AUI == R Value of 2026-62 AUI == R Value of 2026-63 AO AFM1 P3-20 = 20 RW Value of 2026-A1		RT2	P2-15 = 50	RW	2026-41 bit 2
DO MO3 P2-18 = 50 RW 2026-41 bit 5 MO4 P2-19 = 50 RW 2026-41 bit 6 MO5 P2-20 = 50 RW 2026-41 bit 7 MO6 P2-21 = 50 RW 2026-41 bit 8 MO7 P2-22 = 50 RW 2026-41 bit 9 MO7 P2-22 = 50 RW 2026-41 bit 10 MO7 P2-23 = 50 RW 2026-41 bit 10 AVI == R Value of 2026-61 AI ACI == R Value of 2026-62 AUI == R Value of 2026-63 AO AFM1 P3-20 = 20 RW Value of 2026-A1		MO1	P2-16 = 50	RW	2026-41 bit 3
MO4 P2-19 = 50 RW 2026-41 bit 6 MO5 P2-20 = 50 RW 2026-41 bit 7 MO6 P2-21 = 50 RW 2026-41 bit 8 MO7 P2-22 = 50 RW 2026-41 bit 9 MO7 P2-23 = 50 RW 2026-41 bit 10 AVI == R Value of 2026-61 AU == R Value of 2026-62 AUI == R Value of 2026-62 AUI == R Value of 2026-63 AO AFM1 P3-20 = 20 RW Value of 2026-A1		MO2	P2-17 = 50	RW	2026-41 bit 4
MO5 P2-20 = 50 RW 2026-41 bit 7 MO6 P2-21 = 50 RW 2026-41 bit 8 MO7 P2-22 = 50 RW 2026-41 bit 9 MO7 P2-23 = 50 RW 2026-41 bit 10 AI AVI == R Value of 2026-61 AU == R Value of 2026-62 AUI == R Value of 2026-62 AUI == R Value of 2026-63 AO AFM1 P3-20 = 20 RW Value of 2026-A1	DO	MO3	P2-18 = 50	RW	2026-41 bit 5
MO6 P2-21 = 50 RW 2026-41 bit 8 MO7 P2-22 = 50 RW 2026-41 bit 9 MO7 P2-23 = 50 RW 2026-41 bit 10 AVI == R Value of 2026-61 AU == R Value of 2026-62 AUI == R Value of 2026-63 AO AFM1 P3-20 = 20 RW Value of 2026-A1		MO4	P2-19 = 50	RW	2026-41 bit 6
MO7 P2-22 = 50 RW 2026-41 bit 9 MO7 P2-23 = 50 RW 2026-41 bit 10 AVI == R Value of 2026-61 AI ACI == R Value of 2026-62 AUI == R Value of 2026-62 AUI == R Value of 2026-63 AO AFM1 P3-20 = 20 RW Value of 2026-A1		MO5	P2-20 = 50	RW	2026-41 bit 7
MO7 P2-23 = 50 RW 2026-41 bit 10 AVI == R Value of 2026-61 AI ACI == R Value of 2026-62 AUI == R Value of 2026-63 AO AFM1 P3-20 = 20 RW Value of 2026-A1		MO6	P2-21 = 50	RW	2026-41 bit 8
AVI == R Value of 2026-61 AI ACI == R Value of 2026-62 AUI == R Value of 2026-63 AO AFM1 P3-20 = 20 RW Value of 2026-A1		MO7	P2-22 = 50	RW	2026-41 bit 9
AI ACI == R Value of 2026-62 AUI == R Value of 2026-63 AO AFM1 P3-20 = 20 RW Value of 2026-A1		MO7	P2-23 = 50	RW	2026-41 bit 10
AUI == R Value of 2026-63 AO AFM1 P3-20 = 20 RW Value of 2026-A1		AVI	==	R	Value of 2026-61
AFM1 P3-20 = 20 RW Value of 2026-A1	AI	ACI	==	R	Value of 2026-62
AO		AUI	==	R	Value of 2026-63
AFM2 P3-23 = 20 RW Value of 2026-A2	40	AFM1	P3-20 = 20	RW	Value of 2026-A1
	70	AFM2	P3-23 = 20	RW	Value of 2026-A2

Tab. 15-13: Mapping table of CANopen DI, DO, AI, AO

15.4 CANopen[®] supporting index

15.4.1 C2000 index

Parameter index corresponds to each other as following:

	Indexsub-index2000H + Groupmember+1						
EXAMPLE	Pr. 10.15 (Encoder Slip Error Treatment)						
	Group member 10 (0AH) — 15 (0FH)						
	Index = 2000H + 0AH = 200A						
	Sub Index = 0FH + 1H = 10H						

15.4.2 C2000 control index

Index	Sub	Definition	Factory	D/W	Size		Note
IIIUEA			setting				NOLE
	0	Number	3	R	U8		00B: Disable
							01B: Stop
						Bit 1–0	10B: Disable
							11B: JOG Enable
						Bit 3–2	Reserved
							00B: Disable
						Bit 5–4	01B: Direction forward
							10B: Reverse 11B: Switch direction
							00B: 1 st step Accel. /Decel.
							01B: 2 nd step Accel. /Decel.
						Bit 7–6	10B: 3 rd step Accel. /Decel.
							11B: 4 th step Accel. /Decel.
							0000B: Master speed
							0001B: 1 st step speed
							0010B: 2 nd step speed
							0011B: 3 rd step speed
							0100B: 4 th step speed
							0101B: 5 th step speed
	1	Control word	0	RW	U16		0110B: 6 th step speed
2020H							0111B: 7 th step speed
						Bit11–8	1000B: 8 th step speed
							1001B: 9 th step speed
							1010B: 10 th step speed
							1011B: 11 th step speed
							1100B: 12 th step speed
							1101B: 13 th step speed
							1110B: 14 th step speed
							1111B: 15 th step speed
						Bit 12	1: Enable the function of Bit 6-11
							00B: No function
							01B: Operation command by the digital keypad
						Bit 14–13	10B: Operation command by Pr. 00-21 setting
							11B: Switch the source of operation command
						Bit 15	Reserved
	2	Freq. command (XXX.XXHz)	0	RW	U16		
						Bit 0	1: E.F. ON
	3	Other trigger	0	RW	U16	Bit 1	1: Reset
						Bit 15–2	Reserved

Tab. 15-14: Delta standard mode (Old definition) (1)

Index Sub Definition Parting setting of the setting of the seting of the seting of the setting of the setting of the seting of	Index	Sub	Definition	Factory	D/M	Sizo		Note
2021H Image: Image	index			setting				NOLE
2021H 2 status 0 R U16 006 stop 017 decision 018 waining for operation 008 stop 118 in operation 118 in operation 118 in operation 018 waining for operation 018 11 11								
2021H 2 status 0 R U16 018 idecelerate to stop 108: waiting of operation 2 status 0 R U16 118: in operation 118: in operation 2 status 0 R U16 118: witch from reverse running 108: switch from roverse running 108: switch from roverse running 2 status 0 R U16 118: reverse running 118: reverse running 118: reverse running 118: reverse running 118: reverse running 118: reverse running 118: reverse running 118: reverse running 118: reverse running 118: reverse running 118: reverse running 118: reverse running 118: reverse running 118: reverse running 118: reverse running 118: reverse running 118: reverse running 118: reverse running 118: reverse running 119: reverse running 119: reverse running 118: reverse running 118: reverse running 119: reverse running 119: reverse running 119: reverse running 119: reverse running 110: rorticel by communication 119: rev		1	Error code	0	R	U16		
 2021H 2 status 0 status<td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td>								
2021H 2 status 0 R U16 008: forward running 018: switch from reverse running 108: switch from roward running 108: switch from roward 108: switch from roward running 108: switch from roward 108: switch from roward 109: switch from roward 109: switch from roward 109: switch from roward 109: switch from roward 100: switch from roward 100: switch from roward 109: switch from roward 100: switch from row							Bit 1–0	10B: waiting for operation
 2 status 2 status 2 status 2 status 3 status 4 status<								11B: in operation
2 status 0 R U16 D18: switch from forward running to forward running to reverse running to running to reverse running to running to reverse running to reverse running to reverse running to reverse running to running to running to reverse running to							Bit 2	
2 status 0 R L <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>00B: forward running</td>								00B: forward running
 2 status 3 status<				0			Bit 4–3	
3 Freq. command (XXX.XX Hz) 0 R U16 3 Freq. command (XXX.XX Hz) 0 R U16 4 Output freq. (XXX.XX Hz) 0 R U16 5 Output current (XX.X A) 0 R U16 6 DC bus voltage (XXX.X V) 0 R U16 7 Output voltage (XXX.X V) 0 R U16 8 The current segment run by the multi-segment speed command R U16 9 Reserved 0 R U16 9 Reserved R U16 Instantial current segment run by the multi-segment		2	status		Б	1116	BR 4 0	ning to reverse running
2021H 1: master frequency command controlled by communication interface Bit 8 1: master frequency command Bit 9 Bit 9 1: operation command con- trolled by communication input Bit 10 1: operation command con- trolled by communication interface 3 Freq. command (XXX.XX Hz) 0 R U16 4 Output freq. (XXX.XX Hz) 0 R U16 5 Output current (XX.X A) 0 R U16 6 DC bus voltage (XXX.V) 0 R U16 - 7 Output voltage (XXX.V) 0 R U16 - 8 The current segment run by the multi-segment speed command 0 R U16 - 9 Reserved 0 R U16 - - 10 Display output power angle (XXX.X') 0 R U16 - - 10 Display output torque (XXX.X') 0 R U16 - - 10 Display output torque (XXX.X') 0 R U16 - <td></td> <td>2</td> <td>Status</td> <td>ĸ</td> <td>010</td> <td></td> <td>•</td>		2	Status		ĸ	010		•
Image: second							Bit 7–5	
$ \begin{array}{ c c c c c } \hline Bit 9 & controlled by analog signal input \\ \hline Bit 0 & licoperation command controlled by communication interface \\ \hline Bit 10 & licoperation command controlled by communication interface \\ \hline Bit 10 & licoperation command controlled by communication interface \\ \hline Bit 15-11 & Reserved \\ \hline \hline 1 & Output freq. (XXX.XX Hz) & 0 & R & U16 \\ \hline 1 & Output generation (XX.X A) & 0 & R & U16 \\ \hline 1 & Output current (XX.X A) & 0 & R & U16 \\ \hline 1 & Output voltage (XXX.V) & 0 & R & U16 \\ \hline 1 & Output voltage (XXX.V) & 0 & R & U16 \\ \hline 1 & Output voltage (XXX.V) & 0 & R & U16 \\ \hline 1 & Output voltage (XX.X V) & 0 & R & U16 \\ \hline 1 & Reserved & 0 & R & U16 \\ \hline 1 & Reserved & 0 & R & U16 \\ \hline 1 & Reserved & 0 & R & U16 \\ \hline 1 & Display counter value (c) & 0 & R & U16 \\ \hline 1 & Display output power angle & 0 & R & U16 \\ \hline 1 & Display output power angle & 0 & R & U16 \\ \hline 1 & Display output torque & 0 & R & U16 \\ \hline 1 & Display output torque & 0 & R & U16 \\ \hline 1 & Display output torque & 0 & R & U16 \\ \hline 1 & Display counter value (c) & 0 & R & U16 \\ \hline 1 & Display output torque & 0 & R & U16 \\ \hline 1 & Display actual motor speed & 0 & R & U16 \\ \hline 1 & Display actual motor speed & 0 & R & U16 \\ \hline 1 & Display actual motor speed & 0 & R & U16 \\ \hline 1 & Display actual motor speed & 0 & R & U16 \\ \hline 1 & Display actual motor speed & 0 & R & U16 \\ \hline 1 & Display actual motor speed & 0 & R & U16 \\ \hline 1 & Display actual motor speed & 0 & R & U16 \\ \hline 1 & Display actual motor speed & 0 & R & U16 \\ \hline 1 & Display actual motor speed & 0 & R & U16 \\ \hline 1 & Display actual motor speed & 0 & R & U16 \\ \hline 1 & Display actual motor speed & 0 & R & U16 \\ \hline 1 & Display actual motor speed & 0 & R & U16 \\ \hline 1 & Display actual motor speed & 0 & R & U16 \\ \hline 1 & Display actual motor speed & 0 & R & U16 \\ \hline 1 & Display actual motor speed & 0 & R & U16 \\ \hline 1 & Display actual motor speed & 0 & R & U16 \\ \hline 1 & Display actual motor speed & 0 & R & U16 \\ \hline 1 & Display actual motor speed & 0 & R & U16 \\ \hline 1 & Display actual motor speed & 0 & R & U16 \\ \hline 1 & Display actual mo$							Bit 8	controlled by communication
$\begin{array}{ c c c c c } \hline Bit 10 & trolled by communication interface \\ \hline Bit 15-11 & Reserved \\\hline \hline Bit 15-11 & Reserved \\\hline \hline Bit 15-11 & Reserved \\\hline \hline Bit 10 & interface \\\hline \hline Bit 15-11 & Reserved \\\hline \hline Bit 15-11 & Reserved \\\hline \hline A & Output freq. (XXX.X Hz) & 0 & R & U16 \\\hline \hline C & DC bus voltage (XXX.X V) & 0 & R & U16 \\\hline \hline C & DC bus voltage (XXX.X V) & 0 & R & U16 \\\hline \hline A & Display conter value (c) & 0 & R & U16 \\\hline A & Display output torque communication & 0 & R & U16 \\\hline A & Display output voltage (C & 0 & R & U16 \\\hline B & (XXX.^{*}) & 0 & R & U16 \\\hline C & Display output torque communication & 0 & R & U16 \\\hline C & Display output torque communication & 0 & R & U16 \\\hline C & Display output torque communication & 0 & R & U16 \\\hline C & Display actual motor speed communication & 0 & R & U16 \\\hline D & Display actual motor speed communication & 0 & R & U16 \\\hline D & Display actual motor speed communication & 0 & R & U16 \\\hline D & Display actual motor speed communication & 0 & R & U16 \\\hline D & Display actual motor speed communication & 0 & R & U16 \\\hline D & Display actual motor speed communication & 0 & R & U16 \\\hline D & Display actual motor speed communication & 0 & R & U16 \\\hline D & Display actual motor speed communication & 0 & R & U16 \\\hline D & Display actual motor speed communication & 0 & R & U16 \\\hline F & Number of PG feed back communication & 0 & R & U16 \\\hline F & Number of PG 2 pulse commands (0-65535) & 0 & R & U16 \\\hline \end{array}$							Bit 9	controlled by analog signal
Bit 15–11 Reserved 3 Freq. command (XXX.XX Hz) 0 R U16 4 Output freq. (XXX.XX Hz) 0 R U16 5 Output current (XX.X A) 0 R U16 6 DC bus voltage (XXX.X V) 0 R U16 7 Output voltage (XXX.X V) 0 R U16 8 the current segment run by 8 The current segment run by 8 U16 Image: Command 9 Reserved 0 R U16 Image: Command	2021日						Bit 10	trolled by communication
3 (XXX, XX Hz) 0 R 016 4 Output freq. (XXX, XX Hz) 0 R U16 5 Output current (XX, X A) 0 R U16 6 DC bus voltage (XXX, X V) 0 R U16 7 Output voltage (XXX, X V) 0 R U16 8 The current segment run by the multi-segment speed command 0 R U16 9 Reserved 0 R U16 A Display counter value (c) 0 R U16 B Display output power angle (XX, X°) 0 R U16 C Display output torque (XX, X°) 0 R U16 D Display actual motor speed (rpm) 0 R U16 D Display actual motor speed (rpm) 0 R U16 E Number of PG feed back pulses (0–65535) 0 R U16 F Number of PG2 pulse commands (0–65535) 0 R U16	202111						Bit 15–11	Reserved
5Output current (XX.X A)0RU166DC bus voltage (XXX.X V)0RU167Output voltage (XX.X V)0RU168The current segment run by the multi-segment speed command0RU169Reserved0RU16ADisplay counter value (c)0RU16BDisplay output power angle (XX.X °)0RU16CDisplay output torque (XX.X %)0RU16DDisplay actual motor speed (rpm)0RU16ENumber of PG feed back pulses (0-65535)0RU16FNumber of PG2 pulse commands (0-65535)0RU16		3		0	R	U16		
6DC bus voltage (XXX.X V)0RU167Output voltage (XXX.X V)0RU168The current segment run by the multi-segment speed command0RU169Reserved0RU164Display counter value (c)0RU168Display output power angle (XX.X*)0RU1610Display output torque (XX.X*%)0RU1611DDisplay actual motor speed (rpm)0RU1612Display actual motor speed (rpm)0RU1613Number of PG feed back pulses (0-65535)0RU1614Number of PG2 pulse commands (0-65535)0RU16		4	Output freq. (XXX.XX Hz)	0	R	U16		
7Output voltage (XXX.X V)0RU167The current segment run by the multi-segment speed0RU169Reserved0RU169Reserved0RU16ADisplay counter value (c)0RU16BDisplay output power angle (XX.X°)0RU16CDisplay output torque (XXX.X %)0RU16DDisplay actual motor speed (rpm)0RU16ENumber of PG feed back pulses (0-65535)0RU16FNumber of PG2 pulse commands (0-65535)0RU16		5	Output current (XX.X A)	0	R	U16		
8The current segment run by the multi-segment speed command0RU169Reserved0RU16ADisplay counter value (c)0RU16BDisplay output power angle (XX.X°)0RU16CDisplay output torque (XXX.X %)0RU16DDisplay actual motor speed (rpm)0RU16ENumber of PG feed back pulses (0-65535)0RU16FNumber of PG2 pulse commands (0-65535)0RU16		6	DC bus voltage (XXX.X V)	0	R	U16		
8the multi-segment speed command0RU169Reserved0RU16ADisplay counter value (c)0RU16BDisplay output power angle (XX,X°)0RU16CDisplay output torque (XXX,X %)0RU16DDisplay actual motor speed (rpm)0RU16ENumber of PG feed back pulses (0-65535)0RU16FNumber of PG2 pulse commands (0-65535)0RU16		7	Output voltage (XXX.X V)	0	R	U16		
ADisplay counter value (c)0RU16BDisplay output power angle (XX,X°)0RU16CDisplay output torque (XXX,X %)0RU16DDisplay actual motor speed (rpm)0RU16ENumber of PG feed back pulses (0-65535)0RU16FNumber of PG2 pulse commands (0-65535)0RU16		8	the multi-segment speed	0	R	U16		
B Display output power angle (XX.X°) 0 R U16 C Display output torque (XXX.X %) 0 R U16 D Display actual motor speed (rpm) 0 R U16 E Number of PG feed back pulses (0–65535) 0 R U16 F Number of PG2 pulse commands (0–65535) 0 R U16		9	Reserved	0	R	U16		
B (XX,X ^a) 0 R 016 C Display output torque (XXX,X ^b) 0 R U16 D Display actual motor speed (rpm) 0 R U16 E Number of PG feed back pulses (0-65535) 0 R U16 F Number of PG2 pulse commands (0-65535) 0 R U16		А	Display counter value (c)	0	R	U16		
C(XXX.X %)0R018DDisplay actual motor speed (rpm)0RU16ENumber of PG feed back pulses (0-65535)0RU16FNumber of PG2 pulse commands (0-65535)0RU16		В		0	R	U16		
DRDCNumber of PG feed back pulses (0-65535)0RFNumber of PG2 pulse commands (0-65535)0R		С	(XXX.X %)	0	R	U16		
E pulses (0–65535) 0 R 016 F Number of PG2 pulse commands (0–65535) 0 R U16		D	(rpm)	0	R	U16		
Commands (0–65535)		Е	pulses (0–65535)	0	R	U16		
10 power output (X.XXX KWH) 0 R U16			commands (0-65535)					
		10	power output (X.XXX KWH)	0	R	U16		

Tab. 15-14: Delta standard mode (Old definition) (2)

Index	Sub	Definition	Factory setting	R/W	Size	Note
	0	Reserved	0	R	U16	
	1	Display output current	0	R	U16	
	2	Display counter value	0	R	U16	
	3	Display actual output fre- quency (XXX.XX Hz)	0	R	U16	
	4	Display DC-BUS voltage (XXX.X V)	0	R	U16	
	5	Display output voltage (XXX.X V)	0	R	U16	
	6	Display output power angle (XX.X°)	0	R	U16	
	7	Display output power in kW	0	R	U16	
	8	Display actual motor speed (rpm)	0	R	U16	
	9	Display estimate output torque (XXX.X %)	0	R	U16	
	А	Display PG feedback	0	R	U16	
	В	Display PID feedback value after enabling PID function in % (To 2 decimal places)	0	R	U16	
	С	Display signal of AVI analog input terminal, 0-10 V corre- sponds to 0-100 % (To 2 dec- imal places)	0	R	U16	
2022H	D	Display signal of ACI analog input terminal, 4-20 mA/0- 10 V corresponds to 0-100 % (To 2 decimal places)	0	R	U16	
2022.11	E	Display signal of AUI analog input terminal, -10 V–10 V corresponds to -100–100 % (To 2 decimal places)	0	R	U16	
	F	Display the IGBT temperature of drive power module in °C	0	R	U16	
	10	Display the temperature of capacitance in °C	0	R	U16	
	11	The status of digital input (ON/ OFF), refer to Pr. 02-12	0	R	U16	
	12	The status of digital output (ON/OFF), refer to Pr. 02-18	0	R	U16	
	13	Display the multi-step speed that is executing	0	R	U16	
	14	The corresponding CPU pin status of digital input	0	R	U16	
	15	The corresponding CPU pin status of digital output	0	R	U16	
	16	Number of actual motor revo- lution (PG1 of PG card). It will start from 9 when the actual operation direction is changed or keypad display at stop is 0. Max. is 65535	0	R	U16	
	17	Pulse input frequency (PG2 of PG card)	0	R	U16	
	18	Pulse input position (PG card PG2), maximum setting is 65535.	0	R	U16	
Tab 15	11.	Delta standard mode (Old	1 dofinitio	n)(2)	`	

Tab. 15-14: Delta standard mode (Old definition) (3)

Index	Sub	Definition	Factory setting	R/W	Size	Note
	19	Position command tracing error	0	R	U16	
	1A	Display times of counter overload (0.00–100.00 %)	0	R	U16	
	1B	Display GFF in %	0	R	U16	
	1C	Display DC bus voltage rip- ples (Unit: V DC)	0	R	U16	
	1D	Display PLC register D1043 data	0	R	U16	
2022H	1E	Display Pole of Permanent Magnet Motor	0	R	U16	
LOLLII	1F	User page displays the value in physical measure	0	R	U16	
	20	Output Value of Pr.00-05	0	R	U16	
	21	Number of motor turns when drive operates	0	R	U16	
	22	Operation position of motor	0	R	U16	
	23	Fan speed of the drive	0	R	U16	
	24	Control mode of the drive 0: speed mode 1: torque mode	0	R	U16	
	25	Carrier frequency of the drive	0	R	U16	

Tab. 15-14: Delta standard mode (Old definition) (4)

Index	Sub	R/W	Definition
	01h	R	Each bit corresponds to the different input terminals
	02h	R	Each bit corresponds to the different input terminals
	03h–40h	R	Reserved
	41h	RW	Each bit corresponds to the different output terminals
	42h-60h	R	Reserved
2026H	61h	R	AVI (%)
	62h	R	ACI (%)
	63h	R	AUI (%)
	64h–A0h	R	Reserved
	A1h	RW	AFM1 (%)
	A2h	RW	AFM2 (%)

Tab. 15-15: CANopen remote IO mapping

				De	scriptio	n				
Index	Sub	R/W	Size	Bit	Defi- nition	Pri-	Speed mode	Position mode	Home mode	Torque mode
2060h	00h	R	U8							
				0	Ack	4	0:fcmd =0 1:fcmd = Fset(Fpid)	Pulse 1: Position control	Pulse 1: Return to home	
				1	Dir	4	0: FWD run command 1: REV run command			
				2						
				3	Halt		0: drive run till target speed is attained 1: drive stop by declara- tion setting			
	01h	RW	U16	4	Hold		0: drive run till target speed is attained 1: frequency stop at cur- rent frequency			
2060h				5	JOG		0:JOG OFF Pulse 1:JOG RUN			
				6	QStop		Quick Stop			
				7	Power		0:Power OFF 1: Power ON	0:Power OFF 1: Power ON	0:Power OFF 1: Power ON	0:Power OFF 1: Power ON
				14–8	Cmd SW		Multi-step frequency switching	Multi-step position switching		
				15			Pulse 1: Fault code cleared	Pulse 1: Fault code cleared	Pulse 1: Fault code cleared	Pulse 1: Fault code cleared
	02h	RW	U16							
	03h	RW	U16				Speed command (unsigned decimal)			
	04h	RW	U16				,			
	05h	RW	S32					Position command		
	06h	RW						commanu		
2060h	07h	RW	U16							Torque command (signed decimal)
	08h	RW	U16							Speed limit (unsigned decimal)

 Tab. 15-16:
 Delta standard mode (New definition) (1)

				De	scriptio	n	Speed	Position		Torque
Index	Sub	R/W	Size	Bit	Defi- nition	Pri- ority	mode	mode	Home mode	mode
				0	Arrive		Frequency attained	Position attained	Homing complete	Torque attained
		R		1	Dir		0: Motor FWD run 1: Motor REV run			
				2	Warn		Warning	Warning	Warning	Warning
	01h		U16	3	Error		Error detected	Error detected	Error detected	Error detected
				4						
				5	JOG		JOG	JOG	JOG	JOG
				6	QStop		Quick stop	Quick stop	Quick stop	Quick stop
2061h				7	Power ON		Switch ON	Switch ON	Switch ON	Switch ON
				15–8						
	02h	R								
	03h	R	U16				Actual output frequency	Actual output frequency	Actual output frequency	Actual output frequency
	04h	R								
	05h	R	S32				Actual position (absolute)	Actual position (absolute)	Actual position (absolute)	Actual position (absolute)
	06h	R								
	07h	R	S16				Actual torque	Actual torque	Actual torque	Actual torque

Tab. 15-16: Delta standard mode (New definition) (2)

DS402-Standard

Index	Sub	Definition	Factory setting	R/W	Size	Unit	PDO map	Mode*	Note
		Abort							0: No action
6007h	0	connection option code	2	RW	S16		Yes		2: Disable Voltage
603Fh	0	Error code	0	R	U16		Yes		3: quick stop
6040h	0	Control	0	RW	U16		Yes		
6041h	0	word Status word	0	R	U16		Yes		
6042h	0	vl target velocity	0	RW	S16	rpm	Yes	vl	
6043h	0	vl velocity demand	0	R	S16	rpm	Yes	vl	
6044h	0	vl control effort	0	R	S16	rpm	Yes	vl	
		vl ramp							
604Fh	0	function time	10000	RW	U32	1 ms	Yes	vl	
6050h	0	vl slow down time	10000	RW	U32	1 ms	Yes	vl	Unit must be: 100ms, and check if the setting is set to 0.
6051h	0	vl quick stop time	1000	RW	U32	1 ms	Yes	vl	
									0: disable drive function
									1: slow down on slow down ramp
605Ah	0	Quick stop option code	2	RW	S16		No		2: slow down on quick stop ramp 5: slow down on slow down ramp and stay in QUICK STOP
									6: slow down on quick stop ramp and stay in QUICK STOP
		Disable							0: Disable drive function
605Ch	0	operation option code	1	RW	S16		No		1: Slow down with slow down ramp; disable of the drive function
									1: Profile Position mode
6060h	0	Mode of operation	2	RW	S8		Yes		2: Velocity mode 4: Torque Profile mode 6: Homing mode
00046	0	Mode of	2	-	S8		Vee		Come es abava
6061h	0	operation display	2	R	30		Yes		Same as above
6064h	0	pp Position actual value	0	R	S32		Yes	рр	
6071h	0	tq Target torque	0	RW	S16	0.1 %	Yes	tq	Valid unit: 1%
6072h	0	tq Max torque	150	RW	U16	0.1 %	No	tq	Valid unit: 1%
6075h	0	tq Motor rated current	0	RO	U32	mA	No	tq	
6077h	0	tq torque actual value	0	RO	S16	0.1 %	Yes	tq	
6078h	0	tq current actual value	0	RO	S16	0.1 %	Yes	tq	
6079h	0	tq DC link circuit voltage	0	RO	U32	mV	Yes	tq	
607Ah	0	pp Target position	0	RW	S32	1	Yes	рр	
ab. 15	-17:	DS402 star	ndard						

* Meaning of the entries in the row "Mode": "vl" = speed, "pp" = position, "tq" = torque.

15.5 CANopen[®] fault code

Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0–7)
HAND Fault ocA Oc at accel	0001H	Over-current during acceleration	2213H	1
HAND Fault Ocd Oc at decel	0002H	Over-current during deceleration	2213H	1
HAND Fault Ocn Oc at normal SPD	0003H	Over-current during steady status operation	2214H	1
HAND Fault GFF Ground fault	0004H	Ground fault. When (one of) the output terminal(s) is grounded, short circuit current is more than 50 % of rated current. NOTE: The short circuit protection is provided for protection, not for protection of the user.	2240H	1
HAND Fault OCC Short Circuit	0005H	Short-circuit is detected between upper bridge and lower bridge of the IGBT module.	2250H	1
HAND Fault ocS Oc at stop	0006H	Over-current at stop. Hardware fail- ure in current detection	2314H	1
HAND Fault ovA Ov at accel	0007H	Over-current during acceleration. Hardware failure in current detection	3210H	2
HAND Fault Ovd Ov at decel	0008H	Over-current during deceleration. Hardware failure in current detection.	3210H	2

Tab. 15-18: CANopen[®]- fault codes (1)

Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0–7)
HAND Fault Ovn Ov at normal SPD	0009H	Over-current during steady speed. Hardware failure in current detection.	3210H	2
HAND Fault ovS Ov at stop	000AH	Over-voltage at stop. Hardware failure in current detection	3210H	2
HAND Fault LvA Lv at accel	000BH	DC BUS voltage is less than Pr. 06-00 during acceleration.	3220H	2
HAND Fault Lvd Lv at decel	000CH	DC BUS voltage is less than Pr. 06-00 during deceleration.	3220H	2
HAND Fault Lvn Lv at normal SPD	000DH	DC BUS voltage is less than' Pr. 06-00 in constant speed.	3220H	2
HAND Fault LvS Lv at stop	000EH	DC BUS voltage is less than Pr. 06-00 at stop	3220H	2
HAND Fault OrP Phase Lacked	000FH	Phase Loss Protection	3130H	2
HAND Fault oH1 IGBT over heat	0010H	IGBT overheat IGBT temperature exceeds protection level. 1–15 HP: 90 °C 20–100 HP: 100 °C	4310H	3
HAND Fault 0H2 Hear Sink oH	0011H	Heat sink overheat Heat sink temperature exceeds 90 °C	4310H	3

Tab. 15-18: CANopen[®]- fault codes (2)

Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0–7)
HAND Fault tH1o Thermo 1 open	0012H	Temperature detection circuit error (IGBT) IGBT NTC	FF00H	3
HAND Fault tH2o Thermo 2 open	0013H	Temperature detection circuit error (capacity module) CAP NTC	FF01H	3
HAND Fault PWR Power RST OFF	0014H	Power RST off	FF02H	2
HAND Fault OL Inverter oL	0015H	Overload. The detects excessive drive output current. NOTE: The can withstand up to 150 % of the rated current for a maximum of 60 seconds.	2310H	1
HAND Fault EoL1 Thermal relay 1	0016H	Electronics thermal relay 1 protection	2310H	1
HAND Fault EoL2 Thermal relay 2	0017H	Electronics thermal relay 2 protection	2310H	1
HAND Fault Over torque 1	001AH	These two fault codes will be dis- played when output current exceeds the over-torque detection level (Pr .06.07 or Pr. 06.10) and	8311H	3
HAND Fault ot2 Over torque 2	001BH	exceeds over-torque detection (Pr. 06.08 or Pr. 06.11) and it is set 2 or 4 in Pr. 06-06 or Pr. 06-09.	8311H	3
HAND Fault uC Under torque 1	001CH	Low current	8321H	1

Tab. 15-18: CANopen[®]- fault codes (3)

Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0–7)
HAND Fault cF1 EEPROM write Err	001EH	Internal EEPROM can not be programmed.	5530H	5
HAND Fault cF2 EEPROM read Err	001FH	Internal EEPROM can not be read.	5530H	5
HAND Fault cd1 las sensor Err	0021H	U-phase error	FF04H	1
HAND Fault cd2 Ibs sensor Err	0022H	V-phase error	FF05H	1
HAND Fault cd3 Ics sensor Err	0023H	W-phase error	FF06H	1
HAND Fault Hd0 cc HW Error	0024H	cc (current clamp) hardware error	FF07H	5
HAND Fault Hd1 oc HW Error	0025H	oc hardware error	FF08H	5
HAND Fault Hd2 ov HW Error	0026H	ov hardware error	FF09H	5
HAND Fault Hd3 GFF HW Error	0027H	GFF hardware error	FF0AH	5

Tab. 15-18: CANopen[®]- fault codes (4)

Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0–7)
HAND Fault AUE Auto tuning Err	0028H	Auto tuning error	FF21H	1
HAND Fault AFE PID Fbk Error	0029H	PID loss (ACI)	FF22H	7
HAND Fault PGF1 PG Fbk Error	002AH	PG feedback error	7301H	7
HAND Fault PGF2 PG Fbk Loss	002BH	PG feedback loss	7301H	7
HAND Fault PGF3 PG Fbk Over SPD	002BH	PG feedback stall	7301H	7
HAND Fault PGF4 PG Fbk deviate	002CH	PG slip error	7301H	7
HAND Fault ACE ACI loss	0030H	ACI loss	FF25H	1
HAND Fault EF External Fault	0031H	External Fault When input EF (N.O.) on external terminal is closed to GND, stops output U, V, and W.	9000H	5
HAND Fault EF1 Emergency stop	0032H	Emergency stop When the multi-function input termi- nals MI1 to MI6 are set to emer- gency stop, the stops output U, V, W and the motor coasts to stop.	9000H	5

Tab. 15-18: CANopen[®]- fault codes (5)

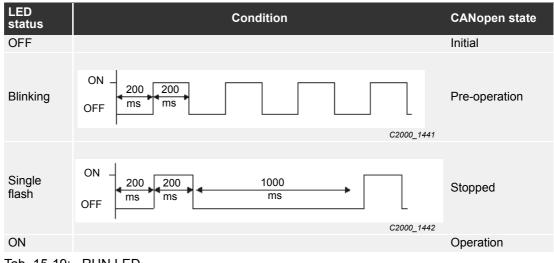
Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0–7)
HAND Fault bb Base block	0033H	External Base Block When the external input terminals MI1 to MI16 are set as bb and active, the output will be turned off	9000H	5
HAND Fault Pcod Password Error	0034H	Password will be locked if three fault passwords are entered	FF26H	5
HAND Fault ccod SW code Error	0035H	Software error	6100H	5
HAND Fault cE1 Modbus CMD err	0036H	Illegal function code	7500H	4
HAND Fault cE2 Modbus ADDR err	0037H	Illegal data address (00H to 254H)	7500H	4
HAND Fault cE3 Modbus DATA err	0038H	Illegal data value	7500H	4
HAND Fault cE4 Modbus slave FLT	0039H	Data is written to read-only address	7500H	4
HAND Fault cE10 Modbus time out	003AH	Modbus transmission timeout.	7500H	5
HAND Fault cP10 Keypad time out	003BH	Keypad transmission timeout.	7500H	4

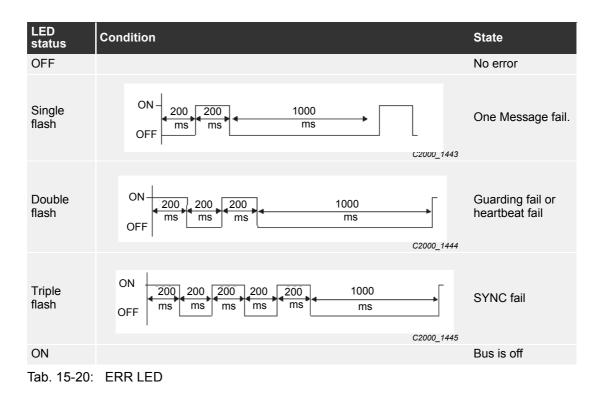
Tab. 15-18: CANopen[®]- fault codes (6)

Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0–7)
Fault bF Braking fault	003CH	Brake resistor fault	7110H	4
HAND Fault ydc Y-delta connect	003DH	Motor Y-∆ switch error	3330H	2
HAND Fault dEb Dec. Energy back	003EH	Energy regeneration when decelerating	FF27H	2
HAND Fault OVer slip Error	003FH	Over slip error. Slip exceeds Pr. 05.26 limit and slip duration exceeds Pr. 05.27 setting.	FF28H	7
Fault PGF5 PG HW Error	0041H	PG Card Error	FF29H	5
HAND Fault ocU Unknow Over Apm	0042H	Over current caused by unknown reason	2310H	1
HAND Fault ovU Unknow Over volt.	0043H	Over voltage caused by unknown reason	3210H	2
HAND Fault S1 S1-Emergy stop	0049H	External safety emergency stop	FF2AH	5
Fault OPHL U phase lacked	0052H	U phase output phase loss	2331H	2

Tab. 15-18: CANopen[®]- fault codes (7)

Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0–7)
HAND Fault OPHL U phase lacked	0053H	V phase output phase loss	2332H	2
HAND Fault OPHL U phase lacked	0054H	W phase output phase loss	2333H	2
HAND Fault aocc A phase short	004FH	A phase short	FF2BH	1
HAND Fault bocc B phase short	0050H	B phase short	FF2CH	1
HAND Fault COCC C phase short	0051H	C phase short	FF2DH	1
HAND Fault CGdE Guarding T-out	0065H	Guarding time-out 1	8130H	4
HAND Fault CHbE Heartbeat T-out	0066H	Heartbeat time-out	8130H	4
HAND Fault CSyE SYNC T-out	0067H	CAN synchrony error	8700H	4
HAND Fault CbFE CAN/S bus off	0068H	CAN bus off	8140H	4


Tab. 15-18: CANopen[®]- fault codes (8)


Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0–7)
Fault CIdE CAN/S Idx exceed	0069H	Can index exceed	8110H	4
Fault CAdE CAN/S add. set	006AH	CAN address error	8100H	4
Fault CFdE CAN/S FRAM fail	006BH	CAN frame fail	8100H	4

Tab. 15-18: CANopen[®]- fault codes (9)

15.6 CANopen LED function

16 PLC Function Applications

16.1 PLC summary

16.1.1 Introduction

The commands provided by the C2000's built-in PLC functions, including the ladder diagram editing tool WPLSoft, as well as the usage of basic commands and applications commands, chiefly retain the operating methods of Delta's PLC DVP series.

16.1.2 WPLSoft ladder diagram editing tool

WPLSoft is Delta's program editing software for the DVP and C2000 programmable controllers in the Windows operating system environment. Apart from general PLC program design general Windows editing functions (such as cut, paste, copy, multiple windows, etc.), WPLSoft also provides many Chinese/English annotation editing and other convenience functions (such as registry editing, settings, file reading, saving, and contact graphic monitoring and settings, etc.).

The following basic requirements are needed to install WPLSoft editing software:

Item	System requirements
Operating system	Windows 95/98/2000/NT/ME/XP
CPU	At least Pentium 90
Memory	At least 16 MB (we recommend at least 32 MB)
Hard drive	Hard drive capacity: at least 100 MB free space One optical drive (for use in installing this software)
Display	Resolution: 640x480, at least 16 colors; it is recommended that the screen area be set at 800x600 pixels
Mouse	Ordinary mouse or Windows-compatible device
Printer	Printer with a Windows driver program
RS485 port	Must have at least an RS485 port to link to the PLC
Suitable PLC models	Delta's full DVP-PLC series, VFD-C2000 series

Tab. 16-1: Basic requirements for the editing software WPLSoft

16.2 Notes before PLC use

- The PLC has a preset communications format of 7, N, 2, 9600, with node 2; the PLC node can be changed in parameter 09-35, but this address may not be the same as the converter's address setting of 09-00.
- ② The C2000 provides 2 communications serial ports that can be used to download PLC programs (see figure below). Channel 1 has a fixed communications format of 19200, 8, N, 2 RTU.

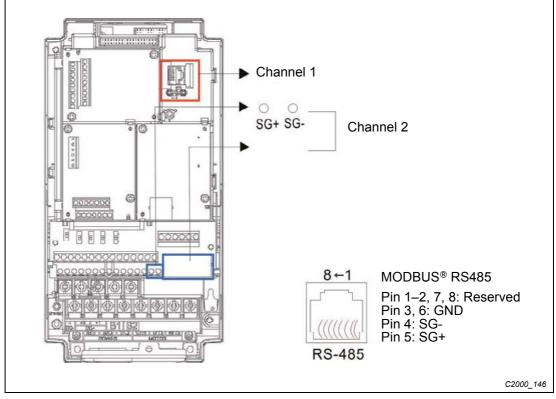


Fig. 16-1: Communication interface of an C2000 inverter

③ The client can simultaneously access data from the converter and internal PLC, which is performed through identification of the node. For instance, if the converter node is 1 and the internal PLC node is 2, then the client command will be:

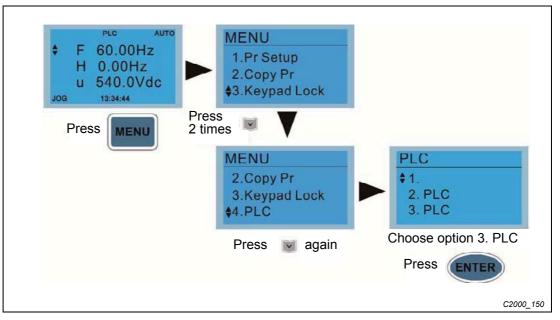
01 (node) 03 (read) 0400 (address) 0001 (1 data item), indicating that it must read the data in converter parameter 04-00.

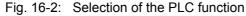
02 (node) 03 (read) 0400 (address) 0001 (1 data item), indicating that it must read the data in internal PLC X0.

- ④ The PLC program will be disabled when uploading/downloading programs.
- (5) Please note when using WPR commands to write in parameters, values may be modified up to a maximum of 10⁹ times, otherwise a memory write error will occur. The calculation of modifications is based on whether the entered value has been changed. If the entered value is left unchanged, the modifications will not increase afterwards. But if the entered value is different from before, the number of modifications will increase by one.

6 When parameter 00-04 is set as 28, the displayed value will be the value of PLC register D1043 (see figure below):

Digital keypad KPC-CC01	Digital keypad KPC-CE01
Can display 0–65535	0–9999
PLC AUTO H 0.00Hz <u>A</u> 0.00Hz ↓ C Jog	When more than 9999


- ⑦ In the PLC Run and PLC Stop mode, the content 9 and 10 of parameter 00-02 cannot be set and cannot be reset to the default value.
- (8) The PLC can be reset to the default value when parameter 00-02 is set as 6.
- (9) The corresponding MI function will be disabled when the PLC writes to input contact X.
- When the PLC controls converter operation, control commands will be entirely controlled by the PLC and will not be affected by the setting of parameter 00-21.
- (ii) When the PLC controls converter frequency commands (FREQ commands), frequency commands will be entirely controlled by the PLC, and will not be affected by the setting of parameter 00-20 or the Hand ON/OFF configuration.
- When the PLC controls converter torque (TORQ commands), torque commands will be entirely controlled by the PLC, and will not be affected by the setting of parameter 11-33 or the Hand ON/OFF configuration.
- When the PLC controls converter positions (POS commands), position commands will be entirely controlled by the PLC, and will not be affected by the setting of parameter 11-40 or the Hand ON/OFF configuration.
- When the PLC controls converter operation, if the keypad Stop setting is valid, this will trigger an FStP error and cause stoppage.


16.3 Turn on

16.3.1 Connect to PC

Start operation of PLC functions in accordance with the following four steps:

① After pressing the Menu key and selecting *4: PLC* on the KPC-CC01 digital keypad, press the Enter key (see figure below).

If the optional KPC-CE01 digital keypad is used, employ the following method: Switch to the main PLC2 screen: After powering up the drivers, press the **MENU** key on the KPC-CE01 once to switch to the function screen, which will then display "PrSET." After up or down button to switch to the "PLC" screen, and then press using the to (ENTER enter PLC function settings. Afterwards, press the Up key to switch to "PLC2," and then press (ENTER The screen will now display "PLSn" and flash, indicating that the internal PLC currently has no program, and this error message can be ignored. If the PLC has an editing program, the screen will display "End," and will jump back to "PLC2" after 1 to 2 seconds. When no program has been downloaded to the drivers, the program can continue to run even if a PLC warning message appears. Disable PLC PLC

NOTES

Wiring

③ PLC function usage

PLC 1.Disable 2.PLC Run 3.PLC Stop	 PLC functions are as shown in the figure on the left; select item 2 and implement PLC functions. 1: No function (Disable) 2: Enable PLC (PLC Run) 3: Stop PLC functions (PLC Stop)
Optional product: PLC function display method on KPC-CE01 digital keypad	PLC 0 : Do not implement PLC functions PLC 1 : Initiate PLC Run PLC 2 : Initiate PLC Stop

When the external multifunctional input terminals (MI1 to MI8) are in PLC Mode select bit 0 (51) or PLC Mode select bit1 (52), and the terminal contact is closed or open, it will compulsorily switch to the PLC mode, and keypad switching will be ineffective. Corresponding actions are as follows:

PLC mode		PLC Mode select bit 1 (52)	PLC Mode select bit 0 (51)
Using KPC-CC01	Using KPC-CE01		
Disable	PLC 0	OFF	OFF
PLC Run	PLC 1	OFF	ON
PLC Stop	PLC 2	ON	OFF
Maintain previous state	Maintain previous state	ON	ON

Tab. 16-2: Selection of PLC modes with multifunctional input terminals

Use of KPC-CE01 digital keypad to implement PLC functions:

- When the PLC screen switches to the PLC1 screen, this will trigger one PLC action, and the PLC program start/stop can be controlled by communications via the WPL.
- When the PLC screen switches to the PLC2 screen, this will trigger one PLC stop, and the PLC program start/stop can be controlled by communications via the WPL.
- The external terminal control method is the same as shown in the table above.

NOTES

- When input/output terminals (FWD, REV, MI1 to MI8, MI10 to 15, Relay 1, Relay 2, RY10 to RY15, MO1 to MO2, MO10 to MO11) are included in the PLC program, these input/ output terminals will only be used by the PLC. As an example, when the PLC program controls Y0 during PLC operation (PLC1 or PLC2), the corresponding output terminal relay (RA/RB/RC) will operate in accordance with the program. At this time, the multifunctional input/output terminal setting will be ineffective. Because these terminal functions are already being used by the PLC, the DI, DO, AO in use by the PLC can be determined by looking at parameter 02-52, 02-53, and 03-30.
 - When the PLC's procedures use special register D1040, the corresponding AO contact AFM1 will be occupied, and AFM2 corresponding to special register D1045 will have the same situation.
 - Parameter 03-30 monitors the state of action of the PLC function analog output terminal; Bit 0 corresponds to the AFM1 action state, and Bit 1 corresponds to the AFM2 action state.

16.3.2 I/O device explanation

Input devices

1 ^① FW REV MI1 MI2 MI3 MI4 MI5 MI6 MI7 MI8				
2 ⁽²⁾ MI10 MI11	11 MI12	MI11 MI	2 MI13 MI1	MI15
3 ⁽³⁾ MI10 MI11	11 MI12	MI11 MI	2 MI13	

(1) Control I/O

(2) Expansion card EMC-D611A (D1022 = 4)

⁽³⁾ Expansion card EMC-D42A (D1022 = 5)

Output devices

No	Y0	Y1	Y2	Y3	Y4	Y5	Y6	¥7	Y10	Y11	Y12	Y13	Y14	Y15	Y16	Y17
1(1)	RY1	RY2		MO1	MO2											
2 ⁽²⁾						MO10	MO11									
33						RY10	RY11	RY12	RY13	RY14	RY15					

- 1 Control I/O
- ⁽²⁾ Expansion card EMC-D42A (D1022 = 5)
- ⁽³⁾ Expansion card EMC-R6AA (D1022 = 6)

16.3.3 Installation of WPLSoft

See Delta's website for WPLSoft editing software:

http://www.delta.com.tw/product/em/download/download_main.asp?act=3&pid=3&cid=1&tpid=3

16.3.4 Program writing

After completing the download, the WPLSoft program will be installed in the designated sub-folder:

C:\Program Files\Delta Industrial Automation\WPLSoft x.xx.

The editing software can now be run by clicking on the WPL icon using the mouse.

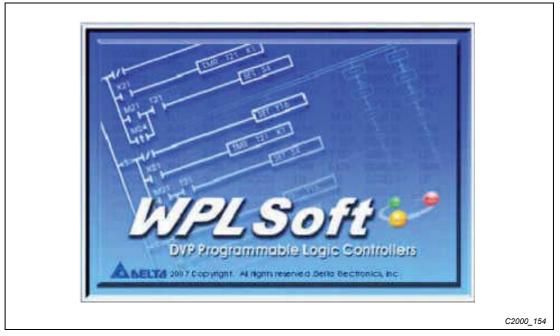


Fig. 16-4: Opening screen of WPLSoft

The WPL editing window will appear after 3 seconds (see figure below). When running WPLSoft for the first time, before "New file" has been used, only the "<u>File</u>", "<u>C</u>ommunications", "<u>View</u>", "<u>O</u>ptions", and "<u>H</u>elp" columns will appear on the function toolbar.

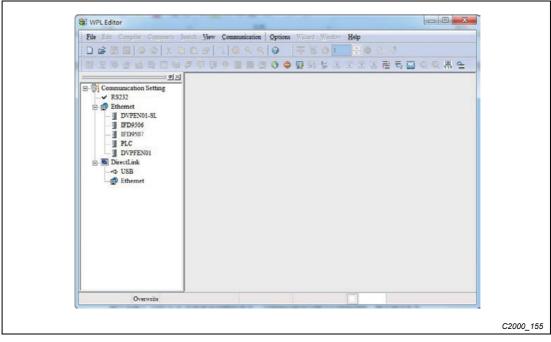


Fig. 16-5: WPLSoft editing window

After running WPLSoft for the second time, the last file edited will open and be displayed in the editing window. The following figure provides an explanation of the WPLSoft editing software window:

enu bar→				
	RESCARES		FE0 : 0 2 /	
T			95552723555800855	
Toolbar-+	al ve B		(本品版集团各種合作用各種物质	
	HILL CONVERTING SPECE	Latentia Lat Hole		. C 🗙
	B Bitcat	000000 NOP 000001 NOP 000002 NOP		
		000003 NOP	Instruction editing area	
	- FLC	000004 NOP 000005 NOP		
	8 DiroLisk	000006 NOP		
	-4 USB	Laider Dugun Mole		682
	Working area		Ladder editing area	
		8		*

Fig. 16-6: Editing windows of WPLSoft

Click on the icon on the toolbar in the upper left part of the screen: opens new file (Ctrl+N).

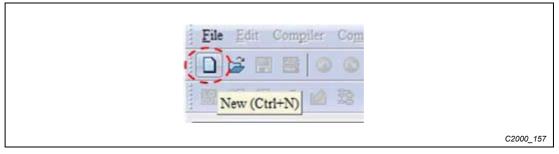


Fig. 16-7: Opening of a new file by clicking on the icon

You can also use "File (F)" => New file (N) (Ctrl+N)

New	Ctrl+N	
<u>Open</u>	Ctrl+O	
Save	Ctrl+S	
Save As	Ctrl+Alt+S	

Fig. 16-8: Opening of a new file in the file menu

The "Device settings" window will appear after clicking. You can now enter the project title and filename, and select the device and communication settings to be used.

Program Title		
Test		
Select	VFD-C2000/CH2000/C -	
Communicatio	MC	
RS232 (COM	SE VFD E Type	
	VFD-C2000/CH2000/CT2000 VFD-C200 VFD-CP2000	
Dvp0	TP04P TP70P/TP70G	
OK	Cancel	
		C2000_159

Fig. 16-9: Project settings

Perform settings in accordance with the desired communications method:

Connection Setup			
Туре	RS232	•	
Communication Set COM Port Data Length Parity Stop Bits	COM3 Image: Comparison of the second se	 ASCII ∩ RTU (8 bits) _Auto-detect 	
Baud Rate Station Address Ethemet Setting Assign IP Port	1.000	Default	
Baud Rate Decide	ed by		
Setup Respondin Times of Auto-ret Time Interval of A	try	3 3 •	
OK		ancel	
			C2000_16

Fig. 16-10: Communications settings

Press Confirm after completing settings and begin program editing. There are two program editing methods; you can choose whether to perform editing in the command mode or the ladder diagram mode.

He Edit Compiler Comments	Search Mew (energication Options Wirsed Window Help	
		0 4 4 0 = 1 0 1 1 0 0 1	
		TROOPRUITIESCORE	
		而人有意志的故意是是是一个的是不可以是	
Tenk (Mar 1975	-		
Communication Setting	- En annen an		_IO X
- RS232	000000	NOP	
🕀 🗊 Ethemet	000002	NOP	
- DVPEN01-SL	000003	😰 Ladder Diagram Mode	
IID9505	000004		
PLC	000005		
DVPFEN01	000008		
- +5 USB	000008		
Dithemet	000009		
	000010		
	000011		
	4		
		a	
			15.16.

Fig. 16-11: Editor windows for ladder and instruction list

In ladder diagram mode, you can perform program editing using the buttons on the function icon row.

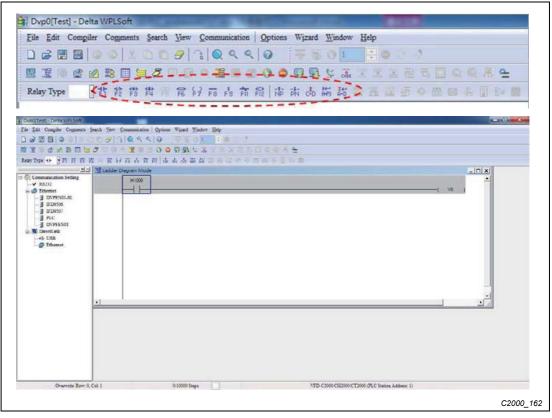
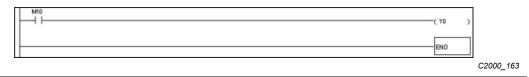



Fig. 16-12: Symbols for ladder programs in the tool bar

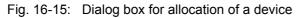
Input of a simple program

EXAMPLE The following ladder program outputs the status of the internal relay to Y10. The input is explained step by step.

- Mouse operation and keyboard function key (F1 to F12) operation
- ① The following screen will appear after a new file has been established:

File Edit Compiler Comments Search View Commu	unication Options Wizard Window Help
D 诺 🖪 🗃 🕥 💿 🗶 🗈 🙆 🥱 🔍	
B I H C 🖉 B B 🗉 🖉 👎 🗊 🕈 🖁	「日日の●四男なぶにに出るのの事件」 単同
Relay Type 📑 許 萨 鹊 髀 寵 曰 ☶ ;	●▲Ⅲ州图图◇印刷新国路经电话法 密任地
🖞 Instruction List Mode	
a Ladder Diagram Mode	
01 E Ladder Diagram Mode 01 01 01 01 01 01 01 01 01 01 01 01 01 0	

Fig. 16-13: Empty ladder editor window


② Use the mouse to click on the always-open switch icon **#** or press the function key F1:

	an ounger ougenous	Search View	Communication	Options Wiz	ard Window	Help		- 6	×
0 🚅 🖪			1 9 9 9	0					
	• @ <u>@</u> 29 🔲 📒	5世际	7 建晶团	0 0 9 9	1 5 X 7	1 X X E	QQ II L		» •
Relay Type	■ 許, 該 指 前	能常好	FE FE FT FT	t ité éti de	お 部 回	# 2 5	• 🛍 🖂 陆 🛛	1 is= 600	
	43								^
	Normally Op	en, Contact A							
									*

Fig. 16-14: Selection of an normally open (NO) contact

③ After the name of the input device and the comment dialog box have appeared, the device name (such as "M"), device number (such as "10"), and input comments (such as "auxiliary contact") can be selected; press the Confirm button when finished.

- Constantly	opened contac	:t		
Device Name	M	•	ОК	
Device Number	10	÷	Cancel	
Internal Relay Range	M0M4095			
Comment	Internal Relay	82		_

④ Click on the output coil icon is or press function key F7. After the name of the input device and the comment dialog box nave appeared, the device name (such as "Y"), device number (such as "0"), and input comments (such as "output coil") can be selected; press the Confirm button when finished.

📜 File Edit Compiler Comments	Search Yiew Communication Options Wizard Window Help	_ @ ×
	0 9 3 4 4 4 9	
📟 🗵 🗇 🍘 🖄 🗔 🖮	◎ ● ◎ ● ■ ■ ◎ ● ● ■ ■ ◇ ふ ※ 正 ※ ■ ● ● ● ■	<u>e</u> = = = = :
Relay Type 👱 🐩 🏥 🎁	第 常 好 市 占 前 総 市 市 あ 品 編 誌 ■ 茜 ■ 5 ● 0 ● 8	H 🔲 🕬 🕅
	Input Device Instruction Output cod Device Name Y OK Device Number Cancel Output Relay Range Y0-Y377 Comment Output Cod	
C International Contraction		3
Overwrite Row: 0, 1	Col: 2 3/15872 Steps 📕	SA2

Fig. 16-16: The output is allocated to the output instruction

(5) Click on application command icon rest or press function key F6. Click on "All application commands" in the function classification field, and click on the End command in the application command pull-down menu, or use the keyboard to key in "End" in that field, and press the confirm button.

			ew Communication Options Wiz				
	1 🖄 😨 [] 🖮 🍠 🖤 🖻		I M X X X Z	RQQ		
Relay Type	Y #1 #2	Application Inst	ructions				661
	мо 	Application I	nstructions				_
		API Number	All Application Instructions Application Instruct	END	• _	OK. Cancel	
		Explanation	Program end	FAND< FAND FAND FAND FAND FAND FAND FAND		0	

Fig. 16-17: Selection of an END instruction

6 Click on the compared is a command program. After compiling, the number of steps will appear on the left side of the busbar.

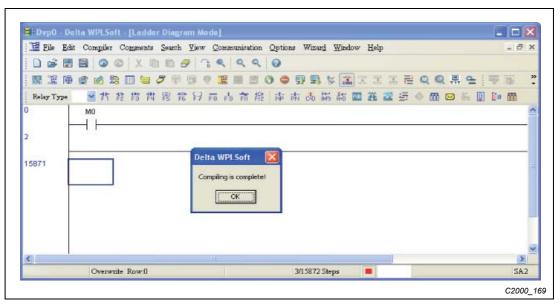


Fig. 16-18: The program has been compiled successfully

16.3.5 Program download

After inputting a program using WPLSoft, select compile 📑 . After completing compilation,

select the 📑 to download a program. WPLSoft will perform program download with the online PLC in the communications format specified in communications settings.

16.3.6 Program monitoring

While confirming that the PLC is in the Run mode, after downloading a program, click on *s* in the communications menu and select start ladder diagram control (see figure below):

Fig. 16-19: Example for the display of the program in ladder diagram control mode

16.4 Basic principles of PLC ladder diagrams

16.4.1 Schematic diagram of PLC ladder diagram program scanning

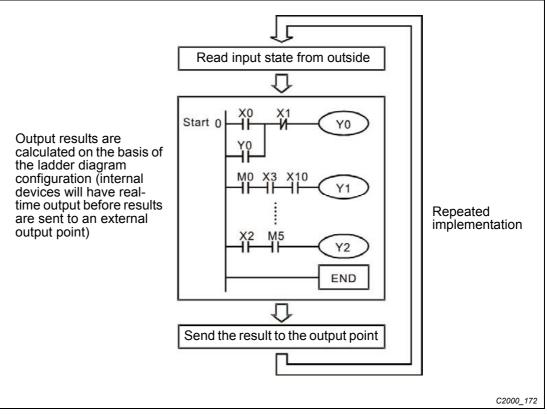


Fig. 16-20: Principle of cyclic program execution

16.4.2 Introduction to ladder diagrams

Ladder diagrams comprise a graphic language widely applied in automatic control, and employs common electrical control circuit symbols. After a ladder diagram editor has been used to create a ladder pattern, PLC program designed is completed. The use of a graphic format to control processes is very intuitive, and is readily accepted by personnel who are familiar with electrical control circuit technology. Many of the basic symbols and actions in a ladder diagram comprise commonly-seen electrical devices in conventional automatic control power distribution panels, such as buttons, switches, relays, timers, and counters.

Internal PLC devices: The types and quantities of internal PLC devices vary in different brands of products. Although these internal devices use the same names as conventional electrical control circuit elements such as relays, coils, and contacts, a PLC does not actually contain these physical devices, and they instead correspond to basic elements in the PLC's internal memory (bits). For instance, if a bit is 1, this may indicate that a coil is electrified, and if that bit is 0, it will indicate that the coil is not electrified. An NO contact (Normal Open, or contact a) can be used to directly read the value of the corresponding bit, and an NC contact (Normal Close, or contact b) can be used to obtain the inverse of the bit's value. Multiple relays occupy multiple bits, and 8 bits comprise one byte; two bytes comprise one word, and two words comprise a double word. When multiple relays are processing at the same time (such as addition/subtraction or displacement, etc.), a byte, word, or double word can be used. Furthermore, a PLC contains two types of internal devices: a timer and a counter. It not only has a coil, but can count time and numerical values. Because of this, when it is necessary to process some numerical values, these values are usually in the form of bytes, words, or double words.

The various internal devices in a PLC all account for a certain quantity of storage units in the PLC's storage area. When these devices are used, the content of the corresponding storage area is red in the form of bits, bytes, or words.

Device type	Description of function
Input relay	 An input relay constitutes the basic unit of storage in a PLC's internal memory corresponding to an external input point (which serves as a terminal connecting with an external input switch and receiving external input signals). It is driven by external input signals, to which it assigns values of 0 or 1. A program design method cannot change the input relay status, and therefore cannot rewrite the corresponding basic units of an input relay, and WPLSoft cannot be used to perform compulsory On/Off actions. A relay's contacts (contacts a and b) can be used an unlimited number of times. An input relay with no input signal must be left idle and cannot be used for some other purpose. Device indicated as: X0, X1, X7, X10, X11, etc. This device is expressed with the symbol "X," and a device's order is indicated with an octal number. Input point numbers are indicated in the main computer and in expansion devices.
Output relay	 An output relay constitutes the basic unit of storage in a PLC's internal memory corresponding to an external output point (which connects with an external load). It may be driven by an input relay contact, a contact on another internal device, or its own contacts. It uses one NO contact to connect with external loads or other contacts, and, like input contacts, can use the contact an unlimited number of times. An output relay with no input signal will be idle, but may be used an internal relay if needed. Device indicated as: Y0, Y1, Y7, Y10, Y11, etc. This device is expressed with the symbol "Y," and a device's order is indicated with an octal number. Output point numbers are indicated in the main computer and in expansion devices.
Internal relay	 Internal relays have no direct connection with the outside. These relays are auxiliary relays inside a PLC. Their function is the same as that of an auxiliary (central) relay in an electrical control circuit: Each auxiliary relay corresponding to a basic unit of internal storage; they can be driven by input relay contacts, output relay contacts, and the contacts of other internal devices. An internal auxiliary relay's contact can also be used an unlimited number of times. Internal relays have no outputs to outside, and must output via an output point. Device indicated as: M0, M1 to M799, etc. This device is expressed as the symbol "M," expressed, and its order is expressed as a decimal number.
Counter	 A counter is used to perform counting operations. A count setting value (such as the number of pulses to be counted) must be assigned when a counter is used. A counter contains a coil, contact, and a counting storage device. When the coil goes from Off → On, this indicates that the counter has an input pulse, and one is added to its count. There are 16 bits that can be employed by the user. Device indicated as: C0, C1 to C79, etc. This device is expressed as the symbol "C," expressed, and its order is expressed as a decimal number.
Timer	 A timer is used to complete control of timing. The timer contains a coil, contact, and a time value register. When the coil is electrified, if the preset time is reached, the contact will be actuated (contact a will close, contact b will open), and the timer's fixed value be given by the set value. Timer has a regulated clock cycle (timing units: 100 ms). As soon as power to the coil is cut off, the contact will no longer be actuated (contact a will open, contact b will close), and the original timing value will return to zero. Device indicated as: T0, T1 to T159, etc. The device is expressed as the symbol "T," and its order is expressed as a decimal number.
Data register	 When a PLC is used to perform various types of sequence control and set time value and count value control, it most commonly perform data processing and numerical operations, and data registers are used exclusively for storage of data and various parameters. Each data register contains 16 bits of binary data, which means that it can store one word. Two data registers with adjacent numbers can be used to process double words. Device indicated as: D0, D1 to D399, etc. The device is expressed as the symbol "D," and its order is expressed as a decimal number.

Tab. 16-3: Introduction to the basic internal devices in a PLC

Ladder diagram images and their explanation

Ladder diagram structures	Explanation of commands	Command	Using device
	NO switch, contact a	LD	X/Y/M/T/C
//	NC switch, contact b	LDI	X/Y/M/T/C
<u> </u>	Series NO	AND	X/Y/M/T/C
	Series NC	ANI	X/Y/M/T/C
	Parallel NO	OR	X/Y/M/T/C
	Parallel NC	ORI	X/Y/M/T/C
├ ↑	Positive edge-triggered switch	LDP	X/Y/M/T/C
$ \downarrow $	Negative edge-triggered switch	LDF	X/Y/M/T/C
<u> </u> ↑	Positive edge-triggered series	ANDP	X/Y/M/T/C
$ \downarrow $	Negative edge-triggered series	ANDF	X/Y/M/T/C
	Positive edge-triggered parallel	ORP	X/Y/M/T/C
	Negative edge-triggered parallel	ORF	X/Y/M/T/C
	Block series	ANB	-
	Block parallel	ORB	_
	Multiple outputs	MPS MRD MPP	_

Tab. 16-4: Ladder diagram elements (1)

Ladder diagram structures	Explanation of commands	Command	ommand Using device		
———————————————————————————————————————	Coil driven output commands	OUT	-		
	Some basic commands, applications commands	Some basic com- mands, Applica- tions com- mands	Depends on the command		
<u> </u>	Inverted logic	INV	-		

Tab. 16-4: Ladder diagram elements (2)

16.4.3 Using switches and sensors

PLC programs need to be able respond to signals from switches, buttons and sensors to perform the correct functions. It is important to understand that program instructions can only poll the **binary signal state** of the specified input – irrespective of the type of input and how it is controlled.

This means that when you are writing your program you need to be aware whether the element connected to the input of your PLC is a make or a break device. An input connected to a normally open device must be treated differently to an input connected to a normally closed device.

Usually, switches with normally open contacts are used. Sometimes, however, normally closed contacts are used for safety reasons – for example for switching off drives.

16.4.4 Overview of PLC ladder diagram editing

The program editing method begins from the left busbar and proceeds to the right busbar (the right busbar is omitted when editing using WPLSoft). Continue to the next row after completing each row; there is a maximum of 11 contacts on each row. If this is not sufficient, a continuous line will be generated to indicate the continued connection and more devices can be added. A continuous series of numbers will be generated automatically and identical input points can be used repeatedly. See figure below:

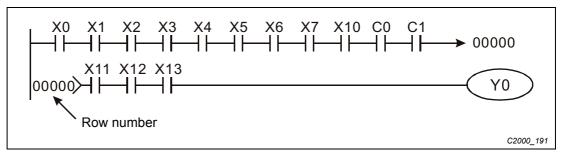


Fig. 16-21: The whole row contains more than 11 contacts and is therefore divided.

The ladder diagram programming method involves scanning from the upper left corner to the lower right corner. The coils and applications command computing box are handled in the output, and the ladder diagram is placed on the farthest right. Taking the figure below as an example, we can gradually analyze the procedural sequence of the ladder diagram. The number in the upper right corner gives the sequential order.

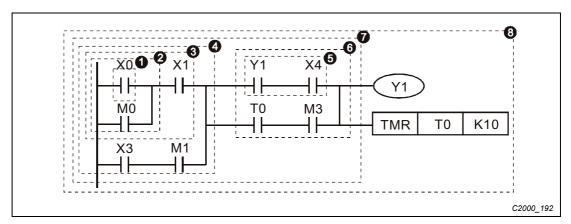
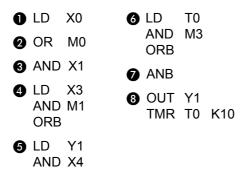



Fig. 16-22: Explanation of command sequence

Explanation of basic structure of ladder diagrams

■ LD and LDI command

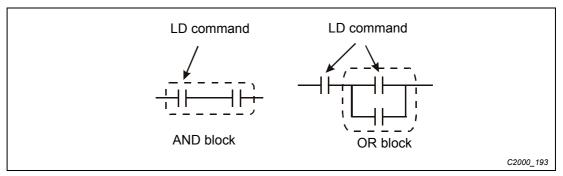


Fig. 16-23: LD command; the LDI command uses a normally closed contact

■ LDP and LDF command

LDP and LDF have this command structure, but there are differences in their action state. LDP, LDF only act at the rising or falling edge of a conducting contact. (see figure below):

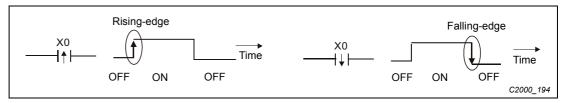


Fig. 16-24: LDP command (left) and LDF command (right)

AND and ANI command

A series configuration in which a single device is connected with one device or a block.

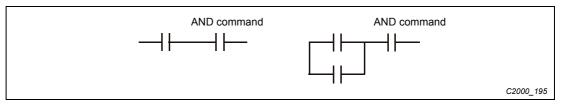


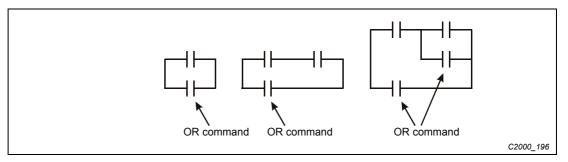
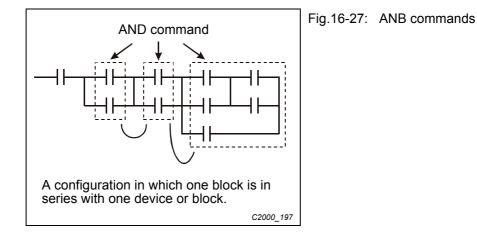
Fig. 16-25: AND command; the ANI command uses a normally closed contact

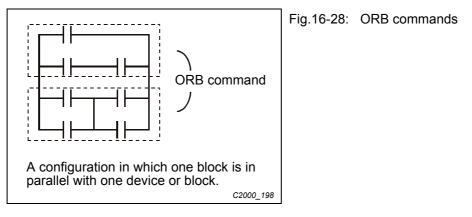
ANDP and ANDF command

ANDP, ANDF also have structures like this, but their action occurs at the rising and falling edge.

OR and ORI command

A single device is connected with one device or a block.


Fig. 16-26: OR command; the ORI command uses a normally closed contact

ORP and ORF command

ORP, ORF also have identical structures like OR and ORI, but their action occurs at the rising and falling edge.

ANB and ORB command

In the case of ANB and ORB operations, if a number of blocks are connected, they should be combined to form a block or network from the top down or from left to right.

■ MPS, MRD, MPP commands

Branching point memory for multiple outputs, enabling multiple, different outputs. The MPS command begins at a branching point, where the so-called branching point refers to the intersection of horizontal and vertical lines. We have to rely on the contact status along a single vertical line to determine whether the next contact can give a memory command. While each contact is basically able to give memory commands, in view of convenience and the PLC's capacity restrictions, this can be omitted from some places when converting a ladder diagram. The structure of the ladder diagram can be used to judge what kinds of contact memory commands are used.

MPS can be distinguished by use of the T symbol; this command can be used consecutively for up to 8 times. The MRD command is read from branching point memory; because logic states along any one vertical line must be the same, in order to continue analysis of other ladder diagrams, the original contact status must be read.

MRD can be distinguished by use of the | symbol. The MPP command is read from the starting state of the uppermost branching point, and it is read from the stack (pop); because it is the final command along a vertical line, it indicates that the state of the vertical line can be concluded.

MPP can be distinguished by use of the L symbol. Although there should basically be no errors when using the foregoing analytical approach, the compiling program may sometimes omit identical state output, as shown in the following figure:

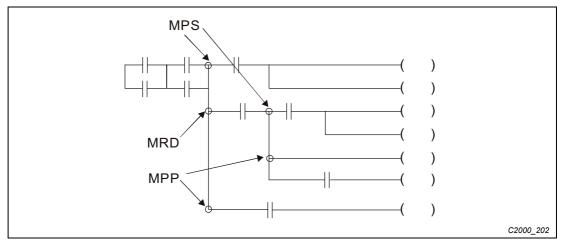
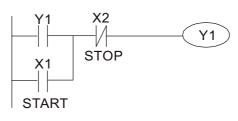
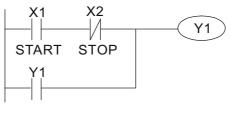


Fig. 16-29: MPS, MRD, and MPP commands



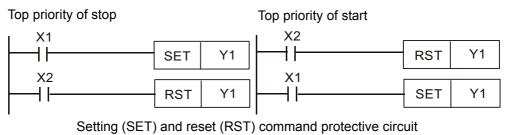
16.4.5 Commonly-used basic program design examples

Start, stop, and protection


Some applications may require a brief close or brief break using the buttons to start and stop equipment. A protective circuit must therefore be designed to maintain continued operation in these situations; this protective circuit may employ one of the following methods:

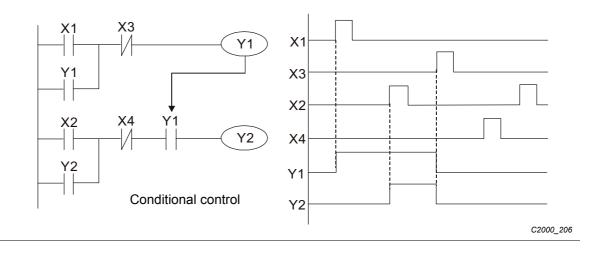
EXAMPLE 1 Priority stop protective circuit When the start NO contact X1 = On, and the stop NC contact X2 = Off, Y1 = On; if X2 = On at this time, coil Y1 will no longer be electrified, and this is therefore referred to as priority stop.

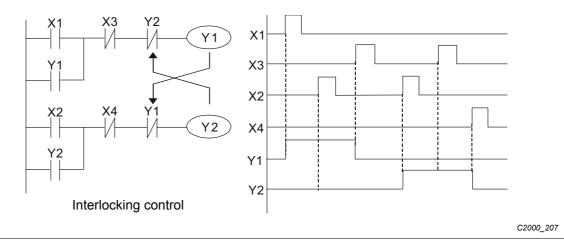
C2000_203


EXAMPLE 2 Priority start protective circuit When start NO contact X1 = On, and the stop NC contact X2 = Off, Y1 = On, and coil Y1 will be electrified and protected. At this time, if X2 = On, coil Y1 will still protect the contact and continue to be electrified, and this is therefore priority start.

C2000_203

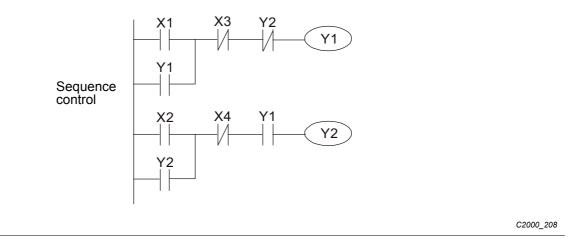
EXAMPLE 3 The following figure shows a protective circuit composed of RST and SET commands. Priority stop occurs when the RST command is placed after the SET command. Because the PLC executes programs from the top down, at the end of the program, the state of Y1 will indicate whether coil Y1 is electrified. When X1 and X2 are both actuated, Y1 will lose power, and this is therefore priority stop.


Priority start occurs when the SET command is placed after the RST command. When X1 and X2 are both actuated, Y1 will be electrified, and this is therefore priority start.

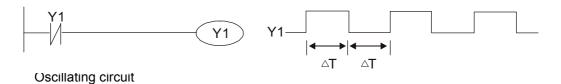

C2000_205

Commonly-used control circuits

EXAMPLE 4 X1, X3 are respectively start/stop Y1, and X2, X4 are respectively start/stop Y2; all have protective circuits. Because Y1's NO contact is in series with Y2's circuit, it becomes an AND condition for the actuation of Y2. The action of Y1 is therefore a condition for the action of Y2, and Y1 must be actuated before Y2 can be actuated.

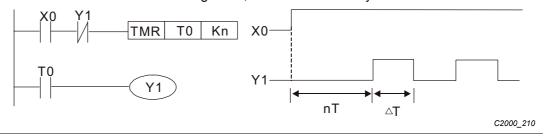


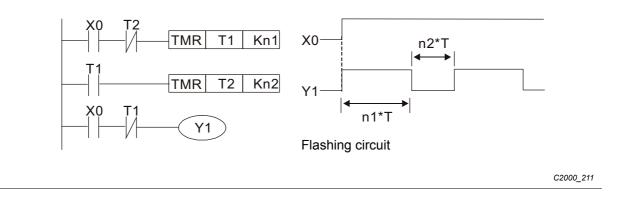
EXAMPLE 5 The figure below shows an interlocking control circuit. Depending on which of the start contacts X1, X2 is valid first, the corresponding output Y1 or Y2 will be actuated, and when one is actuated, the other will not be actuated. This implies that Y1 and Y2 cannot be actuated at the same time (interlocking effect). Even if both X1 and X2 are valid at the same time, because the ladder diagram program is scanned from the top down, it is impossible for Y1 and Y2 to be actuated at same time. This ladder diagram assigns priority only to Y1.



EXAMPLE 6 If the NC contact of Y2 in the interlocking control configuration of example 5 is put in series with the Y1 circuit, so that it is an AND condition for actuation of Y1 (see figure below), not only is Y1 a condition for the actuation of Y2 in this circuit, the actuation of Y2 will also stop the actuation of Y1. This configuration confirms the actuation order of Y1 and Y2.

EXAMPLE 7 Oscillating circuit with a period of $\triangle T + \triangle T$

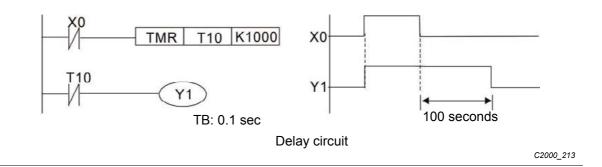

The figure below shows a very simple ladder diagram. When starting to scan the Y1 NC contact, because the Y1 coil has lost power, the Y1 NC contact will be closed. When the Y1 coil is then scanned, it will be electrified, and the output will be 1. When the Y1 NC contact is scanned in the scanning cycle, because Y1 coil is electrified, the Y1 NC contact will be open, the Y1 coil will then lose power, and the output will be 0. Following repeated scanning, the output of Y1 coil will have an oscillating waveform with a period of $\triangle T$ (On) + $\triangle T$ (Off).


Oscillating circuit with a period of $nT+ \triangle T$

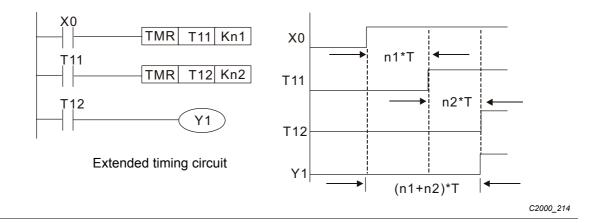
C2000_209

The program of the ladder diagram shown below uses timer T0 to control coil Y1's electrified time. After Y1 is electrified, it causes timer T0 to close during the next scanning cycle, which will cause the output from Y1 to have the oscillating waveform shown in the figure below. Here n is the timer's decimal setting value, and T is the clock cycle of the timer.

EXAMPLE 8 The following figure shows an oscillating circuit of a type commonly used to cause an indicator light to flash or a buzzers to buzz. It uses two timers to control the On and Off time of Y1 coil. Here n1, n2 are the timing set values of T1 and T2, and T is the clock cycle of the timer.



EXAMPLE 9 In the figure below, a command consisting of the differential of the rising edge of X0 causes coil M0 to generate a single pulse for △T (length of one scanning cycle), and coil Y1 is electrified during this scanning cycle. Coil M0 loses power during the next scanning cycle, and NC contact M0 and NC contact Y1 are both closed. This causes coil Y1 to stay in an electrified state until there is another rising edge in input X0, which again causes the electrification of coil M0 and the start of another scanning cycle, while also causing coil Y1 to lose power, etc. The sequence of these actions can be seen in the figure below. This type of circuit is commonly used to enable one input to perform two actions in alternation. It can be seen from the time sequence in the figure below that when input X0 is a square wave signal with a period of T, the output of coil Y1 will be a square wave signal with a period of 2T.



EXAMPLE 10 When input X0 is On, because the corresponding NC contact will be Off, the timer T10 will be in no power status, and output coil Y1 will be electrified. T10 will receive power and begin timing only after input X0 is Off, and output coil Y1 will be delayed for 100 sec. (K1000*0.1 sec. = 100 sec.) before losing power; please refer to the sequence of actions in the figure below.

- **EXAMPLE 11** The open/close delay circuit is composed of two timers; output Y4 will have a delay whether input X0 is On or Off.
- **EXAMPLE 12** The open/close delay circuit is composed of two timers; output Y4 will have a delay whether input X0 is On or Off.

16.5 Various PLC device functions

Item	Specifications	Notes
Algorithmic control method	Program stored internally, alternating back-and-forth scanning method	
Input/output control method	When it starts again after ending (after execution to the END com- mand), the input/output has an imme- diate refresh command	
Algorithmic processing speed	Basic commands (several µs)	Applications command (1 µs to several tens of µs)
Programming language	Command and ladder diagram	
Program capacity	10000 steps	
Input/output terminal	Input (X): 10, output (Y): 4	This number of contacts consti- tutes C2000 input/output con- tacts; other devices have differ- ent correspondences

Tab. 16-5: General system data

Туре	Device	ce Item		Range		Function
Relay bit form	х	External in		X0–X17, 16 points, octal number	Total	Corresponds to external input point
	Y	External output relay		Y0–Y17, 16 points, octal number	32 points	Corresponds to external output point
	М	Auxiliary	General use	M0–M799, 800 points	Total 880 points	Contact can switch On/Off within the program
		relay	Special purpose	M1000–M1079, 80 points		
	т	Timer	100 ms timer	T0–T159, 160 points	Total 160 points	Timers referred to by the TMR command; contact of the T with the same number will go On when the time is reached
	С	Counter	16-bit counter, general use	C0–C79, 80 points	Total 80 points	Counter referred to by the CNT command; contact of the C with the same number will go On when the count is reached
Register word data	т	Current timer value		T0-T159, 160 points		The contact will be On when the time is reached
	С	Current counter value		C0-C79, 16-bit counter 80 points		The counter contact will come On when the count is reached
	D Data register	Data	Used to maintain power Off	D0–D399, 400 points	Total	
		Special purpose	D1000–D1199, 200 points D2000–D2799, 800 points	1400 points	Used as data storage memory area	
Constant	к	Decimal	Single- byte	Setting range: K-32,768–K32,767		
		Decima	Double- byte	Setting range: K-2,147,483,648-K2,147,483,647		
	н	Hexa-	Single- byte	Setting range: H0000–HFFFF		
		decimal	Double- byte	Setting range	e: H00000000	-HFFFFFFF
T-1 40 0						

Tab. 16-6: Devices of the build-in PLC

16.5.1 Introduction to device functions

Inputs (X)

Input contact X functions: Input contact X is connected with an input device, and reads input signals entering the PLC. The number of times that contact a or b of input contact X is used in the program is not subject to restrictions. The On/Off state of input contact X will change as the input device switches On and Off; a peripheral device (WPLSoft) cannot be used to force contact X On or Off.

Outputs (Y)

The job of output contact Y is to send an On/Off signal to drive the load connected with output contact Y. Output contacts consist of two types: relays and transistors. While number of times that contact a or b of each output contact Y is used in the program is not subject to restrictions, it is recommended that the number of output coil Y be used only once in a program, otherwise the right to determine the output state when the PLC performs program scanning will be assigned to the program's final output Y circuit.

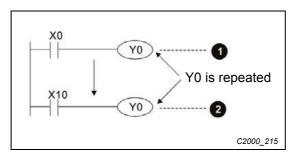
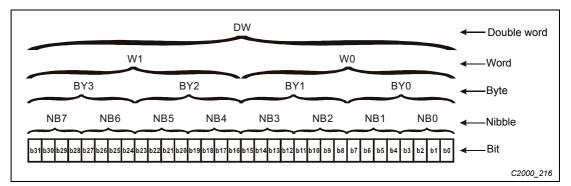


Fig.16-30: The output of Y0 will be decided by circuit (2), i.e. decided by On/ Off of X10.

The PLC can use five types of numerical values to implement calculations based on its control tasks; the following is an explanation of the missions and functions of different numerical values.

Numbering systems


Binary Number, BIN

The PLC's numerical operations and memory employ binary numbers. Binary nibbles and relevant terms are explained as follows:

Term	Description
Bit	Bits are the fundamental units of binary values, and have a state of either 1 or 0
Nibble	Comprised of a series of 4 bits (such as b3-b0); can be used to express a one-nibble dec- imal number 0-9 or hexadecimal number: 0-F.
Byte	Comprised of a series of two nibbles (i.e. 8 bits, b7-b0); can express a hexadecimal number: 00-FF.
Word	Comprised of a series of two bytes (i.e. 16 bits, b15-b0); can express a hexadecimal num- ber with four nibbles: 0000-FFFF.
Double word	Comprised of a series of two words (i.e. 32 bits, b31-b0); can express a hexadecimal number with eight nibbles: 00000000-FFFFFFFF

Tab. 16-7: Terms in a binary system

Relationship between bits, digits, nibbles, words, and double words in a binary system (see figure below):

Octal number, OCT

The external input and output terminals of a DVP-PLC are numbered using octal numbers

Example: External input: X0–X7, X10–X17...(Device number table);

External output: Y0–Y7, Y10–Y17...(Device number table)

Decimal number, DEC

Decimal numbers are used for the following purposes in a PLC system:

The setting values of timer T or counter C, such as TMR C0 K50. (K constant)

The numbers of devices including M, T, C, or D, such as M10 or T30. (device number)

Used as a operand in an application command, such as MOV K123 D0. (K constant)

■ Binary code decimal, BCD

Uses one nibble or 4 bits to express the data in a decimal number; a series of 16 bits can therefore express a decimal number with 4 nibbles. Chiefly used to read the input value of a fingerwheel numerical switch input or output a numerical value to a seven-segment display driver.

■ Hexadecimal number, HEX

Applications of hexadecimal numbers in a PLC system: Used as operands in application commands, such as MOV H1A2B D0. (H constant)

Constants

Device	Length	Symbol	System	Range
Constant	Single-byte	K	Decimal	K-32,768–K32,767
	Double-byte	K		K-2,147,483,648–K2,147,483,647
	Single-byte	н	Hexadecimal	H0000–HFFFF
	Double-byte			H0000000-HFFFFFFF

Tab. 16-8: Numerical value, constant [K]/[H]

Constant K

Decimal numbers are usually prefixed with a "K" in a PLC system, such as K100. This indicates that it is a decimal number with a numerical value of 100.

Exceptions: K can be combined with bit device X, Y, M, or S to produce data in the form of a nibble, byte, word, or double word, such as in the case of K2Y10 or K4M100. Here K1 represents a 4-bit combination, and K2-K4 variously represent 8-, 12-, and 16-bit combinations.

Constant H

Hexadecimal numbers are usually prefixed with the letter "H" in a PLC system, such as in the case of H100, which indicates a hexadecimal number with a numerical value of 100.

Functions of auxiliary relays

Like an output relay Y, an auxiliary relay M has an output coil and contacts a and b, and the number of times they can be used in a program is unrestricted. Users can use an auxiliary relay M to configure the control circuit, but cannot use it to directly drive an external load. Auxiliary relays have the following two types of characteristics:

Ordinary auxiliary relays: Ordinary auxiliary relays will all revert to the Off state if a power outage occurs while the PLC is running, and will remain in the Off state if power is again turned down.

Special purpose auxiliary relays: Each special purpose auxiliary relay has its own specific use. Do not use any undefined special purpose auxiliary relays.

Timer functions

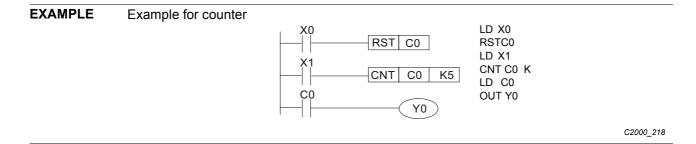
Timers take 100 ms as their timing units. When the timing method is an upper time limit, when the current timer value = set value, power will be sent to the output coil. Timer setting values consist of decimal K values, and the data register D can also serve as a setting value.

Actual timer setting time = timing units * set value

Counter

Counter features

ltem	16-bit counter
Туре	General Type
CT Direction:	Score
Setting	0–32,767
Designation of set value	Constant K or data register D
Change in current value	When the count reaches the set value, there is no longer a count
Output contact	When the count reaches the set value, the contact comes On and stays On
Reset	The current value reverts to 0 when an RST command is executed, and the contact reverts to Off
Contact actuation	All are actuated after the end of scanning


Tab. 16-9: Counter of the build-in PLC

Counter functions

When a counter's counting pulse input signal goes $Off \rightarrow On$, if the counter's current value is equal to the set value, the output coil will come On. The setting value will be a decimal K values, and the data register D can also serve as a setting value.

- 16-bit counter C0-C79
- 16-bit counter setting range: K0-K32,767. (When K0 and K1 are identical, the output contact will immediately be On during the first count.)
- The current counter value will be cleared from an ordinary counter when power is shut off to the PLC.
- If the MOV command or WPLSoft is used to transmit a value greater than the set value to the C0 current value register, when the next X1 goes from Off → On, the C0 counter contact will change to On, and the current value will change to the set value.
- A counter's setting value may be directly set using a constant K or indirectly set using the value in register D (not including special data registers D1000–D1199 and D2000–D2799).
- If the set value employs a constant K, it may only be a positive number; the set value may be either a positive or negative number if the value in data register D is used. The current counter value will change from 32,767 to -32,768 as the count continues to accumulate.



Fig. 16-32: Devices of the example

- When X0 = On and the RST command is executed, the current value of C0 will revert to 0, and the output contact will revert to Off.
- When X1 changes from Off → On, the current value of the counter will execute an increase (add one).
- When the count of counter C0 reaches the set value K5, the contact C0 will come On, and the current value of C0 = set value = K5. Afterwards, signal C0 triggered by X1 cannot be received, and the current value of C0 will remain K5.

16.5.2 Introduction to special relay functions (special M)

Special M	Description of function	R/W
M1000	Operates monitor NO contact (contact a). NO while RUN, contact a. This contact is On	D
M1000	while in the RUN state. Operates monitor NC contact (contact b). NC while RUN, contact b. This contact is Off	R
M1001	while in the RUN state.	R
M1002	Initiates a forward (the instant RUN is On) pulse. Initial pulse, contact a. Produces a for- ward pulse the moment RUN begins; its width = scan cycle	R
M1003	Initiates a reverse (the instant RUN is Off) pulse. Initial pulse, contact a. Produces a reverse pulse the moment RUN ends; the pulse width = scan cycle	R
M1004	Reserved	R
M1005	Driver malfunction instructions	R
M1006	Converter has no output	R
M1007	Driver direction FWD(0)/REV(1)	R
M1008		
– M1010	-	_
M1010	10 ms clock pulse (5 ms On/5 ms Off)	R
M1011	100 ms clock pulse (50 ms On/50 ms Off)	R
M1012	1 sec. clock pulse (0.5 s On/0.5 s Off)	R
M1013	1 min. clock pulse (30 s On/30 s Off)	R
M1014	Frequency attained (when used together with M1025)	R
M1015	Parameter read/write error	R
M1010	Parameter write successful	R
M1017		N
M1018	-	_
M1019	Zero flag	R
M1020	Borrow flag	R
M1021	č	R
M1022	Carry flag Divisor is 0	R
		ĸ
M1024		_
M1025	Driver frequency = set frequency (ON) Driver frequency =0 (OFF)	RW
M1026	Driver operating direction FWD(OFF)/REV(ON)	RW
M1027	Driver reset	RW
M1028	-	—
M1029	-	—
M1030	-	—
M1031	Compulsory setting of the current PID integral value equal to D1019 (0 change, 1 valid)	RW
M1032	Compulsory definition of FREQ command after PID control	RW
M1033	-	_
M1034	Initiates CANopen [®] real-time control	RW
M1035	Initiates internal communications control	RW
M1036	Ignore calendar error	RW
M1037	-	—
M1038	MI8 count begins	RW
M1039	Reset MI8 count value	RW
M1040	Hardware power (Servo On)	RW
M1041	-	—
M1042	Quick stop	RW
M1043	-	—
M1044	Pause	RW
M1045		
– M1047		_
M1048	Move to new position	RW
	: Special relays of the build-in PLC of the C2000 series (1)	

Tab. 16-10: Special relays of the build-in PLC of the C2000 series (1)

Special M	Description of function	R/W
M1049	-	—
M1050	Absolute position/relative position (0: relative/1: absolute)	RW
M1051	-	—
M1052	Lock frequency (lock, frequency locked at the current operating frequency)	RW
M1053	-	—
M1054	Compulsory reset of absolute position	RW
M1055	Search Origin	RW
M1056	Hardware already has power (Servo On Ready)	R
M1057	-	—
M1058	On Quick Stopping	R
M1059	CANopen® Master setting complete	R
M1060	CANopen [®] Currently initializing slave station	R
M1061	CANopen® Slave station initialization failure	R
M1062	_	_
M1063	Torque attained	R
M1064	Target reached	R
M1065	Read/write CANopen [®] data time out	R
M1066	Read/write CANopen [®] data complete	R
M1067	Read/write CANopen [®] data successful	R
M1068	Calendar calculation error	R
M1069	-	_
M1070	Return home complete	R
M1071	Homing error	R
M1072		
-	-	—
M1075	Onlandan line anna an afrach line ach	D
M1076	Calendar time error or refresh time out	R
M1077	485 Read/write complete	R
M1078	485 Read-write error	R
M1079	485 Communications time out	R

Tab. 16-10: Special relays of the build-in PLC of the C2000 series (2)

16.5.3 Introduction to special register functions (special D)

R/W items: R = Read only function; RW = Read and write function

Special D	Description of function	R/W
D1000		_
D1001	Device system program version	R
D1002	Program capacity	R
D1003	Total program memory content	R
D1004		
_ D1009	-	—
D1009	Current scan time (units: 0.1 ms)	R
	Minimum scan time (units: 0.1 ms)	R
D1011 D1012		R
D1012	Maximum scan time (units: 0.1 ms)	ĸ
-	_	_
D1017		
D1018	Current integral value	R
D1019	Compulsory setting of PID I integral	RW
D1020	Output frequency (0.000–600.00 Hz)	R
D1021	Output current (####.#A)	R
D1022	AI AO DI DO Expansion card number 0: No expansion card 4: AC input card (6 in) (EMC-D611A) 5: I/O Card (4 in 2 out) (EMC-D42A) 6: Relay card (6 out) (EMC-R6AA)	R
D1023	Communication expansion card number 0: No expansion card 1: DeviceNet Slave 2: Profibus-DP Slave 3: CANopen [®] Slave 4: MODBUS [®] -TCP Slave 5: EtherNet/IP Slave	R
D1024		
– D1026	—	_
D1027	PID calculation frequency command (frequency command after PID calculation)	R
D1028	AVI value (0.00–100.00 %)	R
D1029	ACI value (0.0–100.00 %)	R
D1030	AUI value (-100.0–100.00 %)	R
D1031		
– D1035	-	_
D1036	Servo error bit	R
D1037	Driver output frequency	R
D1038	DC BUS voltage	R
D1039	Output voltage	R
D1040	Analog output value AFM1(-100.00–100.00 %)	RW
D1041		
– D1042	-	—
D1042	Can be user-defined (will be displayed on panel when parameter 00-04 is set as 28; display method is C xxx)	RW
D1044		_
D1045	Analog output value AFM2(-100.00–100.00 %)	RW
D1046		
_ D1049	-	—
	: Special registers of the build in PLC of the C2000 series (1)	

Tab. 16-11: Special registers of the build-in PLC of the C2000 series (1)

Special D	Description of function	R/W
	Actual Operation Mode	
D4050	0: Speed	P
D1050	1: Position 2: Torque	R
	3: Homing Origin	
D1051	Actual position (Low word)	R
D1052	Actual position (High word)	R
D1053	Actual torque	R
D1054	MI8 current calculated count value (L Word)	R
D1055	MI8 current calculated count value (H Word)	R
D1056	Calculated frequency of the pulses at MI8	R
D1057	Multiplication factor	RW
D1058	Calculation interval (gate time) for frequency measurement on MI8 [ms]	RW
D1059	Number of decimal points for frequency measurement on MI8 [0–3]	RW
	Operation Mode setting	
	0: Speed	
D1060	1: Position 2: Torque	RW
	3: Homing Origin	
D1061	485 COM1 communications time out time (ms)	RW
D1062	Torque command (torque limit in speed mode)	RW
D1063	Year (Western calendar) (display range 2000-2099) (must use KPC-CC01)	R
D1064	Week (display range 1-7) (must use KPC-CC01)	R
D1065	Month (display range 1-12) (must use KPC-CC01)	R
D1066	Day (display range 1-31) (must use KPC-CC01)	R
D1067	Hour (display range 0-23) (must use KPC-CC01)	R
D1068	Minute (display range 0-59) (must use KPC-CC01)	R
D1069	Second (display range 0-59) (must use KPC-CC01)	R
D1100	Target frequency	R
D1101	Target frequency (must be operating)	R
D1102	Reference frequency	R
D1103	Target L	R
D1104	Target H	R
D1105	Target torque	R
D1106		
D1107	π (Pi) Low word	R
D1108	π (Pi) High word	R
D1109	Random number	R
D1110	Internal node communications number (set number of slave stations to be controlled)	RW
D1111	Encoder Pulses L	R
D1112	Encoder Pulses H	R
D1113	-	R
D1114	_	_
D1115	Internal node synchronizing cycle (ms)	R
D1116	Internal node error (bit 0 = Node 0, bit 1 = Node 1,bit 7 = Node 7)	R
D1117	Internal node online correspondence (bit 0 = Node 0, bit 1 = Node 1,bit 7 = Node 7)	R
D1118	-	_
D1119	-	_
D1120	Internal node 0 control command	RW
D1121	Internal node 0 mode	RW
D1122	Internal node 0 reference command L	RW
D1123	Internal node 0 reference command H	RW
D1124	_	_
D1125	_	_
D1126	Internal node 0 status	R
D1127	Internal node 0 reference status L	R
D1128	Internal node 0 reference status H	R
	: Special registers of the build in PLC of the C2000 series (2)	

Tab. 16-11: Special registers of the build-in PLC of the C2000 series (2)

Special D	Description of function	R/W
D1129	-	_
D1130	Internal node 1 control command	RW
D1131	Internal node 1 mode	RW
D1132	Internal node 1 reference command L	RW
D1133	Internal node 1 reference command H	RW
D1134	-	—
D1135	-	—
D1136	Internal node 1 status	R
D1137	Internal node 1 reference status L	R
D1138	Internal node 1 reference status H	R
D1139	-	—
D1140	Internal node 2 control command	RW
D1141	Internal node 2 mode	RW
D1142	Internal node 2 reference command L	RW
D1143	Internal node 2 reference command H	RW
D1144	—	—
D1145	-	—
D1146	Internal node 2 status	R
D1147	Internal node 2 reference status L	R
D1148	Internal node 2 reference status H	R
D1149	—	—
D1150	Internal node 3 control command	RW
D1151	Internal node 3 mode	RW
D1152	Internal node 3 reference command L	RW
D1153	Internal node 3 reference command H	RW
D1154	-	—
D1155	-	—
D1156	Internal node 3 status	R
D1157	Internal node 3 reference status L	R
D1158	Internal node 3 reference status H	R
D1159	-	—
D1160	Internal node 4 control command	RW
D1161	Internal node 4 mode	RW
D1162	Internal node 4 reference command L	RW
D1163	Internal node 4 reference command H	RW
D1164	-	—
D1165	-	—
D1166	Internal node 4 status	R
D1167	Internal node 4 reference status L	R
D1168	Internal node 4 reference status H	R
D1169	-	—
D1170	Internal node 5 control command	RW
D1171	Internal node 5 mode	RW
D1172	Internal node 5 reference command L	RW
D1173	Internal node 5 reference command H	RW
D1174	-	RW
D1175	-	—
<u> </u>		

Tab. 16-11: Special registers of the build-in PLC of the C2000 series (3)

Special D	Description of function	R/W
D1176	Internal node 5 status	_
D1177	Internal node 5 reference status L	R
D1178	Internal node 5 reference status H	R
D1179	-	—
D1180	Internal node 6 control command	RW
D1181	Internal node 6 mode	RW
D1182	Internal node 6 reference command L	RW
D1183	Internal node 6 reference command H	RW
D1184	-	—
D1185	-	—
D1186	Internal node 6 status	R
D1187	Internal node 6 reference status L	R
D1188	Internal node 6 reference status H	R
D1189	-	—
D1190	Internal node 7 control command	RW
D1191	Internal node 7 mode	RW
D1192	Internal node 7 reference command L	RW
D1193	Internal node 7 reference command H	RW
D1194	-	_
D1195	-	—
D1196	Internal node 7 status	R
D1197	Internal node 7 reference status L	R
D1198	Internal node 7 reference status H	R
D1199	-	_
T-1 40 44	Operated as sisters of the health in DLO of the OCOOO sector (4)	

Tab. 16-11: Special registers of the build-in PLC of the C2000 series (4)

Special register for the CANopen® Master function

The following special D can be written in STOP state of the PLC only.

n = 0–7

Special D	Description of function	PDO Map	Power off memory	Default	R/W
D1070	Channel opened by CANopen [®] initialization (bit 0 = Machine code 0)	NO	NO	0	R
D1071	Error channel occurring in CANopen [®] initialization process (bit 0 = Machine code 0)	NO	NO	0	R
D1072	Reserved	—	—		—
D1073	CANopen [®] break channel (bit 0 = Machine code 0)	NO	NO		R
D1074	Error code of master error 0: No error 1: Slave station setting error 2: Synchronizing cycle setting error (too small)	NO	NO	0	R
D1075	Reserved	—	—		—
D1076	SDO error message (main index value)	NO	NO		R
D1077	SDO error message (secondary index value)	NO	NO		R
D1078	SDO error message (error code)	NO	NO		R
D1079	SDO error message (error code)	NO	NO		R
D1080	Reserved	—	—		—
D1081 _ D1086	Reserved	_	_		-
D1087 - D1089	Reserved	_	_		_
D1090	Synchronizing cycle setting	NO	YES	4	RW
D1091	Sets slave station On or Off (bit 0-bit 7 correspond to slave stations number 0-7)	NO	YES	FFFFH	RW
D1092	Delay before start of initialization	NO	YES	0	RW
D1093	Break time detection	NO	YES	1000 ms	RW
D1094	Break number detection	NO	YES	3	RW
D1095 - D1096	Reserved	_	_		_
D1097	Corresponding real-time transmission type (PDO) Setting range: 1–240	NO	YES	1	RW
D1098	Corresponding real-time receiving type (PDO) Setting range: 1–240	NO	YES	1	RW
D1099	Initialization completion delay time Setting range: 1 to 60000 sec	NO	YES	15 sec	RW
D2000 + 100*n	Station number n of slave station Setting range: 0–127 0: No CANopen [®] function	NO	YES	0	RW

Tab. 16-12: Special register of the CANopen® master function

Special register with information about CANopen® slave stations

The C2000 supports 8 slave stations under the CANopen[®] protocol; each slave station occupies 100 special D locations; stations are numbered 1-8, total of 8 stations.

Station number	Special D	Description of function
1	D2000 D2001 - D2099	Node ID Slave station no. 1 torque restrictions – Address 4 (H) corresponding to receiving channel 4
2	D2100 D2101 - D2199	Node ID Slave station no. 2 torque restrictions – Address 4 (H) corresponding to receiving channel 4
3	D2200 D2201 - D2299	Node ID Slave station no. 3 torque restrictions – Address 4 (H) corresponding to receiving channel 4
8	D2700 D2701 - D2799	Node ID Slave station no. 8 torque restrictions – Address 4 (H) corresponding to receiving channel 4

Tab. 16-13: Assignment of the special registers to the slave stations

The range of n in the following table is 0–7.

uc						PDO D	efault		
Function	Special D	Description of function	Default	CAN index	1	2	3	4	R/W
	D2000+100*n	Station number n of slave station Setting range: 0–127 0: No CANopen® function	0	_	_	_	_	_	RW
म्	D2002+100*n	Manufacturer code of slave station number n (L)	0	—	—	—	—	_	R
General	D2003+100*n	Manufacturer code of slave station number n (H)	0	_	—	—	—	—	R
-	D2004+100*n	Manufacturer's product code of slave station number n (L)	0	_	—	—	—	—	R
	D2005+100*n	Manufacturer's product code of slave station number n (H)	0	_	—	—	—	—	R
	D2006+100*n	Communications break handling method of slave station number n	0	6007н-0010н	0	0	0	0	RW
S	D2007+100*n	Error code of slave station number n error	0	603Fн-0010н	0	0	0	0	R
Basic definitions	D2008+100*n	Control word of slave station number n	0	6040н-0010н	•	0	•	٠	RW
sic de	D2009+100*n	Status word of slave station number n	0	6041н-0010н		0			R
Ba	D2010+100*n	Control mode of slave station number n	2	6060н-0008н	0	0	0	0	RW
	D2011+100*n	Actual mode of slave station number n	2	6061н-0008н	0	0	0	0	R
	D2001+100*n	Torque restriction on slave station number n	0	6072н-0010н	0	0	0	0	RW
0	D2012+100*n	Target speed of slave station number n	0	6042н-0010н	•	0	0	0	RW
Contr	D2013+100*n	Actual speed of slave station number n	0	6043н-0010н	۸	0	0	0	R
Velocity Control	D2014+100*n	Error speed of slave station number n	0	6044н-0010н	0	0	0	0	R
Ve	D2015+100*n	Acceleration time of slave station number n	1000	604Fн-0020н	0	0	0	0	R
	D2016+100*n	Deceleration time of slave station number n	1000	6050н-0020н	0	0	0	0	RW

Tab. 16-14: Special register with information about CANopen[®] slave stations (1)

n						PDO D	efault		
Function	Special D	Description of function	Default	CAN index	1	2	3	4	R/W
Itrol	D2017+100*n	Target torque of slave station number n	0	6071н-0010н	0	0	0	•	RW
Torque control	D2018+100*n	Actual torque of slave station number n	0	6077н-0010н	0	0	0		R
Torqu	D2019+100*n	Actual current of slave station number n	0	6078н-0010н	0	0	0	0	R
	D2020+100*n	Target of slave station number n (L)	0	607Ан-0020н	~	0	•	~	RW
	D2021+100*n	Target of slave station number n (H)	0	607AH-0020H	0	0	•	0	RVV
ontrol	D2022+100*n	Actual position of slave station number n (L)	0	6064н-0020н	0	0		0	R
Position control	D2023+100*n	Actual position of slave station number n (H)	0	00048-00208	0	0		0	ĸ
Posi	D2024+100*n	Speed chart of slave station number n (L)	10000	6081н-0020н	0	0	0	0	RW
	D2025+100*n	Speed chart of slave station number n (H)	0	00011-00201	0	0	0	0	
	D2026+100*n	MI status of slave station number n	0	2026H-0110H	0		0	0	
Ses:	D2027+100*n	MO setting of slave station number n	0	2026н-4110н	0	•	0	0	
denc	D2028+100*n	AI1 status of slave station number n	0	2026н-6110н	0		0	0	
Donc I AC	D2029+100*n	AI2 status of slave station number n	0	2026н-6210н	0		0	0	
0 A	D2030+100*n	AI3 status of slave station number n	0	2026н-6310н	0	▲	0	0	RW
20XXH correspondences: MI MO AI AO	D2031+100*n	AO1 status of slave station number n	0	2026н-А110н	0	•	0	0	
20XX	D2032+100*n	AO2 status of slave station number n	0	2026н-А210н	0	•	0	0	
	D2033+100*n	AO3 status of slave station number n	0	2026н-А310н	0	•	0	0	
tion	D2034+100*n	Real-time transmission setting of slave station number n	000Ан	_	—	-	-	-	
PDO reflection length setting	D2067+100*n	Real-time reception setting of slave station number n	0000н	_	_	_	_	_	RW

Tab. 16-14: Special register with information about CANopen® slave stations (2)

- •: Indicates TXPDO
- ▲: Indicates RXPDO
- $_{\bigcirc}:$ Special D can be refreshed using the CANFLS command

R/W items: R = Read only function; RW = Read and write function

16.5.4 PLC Communication addresses for MODBUS[®] communication

Device	Range	Туре	Address (Hex)
Х	00-37 (Octal)	Bit	0400–041F
Y	00-37 (Octal)	Bit	0500–051F
т	00–159	Bit/word	0600–069F
Μ	000–799	Bit	0800–0B1F
Μ	1000–1079	Bit	0BE8-0C37
С	0–79	Bit/word	0E00–0E47
D	00–399	Word	1000–118F
D	1000–1099	Word	13E8–144B
D	2000–2799	Word	17D0–1AEF

Tab. 16-15: Communication addresses of the PLC devices

Command code that can be used

Function code	Description of function	Function target
01	Coil status read	Y, M, T, C
02	Input status read	X, Y, M, T, C
03	Read single unit of data	T, C, D
05	Compulsory single coil status change	Y, M, T, C
06	Write single unit of data	T, C, D
0F	Compulsory multiple coil status change	Y, M, T, C
10	Write multiple units of data	T, C, D

Tab. 16-16: Command codes for access to PLC devices

NOTE

When PLC functions have been activated, the C2000 can match PLC and driver parameters; this method employs different addresses for PLC and drivers. (Default station number for the driver is 1, PLC sets station number as 2.)

16.6 Introduction to the command window

16.6.1 Overview of basic commands

Command code	Function	Operand	Execution speed (µs)
LD	Load contact a		0.8
LDI	Load contact b		0.8
AND	Connect contact a in series	VIVINITIC	0.8
ANI	Connect contact b in series	X/Y/M/T/C	0.8
OR	Connect contact a in parallel		0.8
ORI	Connect contact b in parallel		0.8
ANB	Series circuit block	_	0.3
ORB	Parallel circuit block	_	0.3
MPS	Save to stack	_	0.3
MRD	Stack read (pointer does not change)	_	0.3
MPP	Read stack	_	0.3
T-1 40 47			

Tab. 16-17: Ordinary commands

Command code	Function	Operand	Execution speed (µs)
OUT	Drive coil	Y/M	1
SET	Action continues (ON)	Y/M	1
RST	Clear contact or register	Y/M/T/C/D	1.2

Tab. 16-18: Output, set and reset commands

Command code	Function	Operand	Execution speed (µs)
TMR	16-bit timer	T-K or T-D commands	1.1
CNT	16-bit counter	C-K or C-D (16-bit)	0.5

Tab. 16-19: Timer, counter

Command code	Function	Operand	Execution speed (μs)
MC	Common series contact connection	N0-N7	0.4
MCR	Common series contact release	INU-IN7	0.4

Tab. 16-20: Main control command

Command code	Function	Operand	Execution speed (µs)
LDP	Start of forward edge detection action		
LDF	Start of reverse edge detection action		
ANDP	Forward edge detection series connection	X/Y/M/T/C	1.1
ANDF	Reverse edge detection series connection	X/ 1/IW/ 1/C	1.1
ORP	Forward edge detection parallel connection		
ORF	Reverse edge detection parallel connection		
Tab. 10.04.	Contact vising adapticaling adapticat	ion commondo	

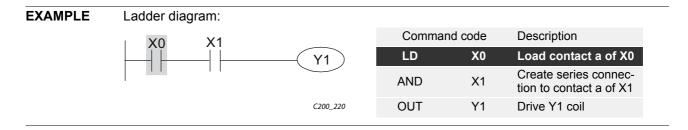
Tab. 16-21: Contact rising edge/falling edge detection commands

Command code	Function	Operand	Execution speed (µs)
PLS	Upper differential output	Y/M	1 2
PLF	Lower differential output	T/IVI	1.2

Tab. 16-22: Upper/lower differential output commands

Command code	Function	Operand	Execution speed (µs)
END	Program conclusion	N/A	0.2

Tab. 16-23: Programm end command


Command code	Function	Operand	Execution speed (µs)
NOP	No action	N/A	0.2
INV	Inverse of operation results	N/A	0.2
Р	Index	Р	0.3

Tab. 16-24: Other commands

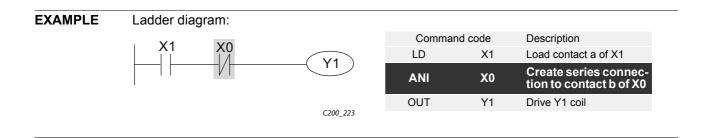
16.6.2 Detailed explanation of basic commands

Command			Func	tion		
LD	Load contact a					
Onerend	X0–X17	Y0-Y17	M0-M799	T0–159	C0–C79	D0–D399
Operand	1	1	1	1	1	_

DESCRIPTION The LD command is used for contact a starting at the left busbar or contact a starting at a contact circuit block; its function is to save current content and save the acquired contact status in the cumulative register.

Command			Func	tion		
LDI	Load contact b					
Onenand	X0–X17	Y0-Y17	M0-M799	T0–159	C0–C79	D0–D399
Operand	1	1	1	1	1	_

DESCRIPTION The LDI command is used for contact b starting at the left busbar or contact b starting at a contact circuit block; its function is to save current content and save the acquired contact status in the cumulative register.

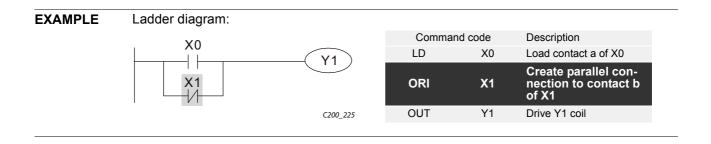

Command			Func	tion		
AND	Connect contac	t a in series				
Operand	X0–X17	Y0-Y17	M0-M799	T0–159	C0–C79	D0-D399
Operand	1	1	1	1	1	_

DESCRIPTION The AND command is used to create a series connection to contact a; first reads current status of the designated series contact and logical operation results before contact in order to perform "AND" operation; saves results in cumulative register.

EXAMPLE Ladder diagram: Command code Description LDI Load contact b of X1 X1 Y1 Create series connec-AND X0 tion to contact a of X0 OUT Y1 Drive Y1 coil C200_222

Command			Func	tion		
ANI	Connect contac	t b in series				
Onererd	X0–X17	Y0-Y17	M0–M799	T0–159	C0–C79	D0-D399
Operand	1	1	1	1	1	—

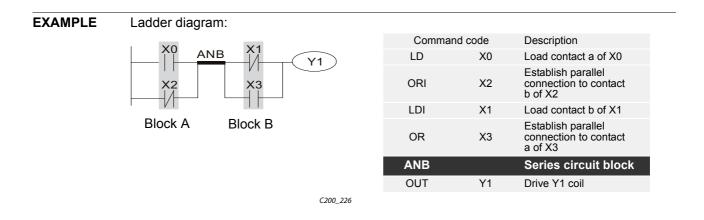
DESCRIPTION The ANI command is used to create a series connection to contact b; its function is to first read current status of the designated series contact and logical operation results before contact in order to perform "AND" operation; saves results in cumulative register.

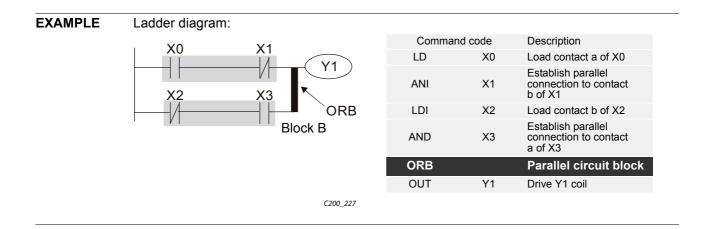

Command			Func	tion		
OR	Connect contac	t a in parallel				
Onenand	X0–X17	Y0-Y17	M0–M799	T0–159	C0–C79	D0–D399
Operand	1	1	1	1	1	_

DESCRIPTION The OR command is used to establish a parallel connection to contact a; its function is to first read current status of the designated series contact and logical operation results before contact in order to perform "OR" operation; saves results in cumulative register.

EXAMPLE Ladder diagram: Command code Description X0 LD X0 Load contact a of X0 Y1 -Create parallel con-OR X1 X1 nection to contact a of X1 C200_224 OUT Y1 Drive Y1 coil

Command			Func	tion		
ORI	Connect contac	t b in parallel				
Operand	X0–X17	Y0-Y17	M0-M799	T0–159	C0–C79	D0–D399
Operand	1	1	\checkmark	1	1	—


DESCRIPTION The ORI command is used to establish a parallel connection to contact a; its function is to first read current status of the designated series contact and logical operation results before contact in order to perform "OR" operation; saves results in cumulative register.

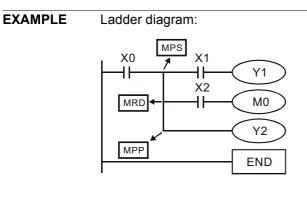

Command	Function
ANB	Series circuit block
Operand	N/A

DESCRIPTION ANB performs an "AND" operation on the previously saved logic results and the current cumulative register content.

Command	Function
ORB	Parallel circuit block
Operand	N/A

DESCRIPTION ORB performs an "OR" operation on the previously saved logic results and the current cumulative register content.

Command	Function
MPS	Save to stack
Operand	N/A


DESCRIPTION Save current content of cumulative register to the stack (Add one to stack pointer).

Command	F	Function
MRD	Read stack (pointer does not change)	
Operand		N/A

DESCRIPTION Reads stack content and saves to cumulative register (Stack pointer does not change).

Command		Function	
MPP	Read stack		
Operand	-	N/A	

DESCRIPTION Retrieves result of previously-save logical operation from the stack, and saves to cumulative register (Subtract one from stack pointer).

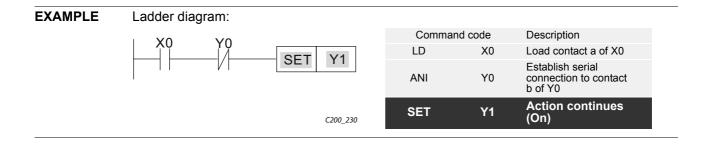
Comman	d code	Description
LD	X0	Load contact a of X0
MPS		Save to stack
AND	X1	Create series connection to contact a of X1
OUT	Y1	Drive Y1 coil
MRD		Read stack (pointer does not change)
AND	X2	Create series connection to contact a of X2
OUT	MO	Drive M0 coil
001		
MPP		Read stack
	Y2	Read stack Drive Y2 coil
MPP	Y2	

C200_228

Command			Func	tion		
OUT	Drive coil					
Onenend	X0–X17	Y0–Y17	M0-M799	T0–159	C0–C79	D0–D399
Operand	_	1	1	_	_	_

DESCRIPTION

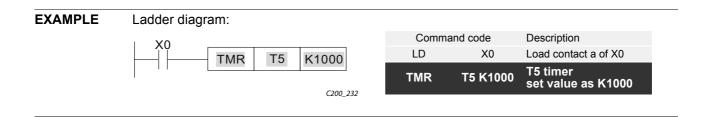
Outputs result of logical operation before OUT command to the designated element. Coil contact action:


		Out command	
Result:	Coil	Access	s Point:
	COII	Contact a (NO)	Contact b (NC)
FALSE	Off	Not conducting	Conducting
TRUE	On	Conducting	Not conducting

C200_229	OUT	Y1	Drive Y1 coil
	AND	X1	Establish serial connec- tion to contact a of X1
(V1)	LDI	X0	Load contact b of X0
	Comman	lu coue	Description

Command			Func	tion		
SET	Action continue	s (On)				
Onerand	X0–X17	Y0-Y17	M0–M799	T0–159	C0–C79	D0–D399
Operand	_	1	1	_	_	_

DESCRIPTION When the SET command is driven, the designated element will be set as On, and will be maintained in an On state, regardless of whether the SET command is still driven. The RST command can be used to set the element as Off.



	Command			Func	tion		
	RST	Clear contact o	or register				
	Operand	X0–X17	Y0-Y17	M0-M799	T0–159	C0–C79	D0–D399
	operand	—	1	1	1	1	1
ESCRIPTION	When the	RST commar	nd is driven, th	e action of the	edesignated	element will b	e as follows
	Elemen	nt	Мс	ode			
	Y, M	Both coil	and contact wi	ll be set as Off.			
	Т, С	The curre and both	ent timing or cou the coil and co	unt value will be ntact will be set	set as 0, as Off.		
	D	The cont	ent value will be	e set as 0.			
EXAMPLE	Ladder diag	ram:		Comm	and code	Description	
	XQ			LD	X0	Load contact a	of X0
		RST Y	5 C200_231	RST	Y5	Clear contac register	
	Command TMR Operand	16-bit timer T-K	T0–T159 · K0	Func –K32,767	tion		
	Operatio	T-D	T0-T159 · D0	–D399			
DESCRIPTION	timer will	begin timing	. The contact	d, the designa 's action will	be as follow		

				,		0						,	
timer wi	ill begin	timing.	The	contact's	action	will	be	as	follows	when	the	timing	valu
reaches	the desi	gnated	set va	alue (timin	g value	>= ;	set v	valu	e):				

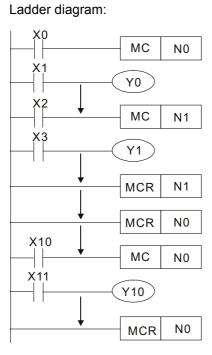
NO (Normally open) contact	Closed
NC (Normally close) contact	Open

If the RST command has not been executed, the status of the designated element will remain unchanged.

	Command			Funct	tion	
	CNT	16-bit counter				
	Operand	С-К	C0-C79 · K0-K32	2,767		
	Operatio	C-D	C0-C79 · D0-D3	99		
DESCRIPTION	counter co value; whe	il goes from	no power $ ightarrow$ elec eaches the desig	trified, and	1 will be a	dicates that the designated dded to the counter's count lue = set value), the contact
		NO (Normally	Open) contact	C	losed	
		NC (Normally (Close) contact	(Open	
	unchanged	d even if there				ount value will both remain the use the RST command if
	X0			Comm	and code	Description
		CNT C2	K100	LD	X0	Load contact a of X0
EXAMPLE			C200 233	CNT	C2 K100	C2counter set value as K100
			2200_255			

Command		Function
MC/MCR	Connect/release a common series contact	
Operand	N0–N7	

DESCRIPTION

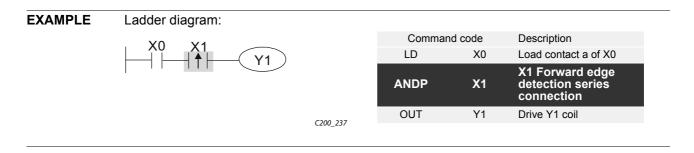

MC is the main control initiation command, and any commands between MC and MCR will be executed normally. When the MC command is Off, any commands between MC and MCR will act as follows:

Determination of commands	Description
Ordinary timer	The timing value will revert to 0, the coil will lose power, and the contact will not operate
Counter	The coil will lose power, and the count value and contact will stay in their current state
Coil driven by OUT command	None receive power
Elements driven by SET, RST commands	Will remain in their current state
Applications commands	None are actuated

C200_234

MCR is the main control stop command, and is placed at the end of the main control program. There may not be any contact commands before the MCR command. The MC-MCR main control program commands support a nested program structure with a maximum only 8 levels; use in the order N0-N7, please refer to the following program:

EXAMPLE

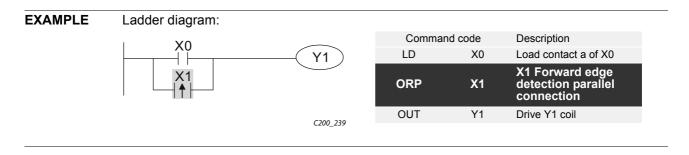

2		D
Comman		Description
LD	X0	Load contact a of X0
МС	N0	Connection of N0 common series contact
LD	X1	Load contact a of X1
OUT	Y0	Drive Y0 coil
:		
LD	X2	Load contact a of X2
MC	N1	Connection of N1 common series contact
LD	X3	Load contact a of X3
OUT	Y1	Drive Y1 coil
:		
MCR	N1	Release N1 common series contact
:		
MCR	N0	Release N0 common series contact
:		
LD	X10	Load contact a of X10
MC	N0	Connection of N0 common series contact
LD	X11	Load contact a of X11
OUT	Y10	Drive Y10 coil
:		
MCR	N0	Release N0 common series contact

	Command			Func	tion		
	LDP	Start of forward	l edge detection	action			
	Operand	X0–X17	Y0-Y17	M0–M799	T0–159	C0–C79	D0–D399
	oporaria	\checkmark	1	1	1	1	_
DESCRIPTION	save curre		hile also savi	sage as LD, bu ing the detecte			
EXAMPLE	Ladder diag	ram:					
	X0	X1	_	Comm	nand code	Description	
	<u> </u> ↑	(<u>Y1</u>		LDP	X0	Start of X0 fo edge detection	
				AND	X1	Create series c to contact a of 2	
				OUT	Y1	Drive Y1 coil	
			C200_235				
	A rising	of each opera g edge contac ore power is t	t will be TRU	IE after power he PLC.	is turned on	if the rising ec	lge contact is
	A rising	, g edge contac	t will be TRU			if the rising ed	dge contact is
	A rising On bef	g edge contac ore power is t	t will be TRU	he PLC. Func		if the rising ed	dge contact is
	 A rising On bef Command LDF 	g edge contactore power is to Start of reverse X0-X17	e edge detection Y0-Y17	he PLC. Func action M0–M799	tion T0-159	C0–C79	dge contact is D0-D399
	A rising On bef	g edge contactore power is to Start of reverse	et will be TRU urned on to t	he PLC. Func action	tion	-	
DESCRIPTION	 A rising On bef Command LDF Operand The LDF of save current 	Start of reverse X0-X17	e edge detection Y0-Y17 s the same us nile also savin	he PLC. Func action M0–M799	tion T0–159 ✓ ut its action	C0–C79 ✓ is different; its	D0–D399 — function is to
DESCRIPTION	 A rising On bef Command LDF Operand The LDF of save current 	start of reverse x_0-x_{17} command has ent content whulative register	e edge detection Y0-Y17 s the same us nile also savin	he PLC. Func action M0–M799 ✓ sage as LD, bung the detected	tion T0–159 ✓ ut its action d state of th	C0–C79 ✓ is different; its	D0–D399 — function is to
	 A rising On bef Command LDF Operand The LDF of save current to the current Ladder diag 	Start of reverse X0-X17 Command has ent content wh nulative register ram:	e edge detection Y0-Y17 s the same us nile also savin	he PLC. Func action M0–M799 ✓ sage as LD, bung the detected	tion T0–159 ✓ ut its action	C0–C79 ✓ is different; its e falling edge of Description	D0–D399 — function is to of the contact
	 A rising On bef Command LDF Operand The LDF of save current to the current Ladder diag 	Start of reverse X0-X17 Command has ent content wh nulative register ram:	e edge detection Y0-Y17 s the same us nile also savin	he PLC. Func action M0–M799 ✓ sage as LD, bung the detected	tion T0–159 ✓ ut its action d state of th	C0–C79 ✓ is different; its e falling edge o	D0–D399 – function is to of the contact
	 A rising On bef Command LDF Operand The LDF of save current to the current Ladder diag 	Start of reverse X0-X17 Command has ent content wh nulative register ram:	e edge detection Y0-Y17 s the same us nile also savin	he PLC. Func action M0–M799 ✓ sage as LD, bung the detected	tion T0–159 ✓ ut its action d state of th	C0–C79 is different; its e falling edge of Description Start of X0 re	D0–D399 — function is to of the contact
	 A rising On bef Command LDF Operand The LDF of save current to the current Ladder diag 	Start of reverse X0-X17 Command has ent content wh nulative register ram:	e edge detection Y0-Y17 s the same us nile also savin	he PLC. Func action M0–M799 ✓ sage as LD, bung the detected	tion T0-159 ✓ ut its action d state of th	C0–C79 C0–C79 Control Control Contro	D0–D399 — function is to of the contact

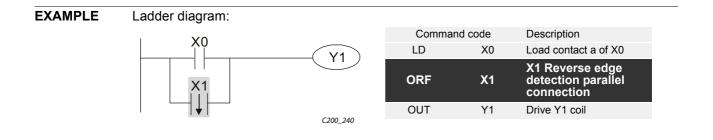
Command	Function									
ANDP	Forward edge d	Forward edge detection series connection								
Onenand	X0–X17	Y0-Y17	M0–M799	T0–159	C0–C79	D0–D399				
Operand	1	1	1	1	1	_				

DESCRIPTION The ANDP command used for a contact rising edge detection series connection.

Command	Function							
ANDF	Reverse edge d	letection series of	connection					
Onererd	X0–X17	Y0-Y17	M0–M799	T0–159	C0–C79	D0–D399		
Operand	1	1	1	1	1	_		


DESCRIPTION The ANDF command is used for a contact falling edge detection series connection.

EXAMPLE	Ladder diagram:				
	X0 X1		Command code		Description
		\sum	LD	X0	Load contact a of X0
			ANDF	X1	X1 Reverse edge detection series connection
		C200 238	OUT	Y1	Drive Y1 coil
		2200_230			


Command	Function								
ORP	Forward edge d	Forward edge detection parallel connection							
Onenand	X0–X17	Y0-Y17	M0–M799	T0–159	C0–C79	D0–D399			
Operand	1	1	1	1	1	_			

DESCRIPTION The ORP command is used for a contact rising edge detection parallel connection.

Command	Function								
ORF	Reverse edge d	Reverse edge detection parallel connection							
Onererd	X0–X17	Y0-Y17	M0–M799	T0–159	C0–C79	D0–D399			
Operand	1	1	1	1	1	_			

DESCRIPTION The ORF command is used for contact falling edge detection parallel connection.

Command		Function								
PLS	Upper differenti	Jpper differential output								
Operand	X0–X17	Y0-Y17	M0–M799	T0–159	C0–C79	D0-D399				
Operand	_	1	1	_	_	_				

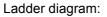
DESCRIPTION Upper differential output commands. When $X0 = Off \rightarrow On$ (positive edge-triggered), the PLS command will be executed, and M0 will send one pulse, with a pulse length consisting of one scanning period.

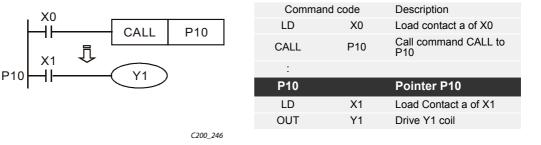
EXAMPLE Ladder diagram: Command code Description X0 LD Load contact a of X0 X0 PLS M0 M0 upper differential PLS M0 M0 output SET Y0 LD M0 Load contact a of M0 C200_241 Y0 SET Y0 Action continues (On) Time sequence diagram: X0 Time for one scan cycle MO Y0_ C200_242

Command	Function							
PLF	Lower differentia	al output						
Onerand	X0–X17	Y0-Y17	M0–M799	T0–159	C0–C79	D0–D399		
Operand	_	1	1	_	_	_		

DESCRIPTION Lower differential output command. When $X0 = On \rightarrow Off$ (negative edge-triggered), the PLF command will be executed, and M0 will send one pulse, with pulse length consisting of one scanning period.

EXAMPLE	Ladder diagram:						
	X0	Comma	nd code	Description			
		LD	X0	Load contact a of X0			
	MO	PLF	MO	M0 lower differential output			
	SET Y0 C200_243	LD	M0	Load contact a of M0			
		SET	Y0	Y0 Action continues (On)			
	Time sequence diagram:						
	X0						
	M0Time for one scan cycle						
	Y0						
	C200_242a						


	Command Function						
	END Program conclusion						
	Operand N/A						
NOTE	An END command must be added to the end of a ladder diagram program or command program. The PLC will scan from address 0 to the END command, and will return to address 0 and begins scanning again after execution.						
	Command Function						
	NOP No action						
	Operand N/A						
NOTE	The command NOP does not perform any operation in the program. Because execution of this command will retain the original logical operation results, it can be used in the following situation: the NOP command can be used instead of a command that is deleted without changing the program length.						
EXAMPLE	Ladder diagram:						
	NOP command will be simplified Command code Description						
	and not displayed when the ladder ID X0 Load contact a of X0						
	diagram is displayed. NOP No action						
	OUT Y1 Drive Y1 coil						
	Command Function						
	INV Inverse of operation results						
	Operand N/A						
NOTE	Saves the result of the logic inversion operation prior to the INV command in the cumula- tive register.						
EXAMPLE	Ladder diagram:						
	Command code Description						
	LD X0 Load contact a of X0						
	INV Inverse of operation results						
	C200_245 OUT Y1 Drive Y1 coil						


Command	Function
Р	Index
Operand	P0–P255

NOTE

Pointer P is used to subprogram call command API 01 CALL. Use does not require starting from zero, but the number cannot be used repeatedly, otherwise an unpredictable error will occur.

EXAMPLE La

16.6.3 Overview of application commands

Classi-		Comma	nd code	Р	F	Ste	eps
fica- tion		16 bit	32 bit	command	Function	16 bit	32 bit
0	01	CALL	_	1	Call subprogram	3	_
ontro	2	SRET	—	—	Conclusion of subprogram	1	—
Circuit control	06	FEND	_	_	Conclusion a main program	1	—
Ę	10	CMP	DCMP	1	Compares set output	7	13
Send comparison	11	ZCP	DZCP	1	Range comparison	9	17
Send	12	MOV	DMOV	1	Data movement	5	9
8	15	BMOV	—	1	Send all	7	—
(0	20	ADD	DADD	1	BIN addition	7	13
Four logical operations	21	SUB	DSUB	1	BIN subtraction	7	13
Four	22	MUL	DMUL	1	BIN multiplication	7	13
al of Po	23	DIV	DDIV	1	BIN division	7	13
ogic	24	INC	DINC	1	BIN add one	3	5
<u> </u>	25	DEC	DDEC	1	BIN subtract one	3	5
t	30	ROR	DROR	1	Right rotation	5	—
Rotational displacement	31	ROL	DROL	1	Left rotation	5	_
Data	40	ZRST	_	1	Clear range	5	_
Process	49	_	DFLT	1	BIN whole number \rightarrow binary floating point number transformation	_	9

Tab. 16-25: Overview of application commands (1)

Classi-	ΑΡΙ	Command code				Steps	
fica- tion		16 bit	32 bit	P command	Function	16 bit	32 bit
	110	_	DECMP	✓	Comparison of binary floating point numbers	_	13
	111	—	DEZCP	1	Comparison of binary floating point number range	—	17
	116	—	DRAD	1	$Angle \to Diameter$	—	9
	117	—	DDEG	✓	$\text{Diameter} \rightarrow \text{angle}$	—	9
	120	—	DEADD	1	Binary floating point number addition	—	13
	121	—	DESUB	1	Binary floating point number subtraction	—	13
	122	_	DEMUL	1	Binary floating point number multiplication	_	13
	123	—	DEDIV	1	Binary floating point number division	—	13
-	124	—	DEXP	1	Binary floating point number obtain exponent	—	9
eration	125	_	DLN	1	Binary floating point number obtain logarithm	—	9
nt ope	127	_	DESQR	1	Binary floating point number find square root	_	9
Floating point operation	129	_	DINT	1	Binary floating point number \rightarrow BIN whole number transformation	_	9
Floati	130	_	DSIN	1	Binary floating point number SIN operation	_	9
	131	_	DCOS	1	Binary floating point number COS operation	_	9
	132	_	DTAN	1	Binary floating point number TAN operation	_	9
	133	_	DASIN	1	Binary floating point number ASIN operation	_	9
	134	—	DACOS	1	Binary floating point number ACOS operation	—	9
	135	—	DATAN	1	Binary floating point number ATAN operation	—	9
	136	—	DSINH	1	Binary floating point number SINH operation	—	9
	137	—	DCOSH	1	Binary floating point number COSH operation	—	9
	138	—	DTANH	1	Binary floating point number TANH operation	—	9
Com- munica- tion	150	MODRW		1	MODBUS [®] read/write	7	
	150	MODIU		v	MODBOS read/wille	I	
Calendar	160	TCMP	—	1	Compare calendar data	11	—
	161	TZCP	—	1	Compare calendar data range	9	—
	162	TADD	_	1	Calendar data addition	7	—
	163	TSUB	—	1	Calendar data subtraction	7	—
	166	TRD	—	1	Calendar data read	3	—
GRAY code	170	GRY	DGRY	1	$BIN \rightarrow GRY$ code transformation	5	9
	171	GBIN	DGBIN	1	GRY code \rightarrow BIN transformation	5	9

Tab. 16-25: Overview of application commands (2)

Classi-	ΑΡΙ	Command code		n		Steps	
fica- tion		16 bit	32 bit	P command	Function	16 bit	32 bit
lion	215	LD&	DLD&				52 Dit
Contact form logical operation	215			_	Contact form logical operation I D#	5	9
				_	Contact form logical operation LD#	5	9
	217	LD^	DLD^	_			
	218	AND&	DAND&	_	Contact form logical operation AND#		
	219	ANDI	DANDI	_		5	9
	220	AND^	DAND^	_			
	221	OR&	DOR&	—			
Cont	222	OR	DOR	—	Contact form logical operation OR#	5	9
0	223	OR^	DOR^	_			
	224	LD=	DLD=	—			
	225	LD>	DLD>	_			
	226	LD<	DLD<	_		5	9
	228	LD<>	DLD<>	_	Contact form compare LD*		
_	229	LD<=	DLD<=	_			
Contact form compare command	230	LD>=	DLD>=	_			
	232	AND=	DAND=	_			
	233	AND>	DAND>	_			
ipar	234	AND<	DAND<	_			
moo	236	AND<>	DAND<>		Contact form compare AND*	5	9
E		AND<>	DAND<>	_			
ct fo	237			_			
onta	238	AND>=	DAND>=	_			
ŏ	240	OR=	DOR=	—			
	241	OR>	DOR>	_	Contact form compare OR*		
	242	OR<	DOR<	—		5	9
	244	OR<>	DOR<>	—			
	245	OR<=	DOR<=	—			
	246 275	OR>=	DOR>= FLD=	_			
	276	_	FLD>	_	Floating point number contact form compare LD*	_	9
	277	_	FLD<	_			
	278	_	FLD<>	_			
	279	_	FLD<=	_	Floating point number contact form compare LD*	_	9
	280		FLD>=	_			
Floating	281	—	FAND=	—	Floating point number contact form compare AND*		
point	282	—	FAND>	—			
com-	283	—	FAND<	-		_	9
pare com-	284		FAND<>	_			
mand	285 286		FAND<= FAND>=	_			
	287	_	FOR=	_			
	288	_	FOR>	_	Floating point number contact form compare OR*		
	289	_	FOR<	_			0
	290	_	FOR<>	_		_	9
	291	—	FOR<=	—			
	292		FOR>=	—			
	-						

Tab. 16-25: Overview of application commands (3)

Classi- fica- tion	API	Command code		Р	F	Steps	
		16 bit	32 bit	command	Function	16 bit	32 bit
Driver special command	139	RPR	_	1	Read servo parameter	5	_
	140	WPR	—	1	Write servo parameter	5	—
	141	FPID	—	1	Driver PID control mode	9	—
	142	FREQ	_	1	Driver torque control mode	7	_
	262	_	DPOS	1	Set target	_	5
	263	TORQ	—	1	Set target torque	5	—
	261	CANRX	—	1	Read CANopen [®] slave station data	9	_
	264	CANTX	—	1	Write CANopen [®] slave station data	9	_
	265	CANFLS	_	1	Refresh special D corresponding to CANopen [®]	3	—
	320	ICOMR	DICOMR	1	Internal communications read	9	17
	321	ICOMW	DICOMW	1	Internal communications write	9	17

Tab. 16-25: Overview of application commands (4)

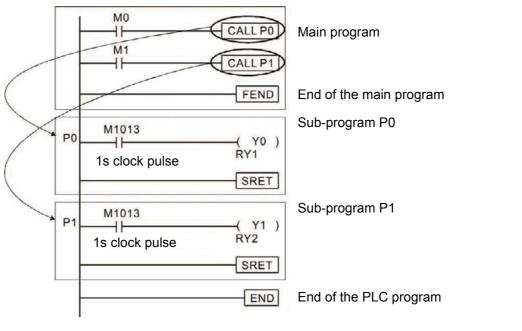
16.6.4 Detailed explanation of applications commands

	API 01	CA	LL P		S	\supset		Ca	all su	bprograr	n				
	В	it device	•		Word	device				16-bit c	ommand (3 S	TEP)			
	X	Y	MK	H Kn	X KnY	KnM	Т	С	D	CALL	Continuous execution type	CALLP	Pulse exe- cution type		
		Notes on operand usage: 32-bit command The S operand can designate P 32-bit command C2000 series device: The S operand can designate P0-P63													
					d can de	esignate	90-F	P63		_	—		_		
										Flag sig	nal: none				
DESCRIPTION	Write th The su	ne subp bprogra	am point program am must FEND o	after the end afte	er the	SRET	com	nman		ole cont	ent for del	tailed c	ommand		
	API	90	ст					C	analu	ision of s	ubprogram				

02		S	RET	Ρ			_			С	onclu	sion of s	ubprogram		
	Bit	devid	ce			۷	Vord	device				16-bit c	ommand (1 S	TEP)	
	Х	Y			Н	KnX	KnY	KnM	Т	С	D	FEND	Continuous execution type	_	_
	on op o opera		usage	e:								32-bit co	ommand		I
A	contac	t-drive	en con	nmand	is not	need	ed					_	—		—
												Flag sig	nal: none		

DESCRIPTION

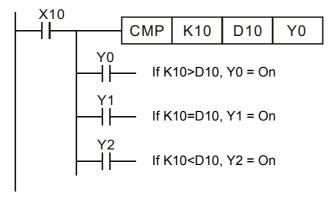
A contact-driven command is not needed. Automatically returns next command after CALL command


Indicates end of subprogram. After end of subprogram, SRET returns to main program, and executes next command after the original call subprogram CALL command. Refer to the FEND command explanation and sample content for detailed command functions.

DESCRIPTION This command indicates the end of the main program. It is the same as the END command when the PLC executes this command. The CALL command program must be written after the FEND command, and the SRET command added to the end of the subprogram. When using the FEND command, an END command is also needed. However, the END

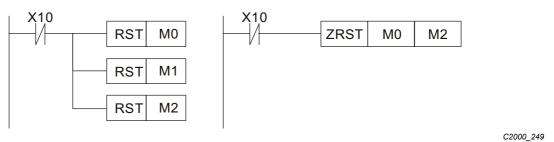
When using the FEND command, an END command is also needed. However, the END command must be placed at the end, after the main program and subprogram.

	AP 10			CMP	Ρ	(<u>S1</u>)	(S2		\mathbf{D}	(Compa	ares set o	output		
		Bi	t devid	ce			١	Nord (device				16-bit c	ommand (7 S	TEP)	
		Х	Y	М	К	Н	KnX	KnY	KnM	Т	С	D	CMP	Continuous	CMPP	Pulse exe-
	S1				*	*	*	*	*	*	*	*	CIVIF	execution type	CIVIEF	cution type
	S2				*	*	*	*	*	*	*	*	32-bit c	ommand (13	STEP)	
	D		*	*									DCMP	Continuous execution type	DCMPP	Pulse exe- cution type
			perand erand [•		hree c	onsec	utive p	ooints				Flag sig	nal: none		


DESCRIPTION (S1): Compare value 1. (S2): Compare value 2. (D): Results of comparison.

Compares the size of the content of operand (S1) and (S2); the results of comparison are expressed in (D).

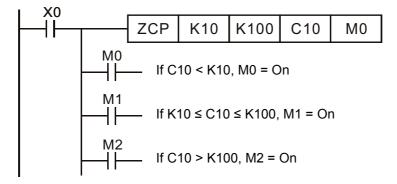
Size comparison is performed algebraically. All data is compared in the form of numerical binary values. Because this is a 16-bit command, when b15 is 1, this indicates a negative number.


EXAMPLE When the designated device is Y0, it automatically occupies Y0, Y1 and Y2. When X10=On, the CMP command executes, and Y0, Y1 or Y2 will be On. When X10=Off, the CMP command will not execute, and the state of Y0, Y1 and Y2 will remain in the state prior to X10=Off.

If \geq , \leq , or \neq results are needed, they can be obtained via series/parallel connections of Y0-Y2.

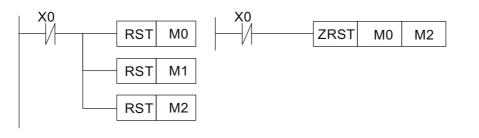
C2000_248

To clear results of comparison, use the RST or ZRST command.



	AF		_ 7	ZCP		(S1		<u>52</u>) (S	(D	R	ande	compari	son		
	11		D		Ρ						<u> </u>	u.ge	een pan			
		Bi	t devic	<u>م</u>			١	Nord	device				16-bit c	ommand (9 S	TFP)	
		X	Y		K						0				,	
	S1	~	Ŷ	М	K *	H *	KnX *	KNY *	KnM *	T *	C *	D *	ZCP	Continuous execution type	ZCPP	Pulse exe- cution type
	S2				*	*	*	*	*	*	*	*	32-bit c	ommand (17	STEP)	
	S				*	*	*	*	*	*	*	*	DZCP	Continuous execution type	DZCPP	Pulse exe- cution type
	D		*	*									Flag sig	nal: none		11
	Note	s on op	berand	usage	:								00			
		he cor			opera	and S	1 is les	ss thar	n the co	ontent	value	9				
		of S2 op The ope			pies tl	nree d	consec	utive	ooints							
DESCRIPTION		<u>51):</u> I	owei	r limi [.]	tofi	rang	e cor	npari	ison.	(S2): U	oper	limit of	range con	npariso	n. (S):
		_			_			•		-				i ange een		
		ompa			_		_	_						\frown		
	W	hen t	he co	mpai	rative	e val	ue (_	<u>S</u>) i	s con	npare	ed w	ith th	ne lower	⁻ limit (<u>S1</u>)	and up	oper limit
		52), t	he res	sults	of co	mpa	rison	are	expre	ssed	in (D)				
						•							nd will	use the low	or limit	(S1) to
		erform										mna				
												a is	compare	ed in the fo	rm of r	umerical
			•					•					•	1, this indic		
		imber.									, .			.,		negenre
	-															

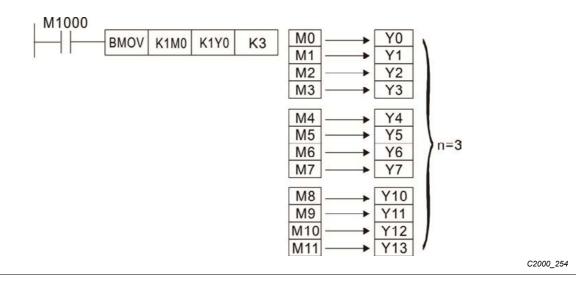
EXAMPLE When the designated device is M0, it automatically occupies M0, M1 and M2. When X0=On, the ZCP command executes, and M0, M1 or M2 will be On. When X0=Off, the ZCP command will not execute, and the state of M0, M1 or M2 will remain in the state prior to


X0=Off.

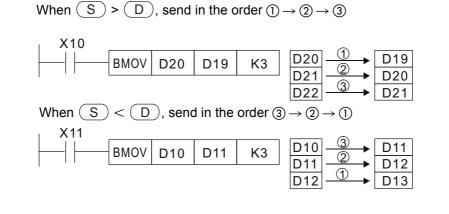
If \geq , \leq , or \neq results are needed, they can be obtained via series/parallel connections of M0-M2.

C2000_250

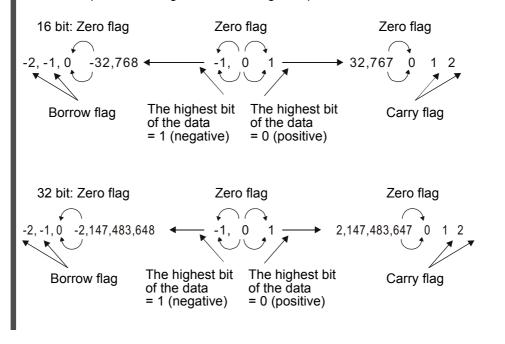
To clear results of comparison, use the RST or ZRST command.



	AF		D	NOV	Ρ			s) (D		Da	ata m	lovemen	t		
		Bi	t devid	ce			١	Word	device				16-bit c	ommand (5 S	TEP)	
	S	Х	Y	М	K *	H *	KnX	KnY	KnM	T *	C *	D *	MOV	Continuous execution type	MOVP	Pulse exe- cution type
	D				•			*	*	*	*	*	32-bit c	ommand (9 S	TEP)	
	Note	s on op	erand	usage	e: none	е							DMOV	Continuous execution type	DMOVP	Pulse exe- cution type
													Flag sig	nal:		
EXAMPLE		D): V	Vhen	the o	comn	nand	is no	ot exe	ecute	d, the	e con	itent	of D		ange.	
EXAMPLE	data Whe	a regis	ter D =Off,	10. the o	conte r D10	ent o) will 0						e value K1		
																C2000_252

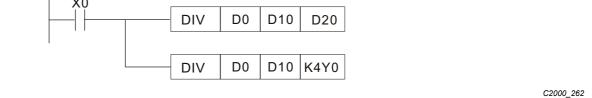

	AF 15		В	MOV	Ρ	(S	D		1)	Se	end a	all			
		Bi	it devid	ce			١	Nord	device				16-bit c	ommand (7 S	TEP)	
	_	Х	Y	М	К	Н		KnY		Т	С	D	BMOV	Continuous	BMOV	Pulse exe-
	S						*	*	*	*	*	*		execution type	Р	cution type
	D							*	*	*	*	*	32-bit c	ommand	1	
	n				*	*				*	*		_		—	—
			perand	•		-10							Flag sig	nal: none		
DESCRIPTION	Th Dy If	the n	ntent	of (sent	n r to th	egist e n r s ref	ters s egiste erred	tartir ers st	ng fron carting y n	m the	e init n the	ial n initi	umber o al numb	n: Senc of the devic per of the de e used by t	e desig evice de	nated by esignated
EXAMPLE 1		en X1	0=On	, the	cont	ent c	of reg	isters	3 D0-[D3 w	ill be	sen	t to the	four registe	ers D20	to D23.

EXAMPLE 2 If the designated bit devices KnX, KnY, and KnM are sent, S and D must have the same number of nibbles, which implies that n must be identical.


EXAMPLE 3 In order to prevent overlap between the transmission addresses of two operands, which would cause confusion, make sure that the addresses designated by the two operands have different sizes, as shown below:

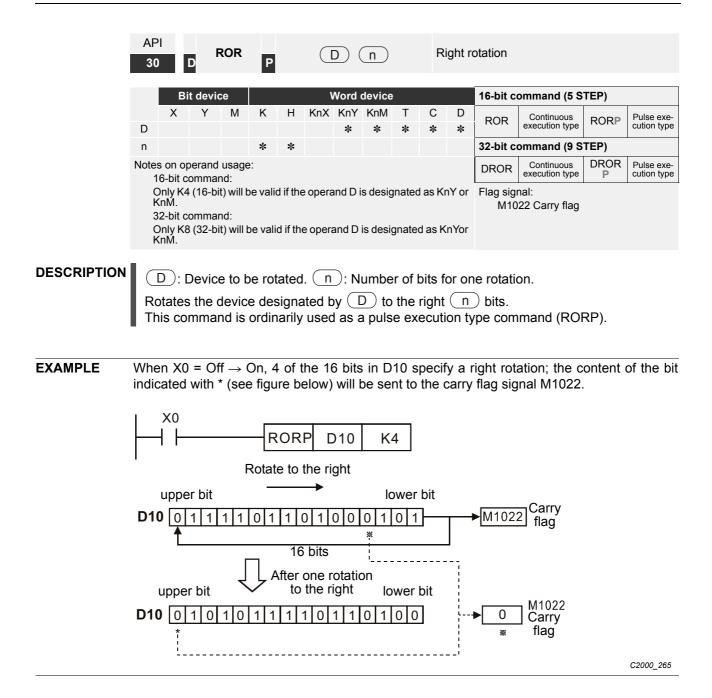
	API 20	D	ADD	Ρ	(<u>S1</u>)	(S2		\mathbf{D}	B	IN ad	dition			
	E	Bit devi	ce			١	Word	device				16-bit c	ommand (7 S	STEP)	
	X S1	Y	М	K *	H *	KnX *	KnY *	KnM *	T *	C *	D *	ADD	Continuous execution type	ADDP	Pulse exe- cution type
	S2			*	*	*	*	*	*	*	*	32-bit c	ommand (13	STEP)	
	D						*	*	*	*	*	DADD	Continuous execution type	DADDP	Pulse exe- cution type
	Notes on o	operand	usage	: none	9							M10 M10 Plea	nal: 20 Zero flag 21 Borrow fla 22 Carry flag ase refer to the olementary ex	e following	
DESCRIPTION	Using stored The hi enabli Flag c – Whe (32-1 – Whe	in (D ghest ng the hange n calc bit con	ata so bit of use o s con ulatio ulatio ulatio ulatio	any of alg necto n reson reson reson reson reson reson resonant	s: Th data ebra ed w sults sults ie bo sults	a is s aic ac ith th are (are orrow are (sult o symbolidition ldition le add), the less flag great	f addi olized n ope dition zero than M102 er tha	ng(as(ration flag -32,7 1 wil n 32	D: inc ns. (f M10 768 (Il be	dicati for in 20 w (16-b On. (16-	ing posi stance: vill be Or vit comn	sing the Bll tive, 1: ind 3 + (-9)= -(n. nand) resp. mand) resp	icating 1 6) 2,147	negative, ,483,648
	16-bit B augend			st in			nt of		D20		onter	nt of add	dend D0 plu	us the c	ontent of
	-														C2000_256

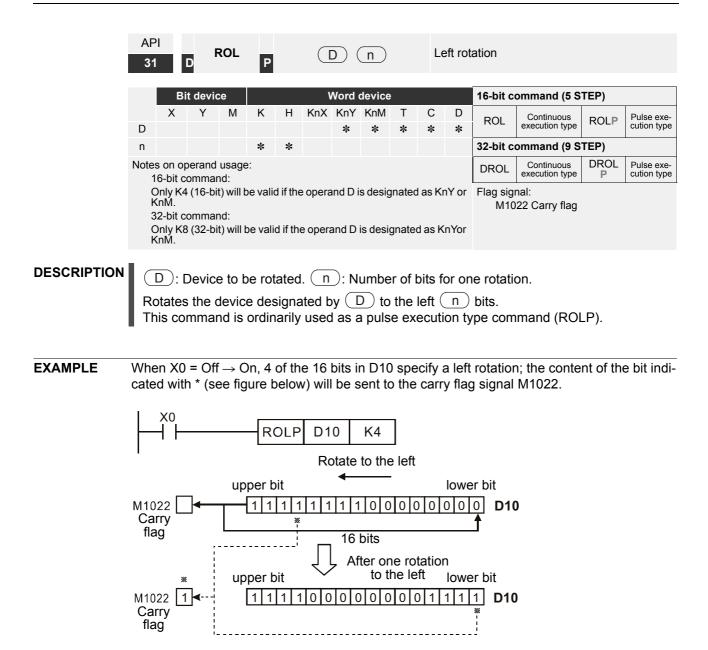
Relationship between flag actions and negative/positive numbers:


	AF 2'		D	SUB	Ρ	(<u>S1</u>)	(S2		Σ	B	IN su	btraction			
		Bi	t devid	:e			١	Word	device				16-bit c	ommand (7 S	TEP)	
	S1	Х	Y	М	K *	H *	KnX *	KnY *	KnM *	T *	C *	D *	SUB	Continuous execution type	SUBP	Pulse exe- cution type
	S2				*	*	*	*	*	*	*	*	32-bit c	ommand (13	STEP)	1
	D							*	*	*	*	*	DSUB	Continuous execution type	DSUBP	Pulse exe- cution type
	Note	s on op	berand	usage	e: none	9							M10 M10 Plea	nal: 20 Zero flag 21 Borrow fla 22 Carry flag use refer to the olementary ex	e following)
DESCRIPTION	U is Th er FI –	store ne hig nablin ag ch Wher Wher (32-b	wo da d in (hest g the ange: a calc calc it com it com	ta so D. bit of use o s con ulatio ulatio uman ulatio	f any of algonection on reson reson reson reson reson reson resonant	s: Th data ebra ed w sults sults e bc sults	a is s aic su ith su are (are orrow are (sult o ymbo btrac ubtrac), the less flag greate	f subt blized tion c ction. zero than M102 er tha	racti as (pera flag -32,7 1 wil n 32	on of 0: inc ations M10 768 (1 be	f (S dicat s. 20 w (16-b On. (16-	ing posi vill be Or vit comm	S2) using tive, 1: indi n. nand) resp. mand) resp	icating r -2,147	negative, ,483,648
EXAMPLE		oit BIN and t X0			ice is			D20		onte D20		⁻ D1() is sub	tracted fror	n the c	ontent of
																C2000_258

	AF 22		D	IUL	Ρ	(<u>S1</u>)	(S2		\mathbf{D}	в	IN mi	ultiplication
		Bi	it devid	e				Word	device				16-bit command (7 STEP)
	S1	Х	Y	М	K *	H *	KnX *	KnY	KnM *	T *	C *	D *	MUL Continuous execution type MULP Pulse exe- cution type
	S2				*	*	*	*	*	*	*	*	32-bit command (13 STEP)
	D							*	*	*	*	*	DMUL Continuous execution type DMULP Pulse exe- cution type
	-	es on op The 16 The 32	-bit con	nmand	opera						•		Flag signal: none
DESCRIPTION	U pr 10	b1 b15 i Syr	wo da is sto SIN m SIN m 5 s a syn mbol I mbol I	ata so pred i ultipli) b(nbol bi pit = (pit = 1 s a b	n ([catio)) X t) refe	b1{ b15 is b15 is b15 is	Vhen eration 5 s a syr b a pro b a no K1-	(S1 on: 2) mbol b ositiv egativ) and 0] = [it ve valu	(S2 b31. b3 ue. ue.	D 31 is a) + 1 b1	ultiplied using the BIN method, the
EXAMPLE	16 k		ill be	store	d in l	Ď21,	, and	the I	ower	16 b	oits w	/ill be	will be a 32-bit product; the upper e stored in D20. Whether the bit at sult.

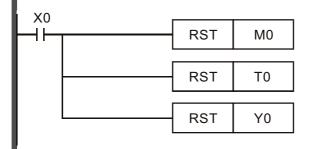
	AF 23	_	D	DIV	Ρ	1	<u>S1</u>	(S2		Σ	BI	IN div	ision			
		Bi	t devi	ce				Word	device				16-bit c	ommand (7 S	TEP)	
	S1	Х	Y	М	K *	H *	KnX	KnY *	KnM *	T *	C *	D *	DIV	Continuous execution type	DIVP	Pulse exe- cution type
	S2				*	*	*	*	*	*	*	*	32-bit c	ommand (13	STEP)	
	D							*	*	*	*	*	DDIV	Continuous execution type	DDIVP	Pulse exe- cution type
	Г		bit cor	nmanc	l opera				2 cons 4 cons		•		Flag sig	nal: none		
DESCRIPTION	Us ar	sing t	wo da 2) an nust b BIN dir	ata s e sub e kej	ource ojecte ot in i	es: ٦ ed to	The q divis	uotie ion u	ent an sing t rformi	d rer he B	main IN m	der v netho bit op Quo		Remai	<u>(</u> <u></u>	en $S1$ S2 and
	lf ur			bit de		/ [, к1		an b]=				0 b15]
EXAMPLE	plac		D20,	and	the r	ema	inder	-						D0 by divi the highes		





	AF 24	_	D	INC	Ρ			D)		BI	IN ad	ld one			
		Bi	t devi	ce			١	Nord	device				16-bit c	ommand (3 S	TEP)	
	D	Х	Y	М	К	Н	KnX	KnY *	KnM *	T *	C *	D *	INC	Continuous execution type	INCP	Pulse exe- cution type
		s on op	erand	usage	e: none	Э					•		32-bit c	ommand (5 S	TEP)	
				Ū									DINC	Continuous execution type	DINCP	Pulse exe- cution type
		Flag signal: none														
DESCRIPTION	lf a wi Th Du	a corr II add nis co uring	1 to mmai 16-bi	d is n the c nd is t ope	ot the onter ordin ratior	e pul nt of arily n, 32	devic usec 2,767	ce [] d as a +1 v	D fo a puls vill ch	r eac e exe ange	ch sc ecuti e the	anni ion ty valu	ing cyclo ype com	nmand (INC 2,768. Duri	P).	
EXAMPLE	Whe	en X0	= Of	$\rightarrow C$)n, 1	is au	utoma	atical	y add	ed to	o the	e con	tent of I	D0.		
		X0 -		INC	P C	00										C2000_263

	AF 2			DEC	Ρ			D)		B	IN su	btract or	e		
		Bit	devid	e			١	Nord	device				16-bit c	ommand (3 S	TEP)	
	D	Х	Y	М	K *	H *	KnX	KnY *	KnM *	Т	С	D	DEC	Continuous execution type	DECP	Pulse exe- cution type
	Note	es on op	erand	usage	: none	•							32-bit c	ommand (5 S	TEP)	1
													DDEC	Continuous execution type	DDEC P	Pulse exe- cution type
													Flag sig	nal: none		
DESCRIPTION	lf w TI D -2	a com ill add his cor uring 1 2,147,4	mano 1 to t nmar 6-bit 83,6	the co nd is o opera 48 -1	ot the onten ordina ation will c	e pul at of arily , -32 char	devic usec 2,768 ige th	e [[l as a -1 wi le val) fo a puls Il cha ue to	r eac e ex nge 2,14	ch sc ecuti the v 17,48	anni on ty alue 33,64	ng cycle /pe com to 32,7 7.	mand (DE0 67. During 3	CP).	
EXAMPLE	Wh	en X0	= Off	⁻ →0	n, 1 i	is aı	utoma	aticall	y sub	tract	ted fr	om t	he cont	ent of D0.		
		×0 -	[DEC	P	D0										C2000_264



	API 40	ZRST	Ρ	D1 (D2)		С	lear r	ange			
	Bit	t device		Word	device				16-bit c	ommand (5 S	TEP)	
	D1	Y M * *	КН	KnX KnY	KnM	T *	C *	D *	ZRST	Continuous execution type	ZRSTP	Pulse exe- cution type
	D2	* *				*	*	*	32-bit c	ommand		I
	Operano Please r	of operand ds D1, D2 mu refer to the fu	e: D1 operand s ist designate unction speci of device us	the same trifications tak	ype of	device	Э	e in	— Flag sig	nal: none		_
DESCRIPTION	When the	ne numbe	e's initial c r of opera Il be cleare	nd $(D1)$				-		vice. 2), only the	e operar	nd desig-
EXAMPLE	When X1 changes of When X10 tact and c	is On, 1 contact an 0 is On, tiu oil to Off).	6-bit coun d coil to O mer T0–T	iters C0– iff). 127 will a	C127 II be d	will	all ed. (be c Write	leared. es 0, ar	changed to (Writes 0, nd clears ar ed and set a	and cle	
	X0			1	-		7					
			ZRST	M300	M	399						
	X1 		ZRST	C0	С	127						
			ZRST	Т0	Т	127						
			ZRST	D0	D	100						
	I											C2000_267

NOTE

Devices can independently use the clear command (RST), such as bit device Y, M and word device T, C, D.

	AF 49		D	FLT	Ρ			<u>s</u>) (D				nole num ormation	ber \rightarrow binary	y decima	ıl
		Bi	it devid	e			١	Nord	device				16-bit c	ommand		
		Х	Y	М	К	Н	KnX	KnY	KnM	Т	С	D		_		—
	S		*	*						*	*	*	32-bit c	ommand (9 s	teps)	
	D		*	*						*	*	*	DFLT	Continuous execution type	DFLTP	Pulse exe- cution type
	F	Please series f	perand refer to or the s erands	the fuscope	unction of dev	ice us	sage					e in	Flag sig	nal: none		
DESCRIPTION	:	(S Trar): Tra	ansfo ns Bl	rmati N wh	on s ole r	ource numb	e dev er int	ice. (to a b	D	: Dev dec	/ice : imal	storing t value.	ransformat	ion resu	ılts.
EXAMPLE	floa ⁻		1 is (oint n											oonding to	D0 and	I D1 into

X11			
	DFLT	D0	D20
1			

	API 110			СМР	Ρ	(<u>S1</u>)	(S2		\mathbf{D}	C	ompa	arison of b	oinary floatir	ng point	numbers
		Bif	devic	•				Nord	device				16-bit co	mmand		
		Х	Y	M	K	Н			KnM	Т	С	D				
	S1	~	•		*	*	T G D C		i diivi		Ũ	*	32-bit co	ommand (13	steps)	
	S2 D		*	*	*	*						*	DECMP	Continuous execution type	DECMPP	Pulse exe- cution type
	Th Pl	ne ope ease r	erand b rand D refer to or the s	occup the fu	oies th nction	spec	ificatio		points. ble for	each o	device	e in	Flag sign	al: none		
DESCRIPTION		floati point Whe numl	ng po s. n bina ber 2, e sou	oint n ary flo the r	umbe pating result opera	ers v g poi t of c and	value int nu comp	2. (umbe arisc	D: er 1 is on (>, S2	Res com =, <) desi	ults (pare will gnate	of co d wit be e es a	ompariso th compa xpressed constant	$\underline{S2}$: Com on, occupie arative bina d in \underline{D} . t K or H, th ne purpose	es 3 cor ary float ne comr	ing point nand will
EXAMPLE	When X0=0 state If res nectio Pleas	n X0 Off, tl ults i on of	=On, ne DE n the M10-	the I ECMF M12 RST	DECI ^P cor of ≥, or ZI <u>PECN</u> W	MP mma ≤, ol RST MP hen	comi and v r ≠ ar Com (D1, (D1,	manc vill n re ne nman 0 D0) D0)	d exer ot exe eded, d to c D1 > (D1 = (D1	cutes ecute they lear 00 01, [s, an e, ar can the r M D100	id or id M be c esul ¹ 110)), M	ne of M ² 10-M12 obtained	I	n in the	e X0=Off

	API 111	D	ZCP	s (Sŕ	I) (S2	2) (S)	D			arison of r range	binary floatir	ng point	
		D'é desti	_		10/					40 1.16 -			
	_	Bit devid X Y	M K	Н		ord device KnY KnM	T	С	D	16-DIT C	ommand		
	S1		*	*				U	*	32-bit c	ommand (17	stens)	
	S2		*	*					*				
	S D	*	*	*					*	DEZCP	Continuous execution type	DEZCPP	Pulse exe- cution type
	Notes o The Plea	on operand operand I ase refer to les for the s	usage:) occupies) the functi	on spe	cificatior	•	each	device	in	Flag sig	nal: none		<u> </u>
DESCRIPTION	 C p C n ti ti< ti	of binary f point num comparis number lo he result f the sou f the sou ransform When the ninary floa he upper	loating p perical va on of bi ower limi s of com irce ope the cons lower li ating poin and low	oint n alues. inary t value pariso erand stant f mit bi nt nun er lim	umber \bigcirc : floating e \bigcirc 1 on are \bigcirc 1 on are \bigcirc 1 on are \bigcirc 1 on are \bigcirc 1 its usir	in range Results g point) and bin expressed or $(S2)$ nary float oating po S2, a co ng the bir	compoficon nume ary fl ed in desig ing-p pint n mma nary f	pariso ompar erical oating D gnate ooint r umbe ind wi loatin	on. (risor valı g po). es a num er (iill be	\overline{S} : Constant , occup ue \overline{S} bint num constant ber for t $\overline{S1}$ is g e issued bint num	mparison. (omparison vies 3 conse with bina ber upper I the purpose greater that to perform nber lower I	of binar ecutive ry floati imit valu ne comr e of com n the up compar	y floating points. ng point ue $(S2)$, nand will parison. oper limit ison with
EXAMPLE	When X0=O	ff, the EZ e use the	the DEZ CP com RST or DEZ	CP c mand ZRS ⁻ CP When	ommai will nc Γ comr D0 (D1, C (D1, C	nd will be ot execut nand to o D1 00) > (D2	e exe e, an clear 0 1, D2 21, D	ecuted d M0 the re D2 20), M 20) ≤	d, ar ⊢M2 esult 0 //0 is	MO 2 will cont t. MO 3 ON 11, D10	of M0-M2 w ntinue in th	e X0=O	

	AP 11		R	AD	Ρ			s) (D		Aı	ngle -	→ Diam	eter		
		Bit	device	e			١	Word	device				16-bit c	ommand		
	S	Х	Y	Μ	K *	H *	KnX	KnY	KnM	Т	С	D *	_	_	_	_
	D				~	~						*	32-bit c	ommand (9 s	teps)	
	F	s on op Please r	efer to	the fu	Inctior			ons tal	ole for	each	device	e in	DRAD	Continuous execution type	DRADP	Pulse exe- cution type
	s	eries fo	or the so	cope	of dev	ice us	sage.						Flag sig	nal: none		
DESCRIPTION		Uses): data the fo neter =	ollow	ving f	form	ula to							iameter).		
EXAMPLE	verte		radiar											umber (D1, nsisting of		
	┝	X0 ┨┠──	-[[DRA	D	D)	D1	0							
	3	d [D 1	Ĺ		0			value al pla							
		D	D 11		D	10			alue (cimal			ue x	<i>π</i> /180)			
		1.15.5								5.0.0						C2000_273

	AF 11		D	EG	Ρ			S) (D		Di	iamet	ter \rightarrow Ar	ngle		
		Bit	device	е			١	Nord	device				16-bit c	ommand		
	0	Х	Y	М	K	Н	KnX	KnY	KnM	Т	С	D		_	_	_
	S D				*	*						*	32-bit c	ommand (9 s	teps)	
	F	s on op Please r	efer to	the fu	nctior	n spec	cificatio	ons tal	ole for	each	device	e in	DDEG	Continuous execution type	DDREGP	Pulse exe- cution type
	S	eries fo	r the s	cope (of dev	ice us	sage.						Flag sig	nal: none		
DESCRIPTION	:	Uses): data the f e = Ra	ollow	/ing f	form	ula to							n (angle).		
EXAMPLE	be o		ted to	o an	angl							•••		iber (D1, D ntent consis	,	
	F	-1┣		DDE	G	D	0	D	10							
	3	Ð	D 1		۔ ا	0 0		Angl	e valı	le [F	RAD]	with	two deo	cimal place	S	
	C	ЪΓ	D 11	1	D	10			e valu two d				180/ <i>T</i>)			
								vvitil		CUIII		a005				C2000_274

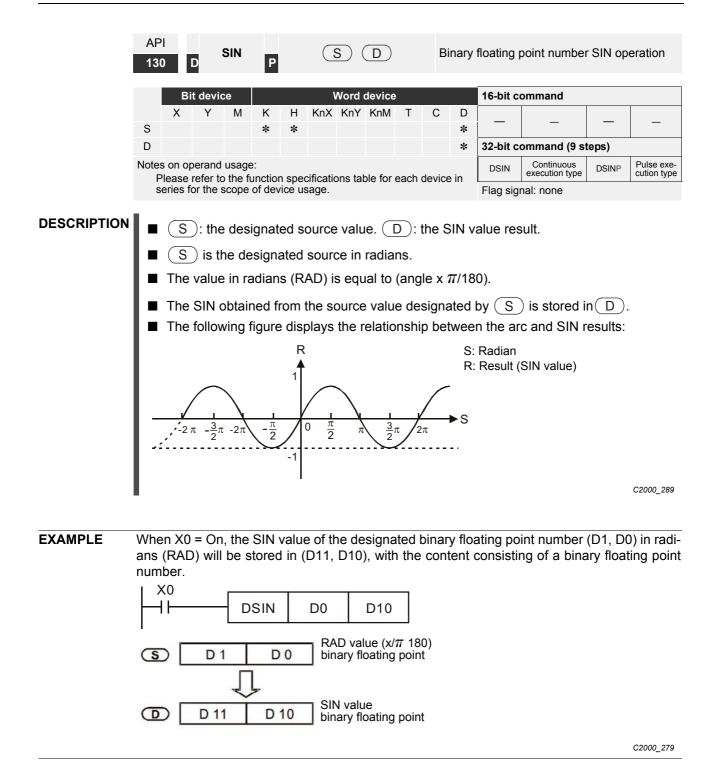
	AF 12	_	D E	ADD	Ρ	(<u>S1</u>)	(S2		$\mathbf{\Sigma}$	A	dding	ı binary f	loating point	t number	ſS
		Bi	t devic	e			1	Word	device	,			16-bit c	ommand		
	S1	Х	Y	М	K *	H *	KnX	KnY	KnM	Т	С	D *	_	_	_	_
	S2				*	*						*	32-bit c	ommand (9 s	steps)	
	D											*	DEADD	Continuous execution type	DEADDP	Pulse exe- cution type
	F	s on op Please series fo	refer to	the fu	nction	n spec ice us	cificati sage.	ons ta	ble for	each	device	e in	Flag sig	nal: none		
DESCRIPTION	•	(S1): add	dend.	(S2	:): a	ugen	id. (D): s	um.						
	L e	Whe	en the	conte	ent of	the	regis	ter de	esigna	ated	by (S	52) i	sadded	to the conte	ent of th	e register
		desi		d by (S 1), an	d the	resu	lt is st	ored	in th	ne reg	gister de	esignated b		•
	Ŀ													nt K or H, tl or use in ad		mand will
	•	"con regis	tinuo ster w	us ex rill per	ecut rform	ion" 1 ade	com dition	iman i onc	d is e e duri	empl ing e	oyed ach	l, wh scar	ien con	ical registe ditional co execution s.	ntact is	On, the
EXAMPLE		en X0 1ber (l											be add	led to a bin	ary floa	ting point
		×0 	DE	EAD	D	D0		D2	2	D1	0					
	-															C2000_275
	bee (D2		omati											added to K), and the		
	\vdash		D	EADI	D	D1(D	K12	34	D2	20					

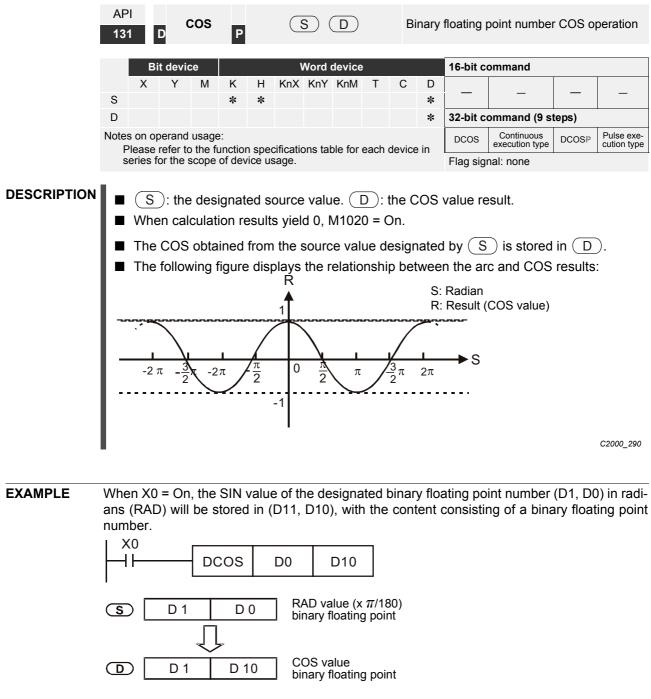
	API 121	D	ESUB	Ρ		<u>S1</u>)	(S2		\mathbf{D}	Sı	ubtra	ction of I	oinary floatin	g point r	numbers
		Bit devi	се			٧	Nord o	device				16-bit c	ommand		
	X S1	Y	М	K *	H *	KnX	KnY	KnM	Т	С	D *		_	_	_
	S2			*	*						*	32-bit c	ommand (13	steps)	
	D										*	DESUB	Continuous execution type	DESUBP	Pulse exe- cution type
		e refer t	l usage: o the fui scope o	nction			ons tab	ole for	each	device	e in	Flag sig	nal: none		
DESCRIPTION		1): mi	inuend	. (S	2): s	ubtra	ahen	d. 🕧): (differ	ence				
		nen the	e conte	ent o	f the	reai	ster o	desia	nate	d bv	(S2) is sut	otracted fro	m the c	ontent of
						_	_	-				-	d in the reg		
		_		-		• -							ים ing-point חנ		•
										-		•	nt K or H, th		
													or use in su		
	"co reg	ontinuc jister v	ous ex vill perf	ecuti form	ion" subti	com ractio	mano on on	d is e ice du	emple	oyed each	ຸ້wh າ sca	en con	ical registe ditional col e execution 5.	ntact is	On, the
EXAMPLE	When X point nu												btracted to	a binar	y floating
	X0														
			DESUE	3	D0		D2		D1	0 1					
		Ľ	2001							v					
										<u> </u>					C2000 277
										<u> </u>					C2000_277
		2 = C nas be)n, the en aut	oma				Dint n	umb	er (D			be subtrac nt number)		m K1234
	(which h	2 = C nas be n (D11)n, the en aut	oma		y co		bint n ed to	umb	er (E nary					m K1234

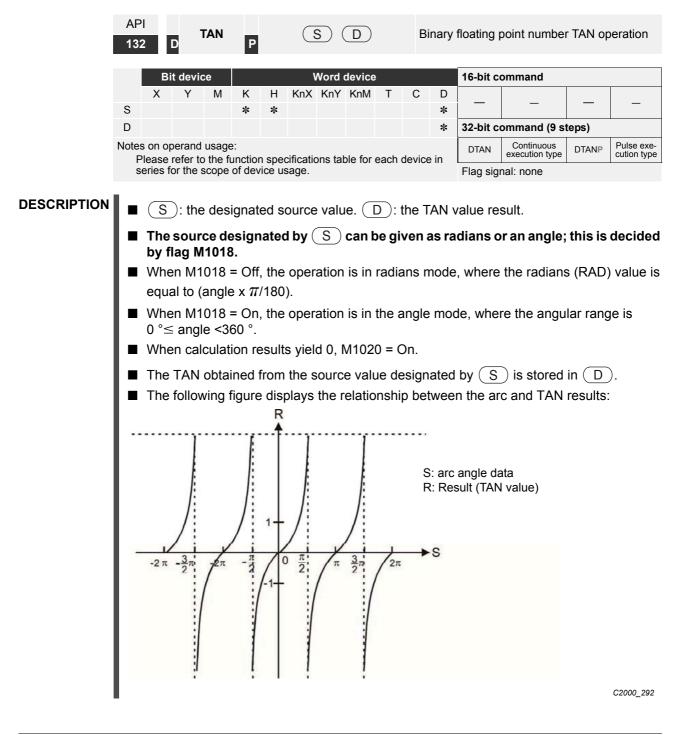
	API 122	D	MUL	Ρ	(S1) (52	2) ([כ	M	ultipli	ication o	f binary float	ing point	numbers
DESCRIPTION	X S1 S2 D Notes on Pleas series W W reg I I f t trai	e refer to for the nen the gister c), mu he sou nsform the si ontinuo gister v	M usage: the fu scope c ultiplic: e conte lesign ultiplic: urce c that c ituatic us ex vill pe	nction s of devic and. (ent of ated I ation i operation consta on whe ecution form	* specificate usage S2): the re by S2 is perfe nd S ant into hen (Dn" co multip	X KnY ations ta multipl gister 2, the prmed 1 or a bin S1 a mman licatio	ible for design e proc entire S2 ary flo d is e n onc	T each (D): nated duct v desig bating S2) emplo	prod d by (will b sing b gnate g poir desig oyed ring (uct. S1 be st binar es a nt nu gnat , wh each) is mul ored in ry floatin umber fo e ident n scan.	ommand — ommand (13 Continuous execution type nal: none tiplied by th the registe ng-point number it K or H, th or use in mu- ical registed ditional co Pulse execu- istances.	DEMULP DEMULP ne conte er desig mbers. ne comr ultiplicat er numb ntact is	nated by nand will ion. pers, if a On, the
EXAMPLE	ing poin (D21, D X1	it numi 20). D 2 = Or n auto	ber (D EMUI	b11, D	D10), a	D1	e proc	D2	will b 0 (D1,	D0)	ored in	nultiplied by the registe multiplied l er), and the	er desig by K123	nated by <i>c2000_280</i> 34 (which

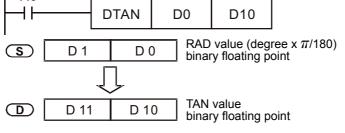
DEMUL K1234 D0 D10

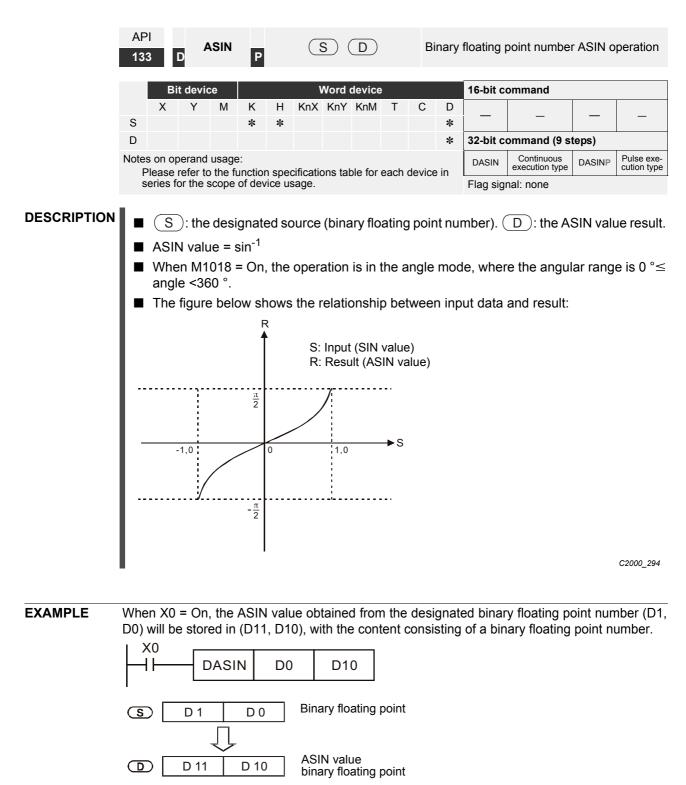
	AF 12	_		DIV	Ρ	(<u>S1</u>)	(S2		כ	D	ivisio	n of bina	ary floating p	oint num	bers
		Bit	devid	ce			1	Word	device	•			16-bit c	ommand		
		Х	Y	М	К	Н	KnX	KnY	KnM	Т	С	D				
	S1				*	*						*		_	_	_
	S2				*	*						*	32-bit c	ommand (13	steps)	
	D											*	DEDIV	Continuous execution type	DEDIVP	Pulse exe- cution type
	F	s on op Please r series fo	efer to	the fu	Inctior			ons tal	ble for	each	device	e in	Flag sig	nal: none		
DESCRIPTION	-	Whe regis D If the trans	n the ter d), div e sou	ision irce that	tent o nated is pe oper cons	of th by erforr and tant	e reg (S2) med ((S1) into a	gister), the entire) or (a bina	desig quo ely us <u>S2</u> ary flo	gnate tient ing b desi pating	ed by will t inary gnate g poir	oe st / floa es a nt nu	ored in ting-poi constar mber fo	vided by th the registe int numbers nt K or H, th or use in div	er desig s. ne comr vision.	nated by nand will
EXAMPLE	poin		ber (D10]		d the		ient s		d in t			livided by th designated		
																02000_202
	has (D1		autor					•••			•		,	e divided b er), and the		•
	F			EDI	/	D0		K12	34	D1	0					

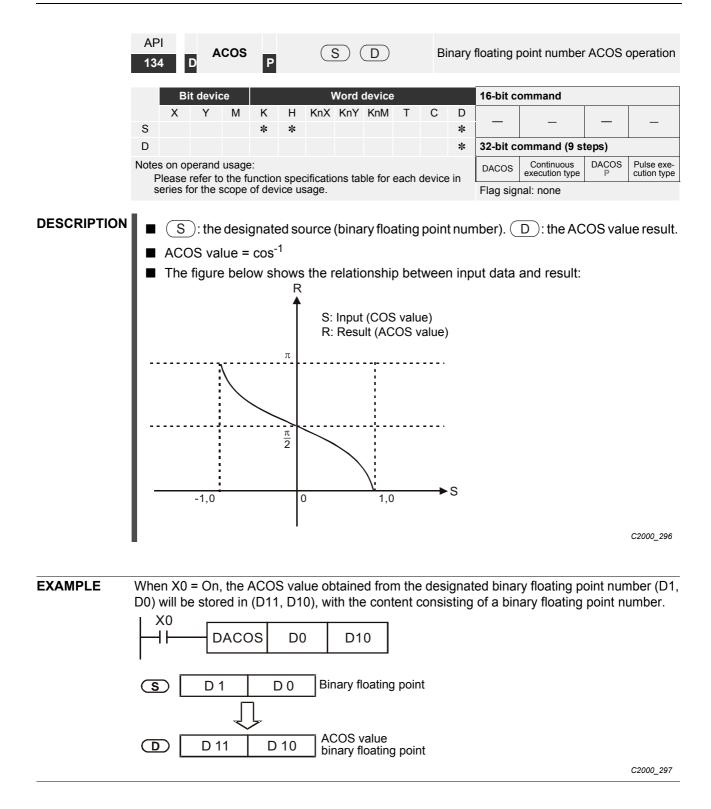


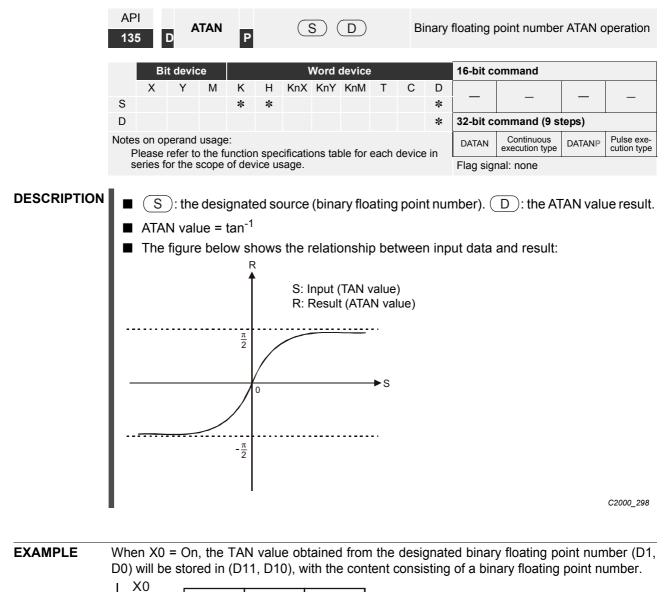

	API EXP S	D B	linary	floating	point numbe	r obtain i	exponent
	Bit device Word X Y M K H KnX KnY S * * *	d device Y KnM T C	D *	16-bit c	command	_	_
	D		~ *	32-bit c	ommand (9 s	teps)	
	Notes on operand usage: Please refer to the function specifications t series for the scope of device usage.	able for each devic	e in	DEXP	Continuous execution type	DEXPP	Pulse exe- cution type
DESCRIPTION	 S: operation source device. Taking e = 2.71828 as a base, ([D +1, D] = EXP [S + Valid regardless of whether the designated register D must using floating-point numbers, an number. Content of operand D = e^S; 	S is the expo 1, S] content of S have a 32-bit d ad S must th) ha ata f	t in the I s a pos ormat. ⁻ ore be c	EXP operat itive or neg This operat converted to	ative va ion is p o a floa	erformed ting point
EXAMPLE	When M0 is On, the value of (D1, D which will be stored in register (D11, I When M1 is On, the EXP operation is a binary floating point number stored M0 M1	D10). s performed on in register (D21	the e	exponer 0). D10 D20	nt of (D11, I		
				END			
							C2000_284

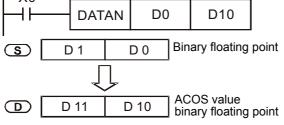

	API 125 D	LN	S	D	Binary	floating	point number	⁻ obtain	logarithm				
	Bit device Word device 16-bit command												
	S X		H KnX KnY	KnM T	C D *		-	_	_				
	D				*	32-bit command (9 steps)							
	Notes on opera	and usage: er to the function s	pecifications ta	ble for each	device in	DLN	Continuous execution type	DLNP	Pulse exe- cution type				
		he scope of device		Flag signal: none									
 DESCRIPTION S: operation source device. D: operation results device. Natural logarithm (logarithm whose base is "e (2.71828)") of S and S+1 is calculated, and the operation result is stored to D and D+1. 													
													+1, D] = E
	■ Valid r	■ Valid regardless of whether the content of (S) has a positive or negative value. The											
		designated register (D) must have a 32-bit data format. This operation is performed											
	-	using floating-point numbers, and S must therefore be converted to a floating point number.											
	Conter	nt of operand (D = e ^S ; e	= 2.71828	8, S is	s the de	signated so	ource da	ata.				
EXAMPLE	When M0 is	s On, the value	e of (D1, D0) will be c	onverted	to a b	inary floatin	g point	number,				
	which will b	e stored in regi	ster (D11, D	, 10).				• •					
When M1 is On, the EXP operation is performed on the exponent of (D11, D10); its value is a binary floating point number stored in register (D21, D20).													
	a binary iloa	• •		i legister (, DZ I, DZ	0).							
		, 		DFLT	D0	D10]						
	M1			-									
				DLN	D10	D20]						
							•						
					[END	J		C2000_285				
									22000_200				


	API INT P				S) (Binary number			inary umbe	y floating point number \rightarrow BIN whole per transformation						
		Bi	t devi	ce			١	Word	device	;			16-bit command			
	0	Х	Y	М	К	Н	KnX	KnY	KnM	Т	С	D		_	_	_
	S D											*	32-bit c	ommand (9 st	ens)	
	_	Notes on operand usage:										DINT	Continuous	DINTP	Pulse exe-	
	F	- Please	refer to	to the function specifications table for each devised by scope of device usage.						device	e in		execution type nal: none	DINTE	cution type	
				ocope	01 00 0		uge.						i lag sig			
 DESCRIPTION S: the source device to be transformed. D: results of transformation. The content of the register designated by S is transformed from a binary floating point number format into a BIN whole number, and is temporarily stored in D. The BIN whole number floating point number will be discarded. The action of this command is the opposite of that of command API 49 (FLT). 																
EXAMPLE	XAMPLE When X0 = On, the binary floating point number (D1, D0) is transformed into a BIN whole number, and the result is stored in (D10); the BIN whole number floating point number will be discarded.															
	┝	× —	<0 ├──						D	INT	D	0	D10			
													END			
	I											L				C2000_288






EXAMPLE When X0 = On, the TAN value of the designated binary floating point number (D1, D0) in radians (RAD) will be stored in (D11, D10), with the content consisting of a binary floating point number.



AF 13		D	SINH	Ρ			S) (D		Bi	inary	floating	point numbe	r SINH c	peration
	Bi	t devid	e			١	Nord	device				16-bit c	ommand		
	Х	Y	М	К	Н	KnX	KnY	KnM	Т	С	D		_		_
S				*	*						*				
D											*	32-bit c	ommand (9 s	teps)	
	s on op Please		•		n sner	cificatio	ons tal	ble for	each	device	e in	DSINH	Continuous execution type	DSINHP	Pulse exe- cution type
	series f								ouon	aono	2	Flag sig	nal: none		
													D: the SI		
													ary floating		
┢	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-[DSIN	١H	D	0	D	10							
C	5 [D	1]	D 0	E	Binary	[,] floatii	ng po	oint					
	പ	D '	11		010		SINH v								
	ן עם	U			, 10	D	mary	floatir	ig po	IIII					C2000_300

	AF 13		со	SH	Ρ	(S	D		В	inary	floating	point number	COSH	operation
		Bit	device)			Word	device	•			16-bit c	ommand		
		Х	Y				X KnY	KnM	Т	С	D		_	_	_
	S D				* :	*					*	32-bit c	ommand (9 s	tens)	
	_	s on op	erand u	sage:								DCOSH	Continuous	DCOSH	Pulse exe-
	F	Please r	efer to t	he fun	ction s	pecifica	ations ta	ble for	each	device	e in		execution type	Р	cution type
	S	eries fo	r the sc	ope or	device	eusage	-					Flag sig	nal: none		
DESCRIPTION	:	resul					rce (b	inary	float	ing p	ooint	numbe	r). (D): tl	he COS	SH value
EXAMPLE													ry floating p		
			store	d in (L	J11, L	J10),	with th	e con	tent o	consi	sting	of a bir	ary floating	point n	umber.
		X0 ┨┠───		COS⊦	4	D0	D	0							
						_		_							
	S	Ð	D 1		D ()	Binary	floatin	ig poi	int					
				\downarrow	-										
		DГ	D 11		D 1	0	COSH binary			int					
							2 mary		.9 00						C2000_301
		-										-			

	AF 13		D TANH P					S) (D		Bi	inary	floating	ooint numbe	r TANH (operation
		Bi	t devic	e			١	Nord	device)			16-bit c	ommand		
	S	Х	Y	М	K *	H	KnX	KnY	KnM	Т	С	D		_	_	_
	D				*	*						*	32-bit c	ommand (9 s	teps)	
		s on op		•									DTANH	Continuous execution type	DTANHP	Pulse exe- cution type
		Please i series fo						ons ta	ble for	each	device	ein	Flag sig	nal: none		
DESCRIPTION	' ■	S TAN): the H val	desi ue =	gnate (e ^S -	ed so - e ^{-S}	ource)/(e ^S	(bina + e ^{-S}	ary floa)	ating) poin	ıt nur	nber).(D: the TA	NH valı	ue result.
EXAMPLE														y floating p		
	,	₩11 De X0 		TAN	· 	, D1 D(, 	D1		ent	CONSI	sung		ary floating	point in	under.
	3	D [D 1	⊡ √		00	Bi	nary f	floating	g poi	nt					
		D [D 1	1	D	10		ANH	value floatin	a poi	nt					
								-)			-					C2000_302

	API	RPR	Р		S	1)	S2)		R	ead s	ervo pa	rameter		
	139													
	Bi	t device			W	/ord d	levice				16-bit c	command (5 st	teps)	
	X S1	Y M	K *	H *	KnX	KnY	KnM	Т	С	D *	RPR	Continuous execution type	RPRP	Pulse exe cution typ
	S2									*	32-bit c	ommand		
	Notes on op	perand usag	e: none	Э							_	—	—	—
											Flag sig	nal: none		
DESCRIPTIO): Parame	eter ad	ldres	s of da	ata to	be re	ad. (<u>S2</u>)	: Reg	jister wł	nere data to b	be read	is store
	API 140	WPR	Ρ		S	1	<u>S2</u>)		W	′rite s	ervo pa	rameter		
	Bi	t device			W	/ord d	levice				16-bit c	command (5 st	teps)	
	Х	Y M	К	Н	KnX	KnY	KnM	Т	С	D	WPR	Continuous	WPRP	Pulse ex
	S1		*	*						*		execution type		cution typ
	S2		*	*						*	32-bit c	ommand	1	
				-										
DESCRIPTIO		perand usag Data to wri			fied pa	age. (<u>S2</u>)	: Pa	rame	ter a		nal: none	 written	<u> </u>
DESCRIPTIO EXAMPLE	N S1: C When H01.0 When speed When The C comm	Data to wri the data i 1 will be r M0 = On, of multip the parar 2000's W and supp	te to s n the ead a the co le spe neter PR co	Speci C20 nd w onte ed le has	00 driv vritten nt of D evels). been v and de	ver's p to D 10 w 10 w writte oes r	parar 1. vill be en su	mete writ cces	er H0 ten to	1.00 o the y, M1	ddress of is read C2000	of data to be and written driver parar	to D0, neter 0	data fro 4.00 (fir
	N S1: C When H01.0 When speed When The C	Data to wri the data i 1 will be r M0 = On, of multip the parar 2000's W and supp	te to s n the ead a the co le spe neter PR co orts re	C200 nd v onte ed la has pmm eadir	00 driv vritten nt of D evels). been v and de ng of 2	ver's p to D 10 w 10 w writte oes r	parar 1. rill be not su , 22X	writ ccces uppo X.	er H0 ten to ssfully ort wr H100	1.00 o the y, M1 riting	ddress of is read C2000 017 = to the D0	of data to be and written driver parar On.	to D0, neter 0	data fro 4.00 (fii
	N S1: C When H01.0 When speed When The C. comma	Data to wri the data i 1 will be r M0 = On, of multip the parar 2000's W and supp 0 I Normally	te to s n the ead a the co le spe neter PR co orts re	C200 nd v onte ed la has pmm eadir	00 driv vritten nt of D evels). been v and de ng of 2	ver's p to D 10 w 10 w writte oes r	parar 1. rill be en su not su , 22X	writ ccces uppo X.	er H0 ten to ssfully ort wr	1.00 o the y, M1 riting	ddress of is read C2000 017 = to the	of data to be and written driver parar On.	to D0, neter 0	data fro 4.00 (fir
	N S1: C When H01.0 When speed When The C comma	Data to wri the data i 1 will be r M0 = On, of multip the parar 2000's W and supp 0 I Normally	te to s n the ead a the co le spe neter PR co orts re	C200 nd v onte ed la has pmm eadir	00 driv vritten nt of D evels). been v and de ng of 2	ver's p to D' 10 w writte oes r 21XX,	parar 1. rill be not su , 22X	mete writ cces uppo X.	er H0 ten to ssfully ort wr H100	1.00 the y, M1 iting 0 1	ddress of is read C2000 017 = to the D0	of data to be and written driver parar On.	to D0, neter 0	data fro 4.00 (fir
	N S1: C When H01.0 When speed When The C. comma	Data to wri the data i 1 will be r M0 = On, of multip the parar 2000's W and supp 0 I Normally	te to s n the ead a the co le spe neter PR co orts re	C200 nd v onte ed la has pmm eadir	00 driv vritten nt of D evels). been v and de ng of 2	ver's p to D' 10 w writte oes r 21XX,	parar 1. rill be en su not su , 22X RPF	mete writ cces uppo X.	er H0 ten to ssfully ort wr H100	1.00 5 the y, M1 iting 0 1 F	ddress of is read C2000 017 = to the D0 D1	of data to be and written driver parar On.	to D0, neter 0	data fro 4.00 (fir

NOTE

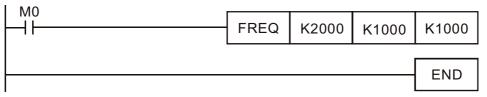
Take care when using the WPR command. When writing parameters, because most parameters are recorded as they are written, these parameters may only be revised 109 times; a memory write error may occur if parameters are written more than 109 times.

Because the following commonly-used parameters have special processing, there are no restrictions on the number of times they may be written:

Parameter	Description
P00-10	Control method
P00-11	Speed mode selection
P00-12	P2P position mode
P00-13	Torque mode select
P00-27	User-defined value
P01-12	Acceleration time 1
P01-13	Deceleration time 1
P01-14	Acceleration time 2
P01-15	Deceleration time 2
P01-16	Acceleration time 3
P01-17	Deceleration time 3
P01-18	Acceleration time 4
P01-19	Deceleration time 4
P02-12	Select MI Conversion Time mode
P02-18	Select MO Conversion Time mode
P04-50-P04-69	PLC register parameter 0–19
P08-04	Upper limit of integral
P08-05	PID output upper limit
P10-17	Electronic gear A
P10-18	Electronic gear B
P11-34	Torque command
P11-43	P2P highest frequency
P11-44	Position control acceleration time
P11-45	Position control deceleration time

Calculation of the number of times written is based on whether the written value is modified. For instance, writing the same value 100 times at the same time counts as writing only once. When writing a PLC program, if unsure of usage of the WPR command, we recommend that you use the WPRP command.

	AF	2			-				\frown							
	14	1	F	PID	P (<u>51</u>) (<u>S2</u>) (<u>S3</u>)	<u>(S4</u>)) Drive	er PII	D cont	rol mode	9		
		Bi	it devic	e			Word c	device			1	6-bit c	ommand	(9 steps)		
	S1	Х	Y	Μ	K ⊦ * *		KnY	KnM	Т	C D)	FPID	Continuo execution			Pulse exe- cution type
	S2				* *	:				*	: 3	2-bit c	ommand			
	S3				* *	:				*	:	—	-	-	-	_
	S4				* *	:				*	: F	lag sig	nal: none			
	Note	s on o	perand	usage	: none											
EXAMPLE	 \\ f f	The 08-0 02 in 02 in 0.01 s 0.01 s 0.	FPID 00 PID ntegra M0 = on), the ec.), a M1 = on), th is 0, a M2 = ack: or trional ontial t	com) refe al time : On, e PID and th : On, th on an gain ime D	the se function the se function of PID f the set function of PID f the set function of PID f the set function of function of f	an dir arget v 08-03 t PID n prop unction t PID n on pro functio PID refe input. units: (ectly c value in different oreferent oportion on different oportion on difference To se 0.01), t	contro nput t ential nce ta al gain rential nce ta gerentia e targe etting the PI	ol the termin time arget n P is l time arget al time al time 5 of D fund	driver's nal sele D. value 0, the D is 1 value is 1 (u e D is ue inpu Pr. 03 ction ir	inpu PID (uni inpu units 0. ut ter 3-00	ut tern on, 08 ut tern o funct its: 0.0 s: 0.0 rminal o to P	ninal se ninal se tion integ 1 sec.) ninal se 1), the F selection r. 03-02	portiona lection i gral time lection i PID func on is 1 (N	D pa I ga s 0 s 1 is s 0 s 1 is tion). arameter in P, 08- (no PID 1 (units: (no PID integral ative PID function function
	_	мо — -		quein			FPID		H0	_	-10		H1	H1		
		M1														
	-						FPID		H0	ŀ	H1		H0	H0		
	-	M2 ⊣⊢					FPID		H1	H	H1		H0	H0		
	ŀ	M100					MOV	D	1027		D1				_	
	-						END]								



	API 142	FREQ	<u>(S1)</u> (S2)) (\$3)	Driver s	speed control mode
	X S1 S2 S3	Ievice X Y M K * * * rand usage: none	Word d H KnX KnZ KnY * Image: Comparison of the temperature of the temperature of temperatu		D * *	16-bit command (7 steps) FREQ Continuous execution type FREQP Pulse execution type 32-bit command
DESCRIPTION	■ <u>S2</u> ,	(S3): In acc		eration time		e. S3: Deceleration time. gs, the number of decimal places is
EXAMPLE	diagram The FRE eration t - M102 to be - M102 - M102 - M104 -	below implies EQ command ime; it also us 25: Control dr effective) 26: Control Se 40: Control Se 42: Trigger qu 44: Pause (OI 52: Lock frequ 25: Driver RU 26: driver ope 15: frequency 10 = ON, sets ation time of 0 11 = ON, sets 50 (0.5 sec.) a	s 0.5 sec, and the can control drives special registriver RUN (ON) iver operating of ervo ON/Servo nick stop (ON)/c N)/release paus uency (ON)/release N (On)/STOP (rating direction reached. s the driver frequent of deceleration	e S3 (decele ver frequency ster control /STOP (OFF direction FW OFF loes not trigg se (OFF) ease lock free Off) FWD (Off)/F uency command ency command	eration y comr actions F) (RU D (OF ger qui quenc REV (C hand K and K 0.6 set	N requires Servo ON (M1040 ON) F)/REV (ON) ick stop (OFF) y (OFF)
	M1000 M11 M11 M12 M12 M12 M13 M14 M10 M11 M11)	 M1025 M1026 M1040 M1042 M1044 M1044 M1052 FREQP FREQ END 	K300	K0 K50	K0 K60

EXAMPLE

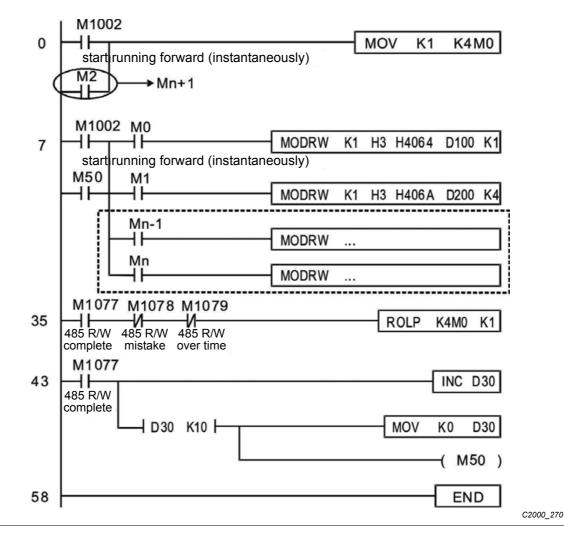
Parameter 09-33 are defined on the basis of whether reference commands have been cleared before PLC operation:

- Bit 0: Prior to PLC scanning procedures, whether the target frequency has been cleared is 0. (This will be written to the FREQ command when the PLC is On.)
- Bit 1: Prior to PLC scanning procedures, whether the target torque has been cleared is 0. (This will be written to the TORQ command when the PLC is On.)
- Bit 2: Prior to PLC scanning procedures, whether speed limits in the torque mode have been cleared is 0. (This will be written to the TORQ command when the PLC is On.)
- In the following program, if we force M0 to be 1, the frequency command will be 20.00 Hz; but when M0 is set as 0, there will be a different situation:

- Case 1: When the 09-33 bit 0 is 0, and M0 is set as 0, the frequency command will remain at 20.00 Hz.
- Case 2: When the 09-33 bit 0 is 1, and M0 is set as 0, the frequency command will change to 0.00 Hz
- The reason for this is that when the 09-33 bit 0 is 1 prior to PLC scanning procedures, the frequency will first revert to 0.
- When the 09-33 bit 0 is 0, the frequency will not revert to 0.

API 150	MODRW P S n	MODB	US® data read/	write	
Bit	t device Word device		16-bit commar	d (5 STEP)	
S1 X	Y M K H KnX KnY KnM T * *	C D *	MODR W Contin executi	nuous MODR	Pulse exe- cution type
S2	* *	*	32-bit commar	d	
S3	* *	*			_
S	* *	*	Flag signal: M1077, M1	078, M1079	
data data data COM comr (set F the for H (H (H (H (H (H (H (H (H (H (02Input read03Read word06Write single word0FWrite multiple coils10Write multiple wordexecuting this command, M1077, M107n example, when C2000 must controla station number of 10 and the PLC h	to be read the PLC (nications s cations fun function co another of another of	d/written is sta set P9-31 = - speed and for action code. C ode cannot be ode cannot be	ediately char PLC, if the c	length of sing this so be set supports nged to 0. converter
			MODRW c	ommand	
Serial	Example	S1	S2 S3	S4	n
No.	·	Node ID	Function Addr	ess Register	Length
1	Reads 4 sets of data comprising the converter slave device parameters P01-00 to P01-03, and saves the read data in D0 to D3	K10	H3 H10	00 D0	K4
2	Reads 3 sets of data comprising the converter slave device addresses H2100 to H2102, and saves the read data in D5 to D7	K10	H3 H21	00 D5	КЗ
3	Writes 3 sets of data comprising the converter slave device parameters P05-00 to P05-03, and writes the values as D10 to D12	K10	H10 H50	00 D10	K3
4	Writes 2 sets of data comprising the converter slave device addresses H2000 to H2001, and writes the values as D15 to D16	K10	H10 H20	00 D15	K2
-					

DESCRIPTION PLC controlling slave device


			MO	DRW comn	nand	
Serial No.	Example	S1	S2	S3	S4	n
NO.		Node ID	Function code	Address	Register	Length
1	Reads 4 sets of data comprising the PLC slave device's X0 to X3 state, and saves the read data in bits 0 to 3 of D0	K20	H2	H400	D0	K4
2	Reads 4 sets of data comprising the PLC slave device's Y0 to Y3 state, and saves the read data in bits 0 to 3 of D1	K20	H2	H500	D1	K4
3	Reads 4 sets of data comprising the PLC slave device's M0 to M3 state, and saves the read data in bits 0 to 3 of D2	K20	H2	H800	D2	K4
4	Reads 4 sets of data comprising the PLC slave device's T0 to T3 state, and saves the read data in bits 0 to 3 of D3	K20	H2	H600	D3	K4
5	Reads 4 sets of data comprising the PLC slave device's C0 to C3 state, and saves the read data in bits 0 to 3 of D4	K20	H2	HE00	D4	K4
6	Reads 4 sets of data comprising the PLC slave device's T0 to T3 count value, and saves the read data of D10 to D13	K20	H3	H600	D10	K4
7	Reads 4 sets of data comprising the PLC slave device's C0 to C3 count value, and saves the read data of D20 to D23	K20	H3	HE00	D20	K4
8	Reads 4 sets of data comprising the PLC slave device's D0 to D3 value, and saves the read data of D30 to D33	K20	H3	H1000	D30	K4
9	Writes 4 sets of the PLC slave device's Y0 to Y3 state, and writes the values as bits 0 to 3 of D1	K20	HF	H500	D1	K4
10	Writes 4 sets of the PLC slave device's M0 to M3 state, and writes the values as bits 0 to 3 of D2	K20	HF	H800	D2	K4
11	Writes 4 sets of the PLC slave device's T0 to T3 state, and writes the values as bits 0 to 3 of D3	K20	HF	H600	D3	K4
12	Writes 4 sets of the PLC slave device's C0 to C3 state, and writes the values as bits 0 to 3 of D4	K20	HF	HE00	D4	K4
13	Writes 4 sets of the PLC slave device's T0 to T3 state, and writes the values of D10 to D13	K20	H10	H600	D10	K4
14	Writes 4 sets of the PLC slave device's C0 to C3 state, and writes the values of D20 to D23	K20	H10	HE00	D20	K4
15	Writes 4 sets of the PLC slave device's D0 to D3 state, and writes the values of D30 to D33	K20	H10	H1000	D30	K4

EXAMPLE Will trigger M0 On when the PLC begins to operate, and sends instruction to execute one MODRW command.

After receiving the slave device's response, if the command is correct, it will execute one ROL command, which will cause M1 to be On.

After receiving the slave device's response, will trigger M50 = 1 after a delay of 10 PLC scanning cycles, and then execute one MODRW command.

After again receiving the slave device's response, if the command is correct, it will execute one ROL command, and M2 will change to On at this time (and M2 can be defined as a repeat of M); K4M0 will change to K1, and only M0 will remain 1. Transmission can proceed in a continuous cycle. If you wish to add a command, merely add the desired command in the empty frame, and change repeat M to Mn+1.

									_							
	API 160	D	СМР	Ρ	(<u>S1</u>)	(<u>S2</u> S) (2) (S D	3)	C	ompa	arison of	f calend	lar dat	a	
	E	Bit devid	ce			٧	Nord	device)			16-bit o	comman	nd (11 :	steps)	
	Х	Y	М	К	Н	KnX	KnY	KnM	Т	С	D		Quality			Dubara
	S1 S2			*	*	*	*	*	*	*	*	TCMP	Contir executio		TCMPP	Pulse exe- cution type
	S2 S3			*	*	* *	*	*	* *	*	* *	32-bit o	comman	nd		
	S								*	*	*					
	D	*	*											_	_	_
		operand e refer to for the s	the fu	Inction			ons tal	ble for	each	device	e in	Flag sig	gnal: nor	ne		
DESCRIPTION	■ (S	1): Se	ts the	e houi	rs of	the c	comp	ariso	n tim	e. se	ettina	ı range	is "K0-	-K23.'	" (S2):	Sets the
							•				•					conds of
	the		ariso	n tim	e, s				-	-	_				dar tim	
				•		ours.	min	utes.	and	seco	onds	set in	(S1)	(S2)) (S3)	with the
	cur	Compares the time in hours, minutes, and seconds set in $(S1)$ $(S2)$ $(S3)$ with the current calendar time in hours, minutes, and seconds, with the results of comparison expressed in (D) .														
		· Th	e hou	ur con	itent	of the	e cur	rent c	alen	dar ti	ime i	is "K0-ł	(23 " (<u>s</u>)+	1 comr	rises the
												f "K0-K		_	•	rises the
												f "K0-K	\sim	•	_ 00p	
	■ The	e curre	ent ca	alenda	ar tii	me d	esigr	nated	by (S)	is u	usually	compa	ared u	using th	e TCMP
					-											e content
							-		is c	onsic	derec	d an op	erating	g erro	r, the c	ommand
	WIII	not ex	ecul	e, and		1000	- 00									
EXAMPLE																22 will be
	•			•									• •			12. When M12 will
		aintain		0 001	- The second				oout	00, 0		0 010	n otata	o prio		
						≤, or	≠ are	e nee	ded,	they	/ can	i be ob	tained	by se	ries an	d parallel
		ection	of M	10-M ⁻	12.											
			тс	MP		K12		K2()	K	45	D2	20	M1	0	
	I	M' —		_ 0	N wł	nen 12	2:20:4	15	> [D20 D21 D22	(min					
		M [.]		_ 0N	l whe	en 12:	20:45	5	= [D20 D21 D22	(min	_				
		М ⁻		_ ON	whe	en 12::	20:45	5	< [D20 D21 D22	(min					

	AF 16		т	ZCP	Ρ	(S1		<u>52</u> (S	D) c	ompa	arison of	calendar dat	a	
		Bit	t devid	e:			١	Word	device				16-bit c	ommand (9 s	teps)	
	S1	Х	Y	М	K	Н	KnX	KnY	KnM	T *	C *	D *	TZCP	Continuous execution type	TZCPP	Pulse exe- cution type
	S2									*	*	*	32-bit c	ommand		
	S									*	*	*	_	_	_	_
	D		*	*									Ele el ele			
	F	s on op Please i series fo	efer to	the fu	Inction			ons tal	ble for (each	device	e in	Flag sig	nal: none		
DESCRIPTION	.	com	pariso	on tin	ne. (S	curr	ent c	alend	ar tir	ne. (D	: Resul	Sets the u ts of compa , and secon	rison.	
	-	and com	the u pariso	pper on in	limit D , S	of tl).	ne co	ompa	rison	time	set	as (<u>S2</u>), ar	omparison t nd express nds of the l	es the r	esults of
			pariso	on tin	ne.	_								nds of the u		
	-	using caler an o Whe the u	D0 de g the ndar t perat n the upper	esign TZCI ime. ing e curre limit	ated Con If the rror, f ent tin value	by th nma valu the c ne (S e (S	ne (3 nd af ue of comm <u>S</u> i 2), (1) ar	S limits less and S	sted in sing th), (S2 will no s than will be	n this ne Tl), or ot ex i the e On grea	s pro RD c r <u>S</u> ecut lowe . Wh	gram comn) ex e, ar er lim en th han t	n is usua nand in a cceeds t nd M106 it value ne currer	ally obtained advance to he range, th 58 = On. (S1) and (nt time (S) er limit value	d by cor read the nis is co S is l	nparison e current nsidered ess than

EXAMPLE When X10 = On, the TZCP command executes, and one of M10-M12 will be On. When X10 = Off, the TZCP command will not execute, and M10-M12 will remain in the X10 = Off state.

X10	1						1		l
		TZCP	D0	D20)	D10		M10	
		N when 11 N when	D0 (hr) D1 (min) D2 (sec) D0 (hr) D1 (min) D2 (sec)			10 (hr) 11 (min) 12 (sec) 10 (hr) 11 (min) 12 (sec) 10 (hr) 11 (min) 12 (sec)	<= >	D20 (D21(D22(D20 D21 (D22 (min) sec) (hr) (min)

	API 162	D TADD	Ρ	<u>(S1)</u> (S	2	\mathbf{D}	Ca	alend	lar data a	addition		
	E	Bit device		Wor	d device				16-bit c	ommand (7 s	teps)	
	X S1	Y M	Κŀ	l KnX Kn	Y KnM	T *	C *	D *	TADD	Continuous execution type	TADDP	Pulse exe- cution type
	S2					*	*	*	32-bit c	ommand		
	D					*	*	*		— —	_	—
	Please	operand usag e refer to the f for the scope	function sp		able for	each	device	e in	M10	nai: 020 Zero flag 022 Carry flag 068 Calendar e	error	
DESCRIPTION	• (S	1): time ac	ldend. (S2): time	augeno	d. (]	D): t	ime	sum.			
	■ The	e calendar	data in I	nours, min	utes, a	nd s	econ	ds d	esignat	ed by (S2)) is add	ed to the
									-	by (S1), a		
									-	nated by		
	If the	ne value of	(S1) c	r(S2) ex	reeds	the i	ranne	۔ thi د	s is cor	nsidered an	onerati	na error
		command									operati	ng enoi,
	■ If th	ne results o	of addition	on are gre	ater tha	an oi	requ	al to	24 hou	irs, carry fla	ag M102	22 = On,
	and	l D will	display	the results	of add	lition	minu	us 24	4 hours.		-	
		he results 020 = On.	of addi	tion are e	qual to	0 (0 ho	urs,	0 minu	ites, 0 sec	onds), z	zero flag
	•											
EXAMPLE										alendar da alendar da		
			-	•						stored as a		
		ninutes, and	-	•								
	I X10											
		TADD	D0	D10	D20							
	I	L		-1	!							
	D0	8 (hr)	Γ	D10 6 (nr)		D2	0 1	4 (hr)			
	÷	10 (min)		D11 40 (m		→			(min)			
	D2	20 (sec)		D12 6 (s	ec)		D2	2 26	6 (sec)			
	8:	10:20		6:40:6			14:	50	: 26			
												C2000_305

	API 163	TSUB	Ρ	<u>(S1</u>)	<u>S2</u> (D	Ca	alend	lar data s	subtraction		
	Bi	t device		١	Nord devid	e			16-bit c	ommand (7 s	steps)	
	X S1	Y M	Κŀ	ł KnX	KnY KnM	I T *	C *	D *	TSUB	Continuous execution type	TSURP	Pulse exe- cution type
	S2					*	*	*	32-bit c	ommand		
	D					*	*	*	_	—	_	_
	Please	perand usage refer to the fu or the scope	unction sp		ons table fo	r each	device	e in	M10	nal:)20 Zero flag)21 Borrow fla)68 Calendar		
DESCRIPTION	I ■ (S1): time mii	nuend.	(<u>S2</u>): 1	ime auge	end.(D:	: time	e differe	nce.		
	■ Sub	racts the	calenda	r data	in hours,	minu	tes, a	and s	seconds	s designate	ed by 🤇	S2) from
										d by (S1),		
									•	gister desig		_
		-		_								
		e value of command		\sim			•			nsidered an	operat	ing error,
										021 = On, a	and the	result of
					-				-	egister desi		
		•		•			•	•		utes, 0 sec	•	•
		20 = On.		action	are equa	10 0	(0 11	ours	, 0 11111		;onus),	zero nag
EXAMPLE										alendar da		
										d from the		
										esults are ed by D20 t		as a totai
	I X10						gioto	10 00	oorginate	54 59 520 1	.0 DLL.	
		тѕив	D0	D	10 D	20						
	I	L										
		20 (hr)	1	D10) 14 (hr)	٦		П	20 5	(hr)		
	D1	20 (min)	1_		30 (min	, - T			21 49			
	D2	5 (sec)	1		2 8 (sec)				22 57			
	8		a		: 30: 8				<u> 0,</u> 5: 49			
	20	: 20: 5		14	. 50. 6	,			5. 43	. 57		C2000_306

	API 166 D Bit device				Ρ)		Ca	alend	lar data i	read		
		В	it devid	e			١	Nord	device				16-bit c	ommand (3 st	teps)	
		Х	Y	М	к	Н	KnX	KnY	KnM	т	С	D	TRD	Continuous execution type	TRDP	Pulse exe- cution type
	D									*	*	*	32-bit c	ommand		
			perand	•									—	—	_	
			refer to or the s					ons tal	ble for	each	device	e in	Flag sig	nal: none		
DESCRIPTION	:	The com The cale	C200 prisin TRD ndar f	0 sei g yea con time	ries h ar, we nman into t	as a eek, i id fu he d	built- mont nctio esign	in ca h, da n allo ated	lenda y, hou ows p seve	r clo ir, mi progr n reg	ck, a nute ram gister	nd th , and desig s.	lsecond	provides se d stored in E o directly re	01063 to	o D1069.

■ D1063 only reads the two right digits of the Western calendar year.

EXAMPLE

■ When X0 = On, the current calendar time is read into the designated registers D0 to D6.

■ In D1064, 1 indicates Monday, 2 indicates Tuesday, and so on, with and 7 indicating Sunday.

X0	
	00

Item	Content		General D	ltem
Year (Western)	00–99	\rightarrow	D0	Year (Western)
Weeks	1–7	\rightarrow	D1	Weeks
Month	1–12	\rightarrow	D2	Month
Day	1–31	\rightarrow	D3	Day
Hour	0–23	\rightarrow	D4	Hour
Minute	0–59	\rightarrow	D5	Minute
Second	0–59	\rightarrow	D6	Second
	Year (Western) Weeks Month Day Hour Minute	Year (Western)00–99Weeks1–7Month1–12Day1–31Hour0–23Minute0–59	Year (Western) $00-99$ Weeks $1-7$ Month $1-12$ Day $1-31$ Hour $0-23$ Minute $0-59$ Second 0.50	Year (Western) $00-99$ \longrightarrow $D0$ Weeks $1-7$ \longrightarrow $D1$ Month $1-12$ \longrightarrow $D2$ Day $1-31$ \longrightarrow $D3$ Hour $0-23$ \longrightarrow $D4$ Minute $0-59$ \longrightarrow $D5$ Second 0.50 \longrightarrow $D6$

	AF 17		D	GRY	P S D Word device							$ N \rightarrow$	GRAY o	code transfor	mation	
		Bi	it devid	:e			١	Word	device				16-bit c	ommand (5 st	teps)	
		Х	Y	М	к	Н	KnX	KnY	KnM	т	С	D	GRY	Continuous execution type	GRYP	Pulse exe- cution type
	S				*	*	*	*	*	*	*	*	32-bit c	ommand (9 st	teps)	
	D							*	*	*	*	*	DGRY	Continuous execution type	DGRYP	Pulse exe- cution type
	F	Please	perand refer to or the s	the fu	Inctior			ons ta	ble for	each	device	e in	Flag sig	nal: none		
DESCRIPTION	Ŀ	_							ce sto	Ū						
	 Transforms the content value (BIN value) of the device designated by (S) to GRAY code, which is stored in the device designated by D. The valid range of (S) is as shown below; if this range is exceeded, it will be considered 															
	•	an e - 10		and th comm	ne co nand:	0-3	and v 2,76	vill no 7	ot exe			ranç	ge is exc	ceeded, it w	ill be co	nsidered
EXAMPLE	Wh) = 01	n, the	con	stan	t K65	13 w	ill be	trans	form	ied to	o GRAY	code and	stored i	n D0.
		×0 ⊣⊢	—[GR	Y	K	513		D0]						
		K65	513=H	1197		15 00(0 1 1	00	10	1 1	10	t 0 0	50 1			
	GF	RAY C	CODE	5651		15) 0 (0 1 0	0 1 0		10	0 1	0 0	b0 1			
_																C2000_325

	AF 17		GBI	IN P			s) (D	G	RAY	$code \rightarrow$	BIN transfor	mation		
		Bi	t device			1	Word	device				16-bit c	ommand (5 s	teps)	
		Х	YN	и к	Н	KnX	KnY	KnM	т	С	D	GBIN	Continuous execution type	GBINP	Pulse exe- cution type
	S			*	*	*	*	*	*	*	*	32-bit c	command (9 s	teps)	
	D						*	*	*	*	*	DGBIN	Continuous execution type	DGBINP	Pulse exe- cution type
	F	Please	perand us refer to th or the sco	e functio			ons tal	ble for	each (device	e in	Flag sig	nal: none	•	•
DESCRIPTION	•): sourc r transfo			sed to	o stor	e GR	AY c	code.): dev	ice used to	store B	IN value
	 The GRAY code corresponding to the value of the device designated by S is transformed into a BIN value, which is stored in the device designated by D. This command will transform the value of the absolute position encoder connected with the PLC's input and (this encoder usually has an output value in the form of GRAY code) into a BIN value, which is stored in the designated register. The valid range of S is as shown below; if this range is exceeded, it will be considered 														
	ŀ	an e - 10	valid rai error, and 6-bit cor 2-bit cor	d the co mmand	omm : 0–3	and v 32,76	vill nc 7	ot exe			ranç	ge is ex	ceeded, it w	vill be co	nsidered
EXAMPLE	poir		to X17			sform	ed in						coder conn D10.	ected w	<i>v</i> ith input
	GF	RAY C	ODE 6	×1 513 0		10	K4 1 0	4X0 1 1 1	00	10	X(0 1				
		H19	071=K6	ь1 513 0		11			1 1	0 0	b 0 1	o]			
															C2000_308

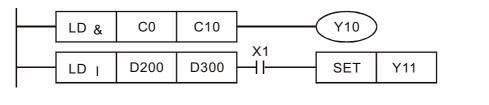
AP 215 217	- 1	D	LD#			(5	51) (<u>S2</u>)		С	ontac	t form lo	gical operatio	on LD#	
	Bi	t devid	ce			١	Nord	device			÷	16-bit c	ommand (5 st	teps)	
	х	Y	М	к	н	KnX	KnY	KnM	Т	С	D	LD#	Continuous execution type	_	_
S1				*	*	*	*	*	*	*	*	32-bit c	ommand (9 st	teps)	
S2				*	*	*	*	*	*	*	*	DLD#	Continuous execution type	_	_
Р	lease	perand refer to or the s	b the fu	unction	n spec	cificatio sage.	ons tal	ole for (each	devic	e in	Flag sig	nal: none		

S1: data source device 1. S2: data source device 2.

- This command performs comparison of the content of S1 and S2; when the result of comparison is not 0, this command will be activated, but this command will not be activated when the result of comparison is 0.
- The LD# command can be used while directly connected with the busbar.

API No.	16-bit com- mands	32-bit com- mands	Condi	tions f	or activa	ition	Conditi	ons fo	or inactiv	ation
215	LD&	DLD&	S1	& ①	(S2)	≠ 0	(S1)	& ①	(S2)	= 0
216	LDJ	DLD	S1	12	(S2)	≠ 0	(S1)	12	(S2)	= 0
217	LD^	DLD^	S1	۸3	S2	≠ 0	(S1)	۸3	(S2)	= 0

① logical AND operation


⁽²⁾ logical OR operation

^③ logical XOR operation

EXAMPLE

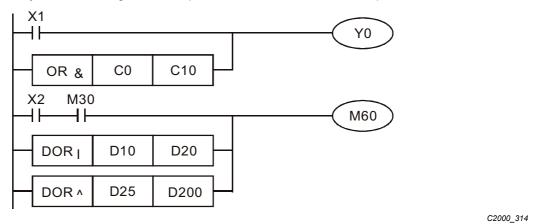
When the content of C0 and C10 is subjected to the logical AND operation, and the result is not equal to 0, Y10 = On.

■ When the content of D200 and D300 is subjected to the logical OR operation, and the result is not equal to 0, and X1 = On, Y11 = On and remains in that state.

	AP 218- 220	31	D	ND#			61) (<u>S2</u>)		Co	ontac	t form lo	gical ope	ration <i>i</i>	AND#	
		Bi	it devic	е		١	Word	device				16-bit c	ommand (5 steps	5)	
		Х	Y	М	κI	H KnX	KnY	KnM	Т	С	D	AND#	Continuou execution ty		_	_
	S1				* :	* *	*	*	*	*	*	32-bit c	ommand (9 steps	5)	
	S2				* :	* *	*	*	*	*	*	DAND#	Continuou execution ty		-	—
	P	lease		the fur	nction s	pecificatione usage.	ons tal	ble for (each d	evice	e in	Flag sig	nal: none			
DESCRIPTION		This of co activ	comr ompai vated	nand ison when	perfor s not the re	0, this sult of o	nparis comi comp	son of mand parisor	f the will I n is 0	cont be a	ent c ctiva	of <u>S1</u> ted, bu	and (S2 t this co th the co	mmar		
	API	No.		it con ands	1- 32	2-bit coi mands		Conc	lition	s for	activ	vation	Conditi	ons fo	or inacti	vation
	21	18		ND&		DAND&		(S1)	& (1	D ((S2)	≠ 0	(S1)	& ①	(S2)	= 0
	21	19	A	ND		DAND		<u>S1</u>	12	D (<u>S2</u>	≠ 0	S1	12	<u>S2</u>	= 0
	22	20	A	ND^		DAND^		(S1)	۸G) ((S2)	≠ 0	(S1)	۸3	(S2)	= 0
	2 log	gical C	ND ope R oper OR ope	ation												
EXAMPLE	a N N N N N N N N N N N N N	nd th Vhen ot eq Vhen 0100(e resu X1 = jual to X2 = D101 On, M	ult is r Off ar 0, Y1 On a) is su	not equination of equination of equination of equination of the second s	ual to 0 0 and D n and re ne cont	, Y10)0 is : emaii :ent c	e = On subjections in t of the ical X	ted t hat s 32-b	o the tate	e log egiste	ical OR er D200) the logi operation (D201) e result) Y11	on, and 3 and 3 is not	d the re 32-bit re	esult is
	1														C20	000_312

AP 221 22:	-	D	OR#			S	51) (<u>S2</u>		C	Contac	t form lo	gical operatio	on OR#	
	Bi	it devid	ce			٧	Vord	device			÷	16-bit c	ommand (5 st	teps)	
	х	Y	М	к	Word device H KnX KnY KnM T						D	OR#	Continuous execution type	_	_
S1				*	*	*	*	*	*	*	*	32-bit c	ommand (9 st	teps)	
S2				*	*	*	*	*	*	*	*	DOR#	Continuous execution type	_	_
Р	lease	perand refer to or the s	the fu	unction	n spec		ons tal	ole for o	each	devic	e in	Flag sig	nal: none		

S1: data source device 1. S2: data source device 2.


- This command performs comparison of the content of <u>S1</u> and <u>S2</u>; when the result of comparison is not 0, this command will be activated, but this command will not be activated when the result of comparison is 0.
- The OR# command is an operation command parallel with the contact.

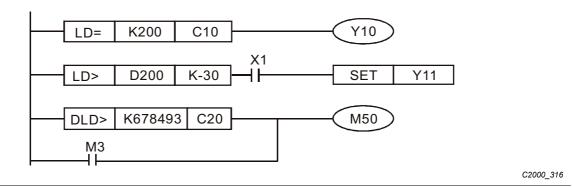
API No.	16-bit com- mands	32-bit com- mands	Condi	tions f	or activa	tion	Conditi	ons fo	or inactiv	ation
221	OR&	DOR&	S1	& ①	(S2)	≠ 0	(S1)	& ①	(S2)	= 0
222	OR	DOR	S1	12	(S2)	≠ 0	(S1)	12	(S2)	= 0
223	OR^	DOR [^]	S1	۸3	S2	≠ 0	(S1)	۸3	S2	= 0

- ① logical AND operation
- ⁽²⁾ logical OR operation
- ³ logical XOR operation

EXAMPLE

- When X1 = On or the content of C0 and C10 is subjected to the logical AND operation, and the result is not equal to 0, Y0 = On.
- When X2 and M30 are both equal to On, or the content of 32-bit register D10 (D11) and 32-bit register D20 (D21) is subjected to the logical OR operation, and the result is not equal to 0, or the content of the 32-bit register D25(D26) and the 32-bit register D200 (D201) is subjected to the logical XOR operation, and the result is not equal to 0, M60 = On.

AP 224 23(-	D	LD*			(5	51) (<u>S2</u>)		Co	ontac	t form co	ompare LD*		
	Bi	it devi	ce			١	Nord (device)			16-bit c	ommand (5 st	teps)	
	Х	Y	М	к	н	KnX	KnY	KnM	т	С	D	LD*	Continuous execution type	_	_
S1				*	*	*	*	*	*	*	*	32-bit c	ommand (9 st	teps)	
S2				*	*	*	*	*	*	*	*	DLD*	Continuous execution type	_	—
Notes on operand usage *: =, >, <, ≠, ≤, ≥															


S1: data source device 1. (S_2) : data source device 2.

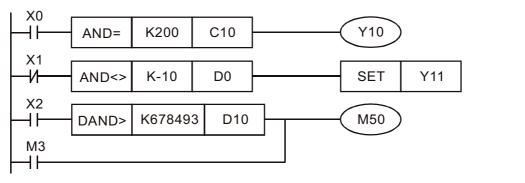
- This command compares the content of <u>S1</u> and <u>S2</u>. Taking API 224 (LD=) as an example, this command will be activated when the result of comparison is "equal," and will not be activated when the result is "unequal."
- The LD* can be used while directly connected with the busbar.

API No.	16-bit commands	32-bit commands	Conditions for acti- vation	Conditions for inactivation
224	LD =	DLD =	<u>S1</u> = <u>S2</u>	<u>S1</u> ≠ <u>S2</u>
225	LD >	DLD >	(S1) > (S2)	$(S1) \leq (S2)$
226	LD <	DLD <	S1) < S2)	$(S1) \ge (S2)$
228	LD ≠	DLD ≠	S1) ≠ S2	<u>S1</u> = <u>S2</u>
229	$LD \leq$	$DLD \leq$	$(S1) \leq (S2)$	<u>S1</u> > <u>S2</u>
230	$LD \ge$	$DLD \geq$	$(S1) \ge (S2)$	<u>S1</u> < <u>S2</u>

EXAMPLE

- When the content of C10 is equal to K200, Y10 = On.
- When the content of D200 is greater than K-30, and X1 = On, Y11 = On and remains in that state.
 When the content of C20 < K678,493 or M3 = On, M50 = On.

AP 232 238		A	ND*			(3	51) (<u>S2</u>)		С	ontac	t form co	ompare AND	ĸ					
	Bit device Word device 16-bit command (5 steps)																		
	х	Y	М	к	н	KnX	KnY	KnM	т	С	D	AND* Continuous							
S1				*	*	*	*	*	*	*	*	32-bit c	ommand (9 st	eps)					
S2				*	*	*	*	*	*	*	*	DAND*	Continuous execution type	_	_				
Notes on operand usage *: =, >, <, ≠, ≤, ≥																			


S1: data source device 1. (S2): data source device 2.

- This command compares the content of S1 and S2. Taking API 232 (AND=) as an example, when the result of comparison is equal, this command will be activated; when the result of comparison is unequal, this command will not be activated.
- The AND* command is a comparison command in series with a contact.

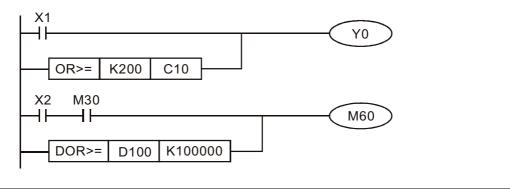
API No.	16-bit commands	32-bit commands	Conditions for acti- vation	Conditions for inactivation
232	AND =	DAND =	<u>(S1)</u> = (S2)	<u>(S1)</u> ≠ (S2)
233	AND >	DAND >	<u>(S1)</u> > <u>(S2</u>)	$(S1) \leq (S2)$
234	AND <	DAND <	S1) < S2)	$(S1) \ge (S2)$
236	AND ≠	DAND ≠	<u>(S1)</u> ≠ (S2)	<u>(S1)</u> = (S2)
237	$AND \leq$	$DAND \leq$	$(S1) \leq (S2)$	<u>S1</u> > <u>S2</u>
238	$AND \ge$	$DAND \ge$	$(S1) \ge (S2)$	<u>S1</u> < <u>S2</u>

EXAMPLE

- When X0 = On **and** the current value of C10 is also equal to K200, Y10 = On.
- When X1 = Off **and** the content of register D0 is not equal to K-10, Y11 = On and remains in that state.
- When X2 = On and the content of the 32-bit register D0(D11) is less than 678,493, or M3 = On, M50 = On.

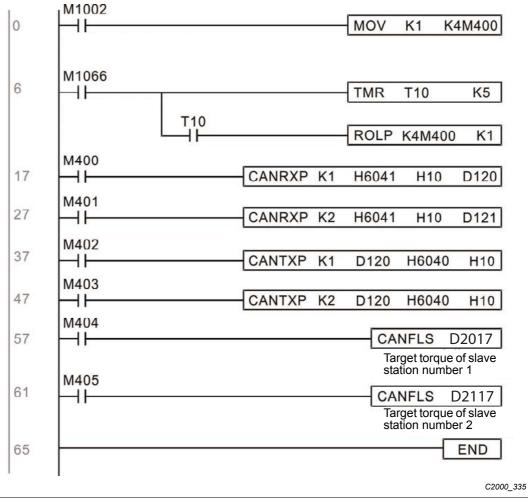
	AP 240 24	-	D	OR*			(5	51) (<u>S2</u>)		С	ontac	t form co	ompare OR*		
		Bi	it devi	се			١	Nord	device			÷	16-bit c	ommand (5 st	teps)	
		Х	Y	М	к	н	KnX	KnY	KnM	Т	С	D	OR*	Continuous execution type	_	_
	S1				*	*	*	*	*	*	*	*	32-bit c	ommand (9 st	teps)	
	S2				*	*	*	*	*	*	*	*	DOR*	Continuous execution type	_	_
	F	lease	perand refer to or the	o the fi	unctior	n spec	cificatio	ons tat	ole for	each	devic	e in	Flag sig	nal: none		
ION). da). dat				0			

 $\blacksquare (S1): data source device 1. (S2): data source device 2.$


- This command compares the content of <u>S1</u> and <u>S2</u>. Taking API 240 (OR=) as an example, when the result of comparison is equal, this command will be activated; when the result of comparison is unequal, this command will not be activated.
- The OR* command is a compare command in parallel with a contact.

API No.	16-bit commands	32-bit commands	Conditions for acti- vation	Conditions for inactivation
240	OR =	DOR =	(S1) = (S2)	S1) ≠ S2
241	OR >	DOR >	<u>S1</u> > <u>S2</u>	$(S1) \leq (S2)$
242	OR <	DOR <	S1) < S2)	<u>S1</u> ≥ <u>S2</u>
244	OR ≠	DOR ≠	S1) ≠ S2	<u>S1</u> = <u>S2</u>
245	$OR \leq$	DOR≤	$(S1) \leq (S2)$	<u>S1</u> > <u>S2</u>
246	OR≥	$DOR \ge$	$(S1) \ge (S2)$	<u>S1</u> < <u>S2</u>

EXAMPLE


■ When X1 = On **or** the current value of C10 is also equal to K200, Y0 = On.

■ M60 will be On when X2 = On **and** M30 = On **or** the content in 32-bit register D100 (D101) is greater than or equal to K100,000.

		Bit	t devic	e			١	Nord	device				16-bit co	ommand (9 st	eps)	
		Х	Y	М	К	Н	KnX	KnY	KnM	Т	С	D				
	S1				*	*							CANRX	Continuous execution type	CAN- RXP	Pulse exe- cution type
	S2				*	*										
	S3				*	*							32-bit co	ommand		1
	D									*	*	*		_		
	notes	s on op	eranu	usaye	. HOHE	;							Flay Siyi	nal: none		
DESCRIPTION	ŀ	addr The exec	ess. CANF cuted, ooth b	RX co it wil	omma I sen at tha	and o Id tho at tim	can r e SD ne, ar	ead ti O me nd M ²	he inc essag 1066 v	lex o e for will b	of the mat be se	corr to th tas	espondi e slave 1 after i	ex + bit lengt ing slave sta station. M1 reading. If t set register,	ation. V 066 an he slav	Vhen it is d M1067 e station

M1002: When the PLC runs, the command will be triggered once and will set K4M400 = K1.
 Afterwards, each time M1066 is 1, it will switch to a different message.

API DPOS S1 Driver point-to-point control Bit device Word device 16-bit command 1 S1 Y K H KX KYK KMK 1 <							
X Y M K H KnX KnY KnY KnY A 32-bit command (5 steps) S1 * * -			DPOS P	(S1)		Driver	point-to-point control
X Y M K H KnX KnY KnY KnY A 32-bit command (5 steps) S1 * * -		Bit d	evice	Word de	vice		16-bit command
S1 * * * Pros Decomposition trype Decomposition trype DESCRIPTION • (G): Target (must have a number). • The DPOS command can control the driver's position commands, and employs special register control actions, such as: M1040: Control Servo ONFF. M1055 search for origin. M1048 move to new position. If the control mode is position mode (D1060 = 1), and the converter is in the Servo ON Servo ONF. M1064 set position attained. D1060 is the mode control. D1051(L) and D1052(H) are the actual position points. EXAMPLE • M1040: Control Servo ON/Servo Off. M1064; set position attained. D1060 is the mode control. D1051(L) and D1052(H) are the actual position points. • When X0 = On, M1040 will be On (Servo On). • When X1 = On, sets DPOS position as +300000, and M1048 will change to On (move to new position pater a delay of 1 sec. Check whether the value of D1051 has changed at this time after the set position point has been reached, M1064 will go On, and Y0 will output On. • M1000 • M1000 • M1000 • M1000 • M1000 • M1000 • M1000 • M1000 • M1000 • M1000 • M1000 • M1000 • M1000 • M1000 • M1000 • M1000 • M1000 • M1000 • M1000 • M1000 • M1000 • M1000 • M1000 • M1000 • M1000 • M1000 • M1000 • M1000 • M1000 • M1000 •						D	
Notes on operand usage: none Flag signal: M1064, M1070 DESCRIPTION • (S1): Target (must have a number). • The DPOS command can control the driver's position commands, and employs special register control actions, such as: M1040: Control Servo ON/Servo OFF. M1055 search for origin. M1048 move to new position if the control mode is position mode (D1060 = 1), and the converter is in the Servo ON state (M1040 = 1), if the DPOS command is acculated, the driver will move to a new position in conjunction with activation of M1048 once (OFF to ON). EXAMPLE • M1040: Control Servo On/Servo Off. M1064: set position attained. D1060 is the mode control. D1051(L) and D1052(H) are the actual position points. EXAMPLE • M1040: Control Servo On/Servo Off. M1064: set position attained. D1060 is the mode control. D1051(L) and D1052(H) are the actual position points. W then X0 = On, M1040 will be On (Servo On). • When X1 = On, sets DPOS position as +300000, and M1048 will change to On (move to new position) after a delay of 1 sec. Check whether the value of D1051 has changed at this time; after the set position point has been reached, M1064 will go On, and Y0 will output On. • M1000 • M1002 • M1002 • M1002 • M1004 • M1041 • On, sets DPOS position as +300000, and M1048 will change to On (move to new position) after a delay of 1 sec. Check whether the value of D1051 has changed at this time; after the set position monitoring (a) • Control mode setup (f) position mode() (f) position mode() (f) position mode() (f) position (Low word)							32-bit command (5 steps)
 DESCRIPTION (S1): Target (must have a number). The DPOS command can control the driver's position commands, and employs special register control actions, such as: M1040: Control Servo ON/Servo OFF. M1055 search for origin. M1048 move to new position. If the control mode (D1060 = 1), and the converter is in the Servo ON state (M1040 = 1), if the DPOS command is excuted, the driver will move to a new position in conjunction with activation of M1048 once (OFF to ON). EXAMPLE M1040: Control Servo On/Servo Off. M1064: set position attained. D1060 is the mode control. D1051(L) and D1052(H) are the actual position points. When X0 = On, M1040 will be On (Servo On). When X1 = On, sets DPOS position as +30000, and M1048 will change to On (move to new position) after a delay of 1 sec. Check whether the value of D1051 has changed at this time, after the set position point has been reached, M1064 will go On, and Y0 will output On. When X1 = On, sets DPOS position as +300000, and M1048 will change to On (move to new position) after a delay of 1 sec. Check whether the value of D1051 has changed at this time, after the set position point has been reached, M1064 will go On, and Y0 will output On. M1000		S1	* *	¢		*	
 CST: Larget (Intest nave a number). The DPOS command can control the driver's position commands, and employs special register control actions, such as: M1040: Control Servo ON/Servo OFF. M1055 search for origin. M1048 move to new position. If the control mode is position mode (D1060 = 1), and the converter is in the Servo ON state (M1040 = 1), if the DPOS command is executed, the driver will move to a new position in conjunction with activation of M1048 once (OFF to ON). EXAMPLE M1040: Control Servo On/Servo Off. M1064: set position attained. D1060 is the mode control. D1051(L) and D1052(H) are the actual position points. When X1 = On, sets DPOS position as +300000, and M1048 will change to On (move to new position) after a delay of 1 sec. Check whether the value of D1051 has changed at this time; after the set position point has been reached, M1064 will go On, and Y0 will output On. M1002 M1002 M1000 M1004 M1000 M1000 M1004 M1000 M1004 M1040 M1040 M1064 M1064<!--</td--><td></td><td>Notes on opera</td><td>and usage: none</td><td></td><td></td><td></td><td>Flag signal: M1064, M1070</td>		Notes on opera	and usage: none				Flag signal: M1064, M1070
 CST: Larget (Intest nave a number). The DPOS command can control the driver's position commands, and employs special register control actions, such as: M1040: Control Servo ON/Servo OFF. M1055 search for origin. M1048 move to new position. If the control mode is position mode (D1060 = 1), and the converter is in the Servo ON state (M1040 = 1), if the DPOS command is executed, the driver will move to a new position in conjunction with activation of M1048 once (OFF to ON). EXAMPLE M1040: Control Servo On/Servo Off. M1064: set position attained. D1060 is the mode control. D1051(L) and D1052(H) are the actual position points. When X1 = On, sets DPOS position as +300000, and M1048 will change to On (move to new position) after a delay of 1 sec. Check whether the value of D1051 has changed at this time; after the set position point has been reached, M1064 will go On, and Y0 will output On. M1002 M1002 M1000 M1004 M1000 M1000 M1004 M1000 M1004 M1040 M1040 M1064 M1064<!--</td--><td>DESCRIPTION</td><td></td><td></td><td></td><td></td><td></td><td></td>	DESCRIPTION						
 register control actions, such as: M1040: Control Servo ON/Servo OFF. M1055 search for origin. M1048 move to new position. If the control mode is position mode (D1060 = 1), and the converter is in the Servo ON state (M1040 = 1), if the DPOS command is executed, the driver will move to a new position in conjunction with activation of M1048 once (OFF to ON). EXAMPLE M1040: Control Servo On/Servo Off. M1064: set position attained. D1060 is the mode control. D1051(L) and D1052(H) are the actual position points. When X0 = On, M1040 will be On (Servo On). When X1 = On, sets DPOS position as +300000, and M1048 will change to On (move to new position) after a delay of 1 sec. Check whether the value of D1051 has changed at this time; after the set position point has been reached, M1064 will go On, and Y0 will output On. M1002 MOV K2 D1060 Servo ON (1: position mode) M1000 MOV D1051 D0 normally open contact of operation monitoring (a) X0 M1040 Servo ON X1 M1040 Servo ON X1 M1040 Servo ON X1 REV M1040 M1040 M1040 M1064 M1040 M1064 M1040 M1064 M1064 M1064 M1040 M1064 M	DESCRIPTION		•				
M1040: Control Servo ON/Servo OFF. M1055 search for origin. M1048 move to new position. If the control mode is position mode (D1060 = 1), and the converter is in the Servo ON state (M1040 = 1), if the DPOS command is executed, the driver will move to a new position in conjunction with activation of M1048 once (OFF to ON). EXAMPLE M1040: Control Servo On/Servo Off. M1064: set position attained. D1060 is the mode control. D1051(L) and D1052(H) are the actual position points. When X0 = On, M1040 will be On (Servo On). When X1 = On, sets DPOS position as +300000, and M1048 will change to On (move to new position) after a delay of 1 sec. Check whether the value of D1051 has changed at this time; after the set position point has been reached, M1064 will go On, and Y0 will output On. M1002 M1002 M1002 M1000 M1000 M0V K2 D1060 start running forward (instantaneously) Control mode setup (f: position (Low word) X0 (M1040) FWD X1 M1064 M10					ne driver's p	ositio	n commands, and employs special
position. If the control mode is position mode (D1060 = 1), and the converter is in the Servo ON state (M1040 = 1), if the DPOS command is executed, the driver will move to a new position in conjunction with activation of M1048 once (OFF to ON). EXAMPLE Image: M1040: Control Servo On/Servo Off. M1064: set position attained. D1060 is the mode control. D1051(L) and D1052(H) are the actual position points. Image: When X0 = On, M1040 will be On (Servo On). When X1 = On, sets DPOS position as +300000, and M1048 will change to On (move to new position) after a delay of 1 sec. Check whether the value of D1051 has changed at this time, after the set position point has been reached, M1064 will go On, and Y0 will output On. Image: M1002 move the mode of the setup (1: position mode) more than a control mode setup (1: position mode) more all position (Low word) is start running forward (1: position mode) more all position (Low word) is serve ON is a clual position (Low word) is serve ON is a clual position (Low word) is actual position (Low wor)FF. M1055	5 sear	ch for origin. M1048 move to new
 a new position in conjunction with activation of M1048 once (OFF to ON). EXAMPLE M1040: Control Servo On/Servo Off. M1064: set position attained. D1060 is the mode control. D1051(L) and D1052(H) are the actual position points. When X0 = On, M1040 will be On (Servo On). When X1 = On, sets DPOS position as +300000, and M1048 will change to On (move to new position) after a delay of 1 sec. Check whether the value of D1051 has changed at this time, after the set position point has been reached, M1064 will go On, and Y0 will output On. M1002 MOV K2 D1060 (transmitted or the value of position) actual position mode) M1000 MOV D1051 D0 (transmitted or the value of position (Low word) actual position (Low word) M1000 MOV D1051 D0 (transmitted or the value of position (Low word)) M1000 MOV D1051 D0 (transmitted or the value of the valu							
EXAMPLE Image: Instant of the image: Imag							
control. D1051(L) and D1052(H) are the actual position points. When X0 = On, M1040 will be On (Servo On). When X1 = On, sets DPOS position as +300000, and M1048 will change to On (move to new position) after a delay of 1 sec. Check whether the value of D1051 has changed at this time; after the set position point has been reached, M1064 will go On, and Y0 will output On. M1002 M1002 M1000 M1040) FWD Servo ON X1 M104 M1064		a new	position in conj	unction with a	ctivation of	M104	8 once (OFF to ON).
control. D1051(L) and D1052(H) are the actual position points. When X0 = On, M1040 will be On (Servo On). When X1 = On, sets DPOS position as +300000, and M1048 will change to On (move to new position) after a delay of 1 sec. Check whether the value of D1051 has changed at this time; after the set position point has been reached, M1064 will go On, and Y0 will output On. M1002 M1002 M1000 M1040) FWD Servo ON X1 M104 M1064							
control. D1051(L) and D1052(H) are the actual position points. When X0 = On, M1040 will be On (Servo On). When X1 = On, sets DPOS position as +300000, and M1048 will change to On (move to new position) after a delay of 1 sec. Check whether the value of D1051 has changed at this time; after the set position point has been reached, M1064 will go On, and Y0 will output On. M1002 M1002 M1000 M1040) FWD Servo ON X1 M104 M1064			Control Comio		M1004. a	<u></u>	itian attained D1000 is the mode
 When X0 = On, M1040 will be On (Servo On). When X1 = On, sets DPOS position as +300000, and M1048 will change to On (move to new position) after a delay of 1 sec. Check whether the value of D1051 has changed at this time; after the set position point has been reached, M1064 will go On, and Y0 will output On. M1002 M1002 M1002 M0V K2 D1060 start running forward control mode setup (instantaneously) (1: position mode) M1000 DMOV D1051 D0 normally open contact of operation monitoring (a) x0 K1 (M1040) FWD Servo ON X1 M1064 END 	EXAMPLE						
When X1 = On, sets DPOS position as +300000, and M1048 will change to On (move to new position) after a delay of 1 sec. Check whether the value of D1051 has changed at this time; after the set position point has been reached, M1064 will go On, and Y0 will output On. 0 M1002 0 M1002 6 M1000 0 M1040 16 X0 17 TO 18 X1 18 TO 19 TO 1064 (Y0) 1064 REV 12 END			()		•	031101	r points.
position) after a delay of 1 sec. Check whether the value of D1051 has changed at this time; after the set position point has been reached, M1064 will go On, and Y0 will output On.				•	,		
after the set position point has been reached, M1064 will go On, and Y0 will output On. M1002 Start running forward (instantaneously) M1000 M1000 DMOV D1051 D0 normally open contact of operation monitoring (a) X0 (M1040) FWD X1 DPOS K300000 REV TO TO (M1048) move to new position M1064 (Y0) REV END M1064 (Y0) REV END M1064 (Y0) REV (Y0) REV (Y0) REV (Y0) REV (Y0) REV (Y0) (
0 M1002 MOV K2 D1060 start running forward control mode setup 6 M1000 DMOV D1051 D0 normally open contact of operation monitoring (a) actual position (Low word) 16 X0 (M1040) FWD Servo ON 18 X1 DPOS K300000 REV TMR T0 K10 0 M1064 (Y0) 30 reach the defined position RY1 32 END							
MOV K2 D1060 start running forward (instantaneously) control mode setup (1: position mode) M1000 DMOV D1051 normally open contact of operation monitoring (a) actual position (Low word) 16 X0 18 X1 18 T0 18 T0 10 M1044 10 M1044 11 M1044 12 T0 130 T0 14 (M1048) move to new position 30 T0 14 T0 15 K10 16 X0 17 T0 18 K10 19 K10 10 K10 11 K10 12 K10 130 END					,		
start running forward (instantaneously) control mode setup (1: position mode) 6 M1000 10 DMOV D1051 D0 normally open contact of operation monitoring (a) actual position (Low word) 16 X0 (M1040) FWD Servo ON 18 X1 DPOS REV TMR T0 10 T0 (M1048) 11 M1064 (Y0) 12 END END		0 M	1002		-		
6 M1000 DMOV D1051 D0 6 M1000 DMOV D1051 D0 normally open contact of operation monitoring (a) actual position (Low word) 16 X0 (M1040) FWD Servo ON 18 X1 DPOS K300000 REV TMR T0 (M1048) M1064 (Y0) reach the defined position RY1 32 END END			tort rupping forw	ard	MON K	2 D	
6 M1000 DMOV D1051 D0 normally open contact of operation monitoring (a) actual position (Low word) 16 X0 (M1040) FWD Servo ON 18 H DPOS K300000 REV TMR T0 M1064 (M1048) move to new position 30 H (Y0) reach the defined position 32 END				aru			
normally open contact of operation monitoring (a) actual position (Low word) 16 X0 18 (M1040) FWD Servo ON 18 X1 DPOS K300000 REV TMR T0 (M1048) move to new position 30 Hoff 19 Rev 30 M1064 19 RY1 32 END						DIOCI	
16 X0 (M1040) 16 X0 (M1040) FWD Servo ON 18 X1 DPOS K300000 REV TMR T0 (M1048) move to new position 30 H 16 K10 30 H 30 H 30 H 30 H 30 H 30 H 10 K10 30 H 10 H 11 K10 12 K10			ormally open cor	otact	DMOV	D1051	
18 Image: Constraint of the second secon			of operation monit	toring (a)			actual position (Low word)
FWD Servo ON 18 Image: Destination of the serve of		16	X0			/	110.00
18 X1 Image: Reverse of the defined position 10 11 12 130 14 15 16 16 16 17 18 18 19 10 10 10 11 11 12 13 14 15 16 16 17 18 18 19 10 10 10 10 10 11 11 12 13		E					
BEV TMR T0 K10 T0 (M1048) move to new position 30 H (Y0) reach the defined position RY1		18	X1			-	
TO TMR TO K10 M1064 (M1048) move to new position 30 I (Y0) reach the defined position 32 END						DPO	S K300000
30 T0 (M1048) move to new position 30 H (Y0) reach the defined position 32 END		R	EV			D	T0 K40
30 M1064 (M1048) move to new position 30 I (Y0) reach the defined position 32 END			то			ĸ	10 K10
30 H (Y0) 32 END			Ĺ				(M1048)
30 Image: Constraint of the defined position (Y0) 32 END			11064				move to new position
32 END							—(Y0)
		re	each the defined	position			RY1
00000-004		32					END
C2000_334							C2000_334

	AF 26		т	ORQ	Ρ			51)	<u>S2</u>		D	river	torque control mode
		Bit	t devic	e				Word	device)			16-bit command (5 steps)
		х	Y	М	К	Н	KnX	KnY	KnM	т	С	D	TORQ Continuous TORQP Pulse exe-
	S1				*	*						*	32-bit command
	S2				*	*						*	
		es on op	erand	usage									Flag signal: M1063
	_			-									
		The uses M104 the t	TOR spec 40: Co	Q con cial re control e will	mma egiste ls Sei outp	nd c er co rvo (out t	can c ontrol On/Se he to	ontro actic ervo (orque	l the ons, su Off. W defin	drive uch a hen S ed b	er tor as: Servo by the	que o is O e TC	ne digit). (S2): Speed limit. command and speed limits; it also N, if a TORQ command is executed, DRQ command, and the frequency command.
EXAMPLE		control When restrict When restrict When	ls. D1 M0 tions M0 tions M10	053 = Off is 30 = On is 30 = On	is the f, set 00 (3 , set 00 (3 , driv	e act t the 0 Hi 0 Hi 0 Hi 0 Hi ver b	tual to e driv z). ie dri z). egan	orque ver to ver t ver t	e orque orque out tor	com e cor que	nmar mmai comr	nd K nd K manc	rque attained. D1060 is the mode +500 (+50.0 %), rotational speed (-300 (-30.0 %), rotational speed d usually jumps continuously, however.
		M100 horma of oper M0 H M0 M10 M106 reach	00 Ily operation	monit	ntact toring	(a)			- <u>MC</u> - <u>MC</u> - <u>TO</u>	DV cc DV RQ	K2 ontrol D10 ac	D mode 053 .tual t 00 00 00 	D1060 e setup (2: torque mode) D0 orque force (-100 % ~100 %) K3000 K3000 M1040) ervo ON Y0) END
												-	C2000_332

EXAMPLE Parameter 09-33 are defined on the basis of whether reference commands have been cleared before PLC operation:

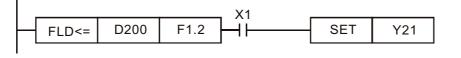
- Bit 0: Prior to PLC scanning procedures, whether the target frequency has been cleared is 0. (This will be written to the FREQ command when the PLC is On.)
- Bit 1: Prior to PLC scanning procedures, whether the target torque has been cleared is 0. (This will be written to the TORQ command when the PLC is On.)
- Bit 2: Prior to PLC scanning procedures, whether speed limits in the torque mode have been cleared is 0. (This will be written to the TORQ command when the PLC is On.)
- If we now force M1 to be 1, the torque command will be K+300 (+30 %), and the speed limit will be 400 (40 Hz). But when M1 is set as 0, there will be a different situation:
 - Case 1: When bit 1 and bit 2 of 09-33 are both set as 0, and M1 is set as 0, the torque command will remain at +30 %, and the speed limit will be set as 40 Hz.
 - Case 2: When bit 1 and bit 2 of 09-33 are both 1, and M1 is set as 0, the torque command will revert 0 %, and the speed limit will be set as 0 Hz.

M1 	TORQ	K300	K400
		[END

	AP 26		C	ANTX	Ρ	(S1		82) (<u>S3</u>	(S4	1) W	rite C	CANoper	[®] slave stati	on data	
		Bi	t devid	e			١	Nord	device				16-bit c	ommand (9 s	teps)	
		Х	Y	М	К	Н	KnX	KnY	KnM	Т	С	D	CANTX	Continuous	CANTX	Pulse exe-
	S1				*	*							0/11/7	execution type	Р	cution type
	S2				*	*				*	*	*	32-bit c	ommand		
	S3				*	*							—	_	_	_
	S4				*	*							Flag sig	nal: none		
	Note	s on op	perand	usage	e: none	e										
DESCRIPTION	•	(S1 + bit): Sla : lengi	ve sta th.	ation	numt	oer. (S2):	Addre	ess to	be w	/ritte	n. (S3):	Main index.	<u>(S4</u>):	Subindex

■ The CANTX command can write a value to the index of the corresponding slave station. When it is executed, it will send the SDO message format to the slave station. M1066 and M1067 will both be 0 at that time, and M1066 will be set as 1 after reading. If the slave station gives the correct response, it will write the value to the preset register, and set M1067 as 1. If the slave station has a response error, M1067 will be set as 0, and an error message will be recorded to D1076 to D1079.

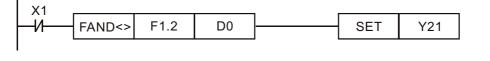
AP 26	-	CA	NFLS	Р			D	\supset		R C	efres ANop	n special en®	D correspor	nding to		
	Bi	t devic	e:		Word device 16-bit command (3 steps)											
	х	Y	М	к	н	KnX	KnY	KnM	т	С	D	CANFLS Continuous CANFLS Pulse execution type P cution type				
D				*	*							32-bit c	ommand			
Notes	s on op	berand	usage	: none	9							_		_	—	
						Flag signal: none										


DESCRIPTION

■ (D): Special D to be refreshed.

- The CANFLS command can refresh special D commands. When is a read only attribute, executing this command will send a message equivalent to that of CANRX to the slave station, and the number of the slave station will be transmitted back and refreshed to this special D. When there is a read/write attribute, executing this command will send a message equivalent to that of CANTX to the slave station, and the value of this special D will be written to the corresponding slave station.
- When M1066 and M1067 are both 0, and M1066 is set as 1 after reading, if the slave station gives a correct response, the value will be written to the designated register, and M1067 will be set as 1. If the slave station's response contains an error, then M1067 will be set as 0, and an error message will be recorded to D1076-D1079.

	AF 275 28	5-	F	LD*			3	51) (<u>S2</u>)		Fl	oatin mpa	g point n re LD*	umber conta	act form	
		Bit	t devic	e			١	Nord	device				16-bit co	ommand		
		Х	Y	Μ	Κ	Н	KnX	KnY	KnM	Т	С	D		—	_	—
	S1									*	*	*	32-bit co	ommand (9 s	teps)	
	S2									*	*	*	FLD*	Continuous execution type	—	-
	F	s on op Please r series fo	efer to	the fu	Inctio	n spec	cificatio	ons tal	ble for e	each (device	e in	Flag sigr	nal: none		
DESCRIPTION	ŀ	This if the activ The to th oper	comr e resu ated FLD* e (S ations	mand ult of wher com 1, (s.	l com com n the mane S2	pare paris resu d car ope	es the son is ilt is " n dire erand	e cont s "equ uneq ctly ir s, or	ual," ti jual." nput fl store	nis c nis c oatir floa	1) ar comm ng po iting-	nd (S nand int n poin	52). Tak will be umerica t numbe	ting "FLD=" activated; I values (fo ers in regis e busbar.	but it w or instan	rill not be ce: F1.2)
	AP	l No.		32-bi	it cor	nmai	nds		Cond	ition	s for	activ	vation		ditions t ctivatio	
	2	75			FLD) =				(S1) = (S 2		(S1) ≠ (S	2)
	2	76			FLD) >				(S1) > (S 2		(S1) ≤ (S	2)
	2	77			FLD) <				(S1) < (S2)		(S1) ≥ (S	2
	2	78			FLD)≠				(S1)≠(S 2		(S1) = (S	2)
	2	79			FLD	\leq				(S1	$) \leq ($	S2)	(S1) > (S	2)
	2	80			FLD	\geq				(S1	$) \geq ($	S2)	(S1) < (S	2)


EXAMPLE When the floating point number of register D200 (D201) is less than or equal to F1.2, and X1 activated, contact Y21 will be activated and remain in that state.

	AF 281 28	-	FÆ	AND*			3	51) (<u>S2</u>)		FI	oatin ompa	g point number contact form re AND*
		Bit	t devic	e			١	Nord	device				16-bit command
		Х	Y	Μ	K	Н	KnX	KnY	KnM	Т	С	D	
	S1									*	*	*	32-bit command (9 steps)
	S2									*	*	*	FAND* Continuous
	F	s on op Please r series fo	refer to	the fu	Inction	n spec	cificatio	ons tal	ole for (each o	device	e in	Flag signal: none
DESCRIPTION	ŀ	This if the activ The F1.2 in op	comr e resu ated FANI) to the peration	nand ult of wher D* co ne (S ons.	com com the omma $\overline{51}$,	pare paris resu and S2	s the on is It is " can c) ope	conto "equ uneq lirect erand	ual," t _l ual." ly inp s, or s	(<u>S1</u> nis c ut flo) and comm pating floa	d (S nand g po ting-	ce 2. 2). Taking "FAND=" as an example, will be activated; but it will not be wint numerical values (for instance: point numbers in register D for use series with a contact.
	AP	l No.		32-b	it cor	nmai	nds		Cond	ition	s for	activ	vation Conditions for inactivation
	2	81			FAN) =				(S1) = (S2) <u>(S1)</u> ≠ <u>(S2</u>)
	2	82			FAN) >				(S1) > (S2)	$(S1) \leq (S2)$
	2	83			FANI) <				(S1) < (S 2	$(S1) \ge (S2)$
	2	84			FANI	⊃≠				(S1)≠(S2)) <u>(S1)</u> = <u>(S2</u>)
	2	85			FAND	2≤				(S1	$) \leq 0$	(S2)) <u>(S1</u> > <u>(S2</u>)
	2	86			FAND)≥				(S1	$) \geq 0$	S2) (S1) < (S2)

EXAMPLE When X1 = Off, **and** the floating point number in register D0 (D1) is not equal to F1.2, Y21 = On and remains in that state.

	API 287– 292		FOR*				51)	(S2)				g point r re OR*	number cor	itact forn	n
		Bit de	vice				Word	device				16-bit c	command		
		X Y	М	К	н	KnX	KnY	KnM	Т	С	D		_	_	—
	S1								*	*	*	32-bit c	command (9	steps)	
	S2								*	*	*	FOR*	Continuous execution typ		—
	Ple	on operar ease refer ries for th	r to the fu	unctior	n spec	cificati	ons ta	ble for	each d	device	in	Flag sig	gnal: none		
DESCRIPTION	•	(S1): d	lata so	urce	devi	ce 1.	(S2): dat	a sou	urce	devi	ce 2.			
	i i		sult of	com	paris	on is	s "eq	ual," t	_	-			-		n example, will not be
	1	The FO	R* com	man	d car	n dire	ectly i	nput f	loatir	ig po	int n	umerica	al values (for insta	nce: F1.2)
		to the (S1). ((S2)	ope	rand	ls, or	store	floa	ting-	poin	t numb	ers in req	ister D	for use in
		operatio			•					0					
		The EO	D*												
		The FO	K. cou	iman	dis	a coi	mpar	e com	man	d in p	bara	lel with	n a contact		
		The FO	R" CON	iman	Id Is	a coi	mpar	e com	iman	d in p	bara	llel with	n a contact		
	APII			it con			mpar					lel with	Co	nditions activati	
		No.			nmar		mpar		lition		activ		Co ir	nditions	on
	ΑΡΙΙ	No.		it con	nmar ≀ =		mpar		lition	s for) = (activ		Co ir	nditions	on 32
	API 1 28	No. 7 8		it con FOR	nmar {		mpar		lition (S1 (S1	s for) = (activ S2 S2		Co ir (S	nditions activati 31) ≠ (3	on 32) 32)
	API 1 28 28	No. 7 8 9		it con FOR FOR	nmar {		mpar		lition (S1 (S1 (S1	s for) = () > () < (activ S2 S2		Co ir S S	nditions lactivati $(1) \neq (3)$ $(1) \leq (3)$ $(1) \geq (3)$	on 32) 32)
	API 1 28 28 28	No. 7 8 9 0		it con FOR FOR FOR	nmar { = { > { < { <		mpar		lition (S1 (S1 (S1	s for) = () > () < () ≠ (activ S2) S2) S2)		Co ir (9) (9) (9) (9)	$\begin{array}{c} \text{nditions} \\ \text{activati} \\ \hline 1 \neq (\underbrace{ $	on 32) 32) 32) 32)
	API 1 28 28 28 28	No. 7 8 9 0 1		it con FOR FOR FOR	mmar {		mpar		lition (S1 (S1 (S1 (S1 (S1)	s for) = () > () < () ≠ (activ S2 S2 S2 S2 S2 S2			$\begin{array}{c} \text{nditions} \\ \text{activati} \\ \hline 1 \neq (\underbrace{ $	on 52) 52) 52) 52) 52) 52) 52)
	API I 28 28 28 28 28 29 29	No. 7 8 9 0 1		it con FOR FOR FOR FOR	mmar {		mpar		lition (S1 (S1 (S1 (S1 (S1)	s for) = () > () < () ≠ () ≤ (activ S2 S2 S2 S2 S2 S2			$ \begin{array}{c} \text{nditions} \\ \text{activati} \\ \hline 1 \neq (\\ 1 \\ 1 \\ 1 \\ 2 \\ \hline 1 \\ 2 \\ 2 \\ \hline 1 \\ 2 \\ 2 \\ \hline 1 \\ 2 \\ 2 \\ \hline 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$	on 52) 52) 52) 52) 52) 52) 52)
EXAMPLE	API I 28 28 28 29 29 29 29	No. 7 8 9 0 1 2	32-b	it con FOR FOR FOR FOR FOR	mmar $R = R < R < R < R < R < R < R < R < R <$	nds		Cond	lition (S1 (S1 (S1 (S1 (S1) (S1)	s for) = () > () < () ≠ () ≤ (activ S2 S2 S2 S2 S2 S2 S2 S2	vation		$ \begin{array}{l} \text{nditions} \\ \text{activati} \\ \hline 1 \neq (\\ \hline 1) \leq (\\ \hline 1) \geq (\\ 1) \geq $	on 52) 52) 52) 52) 52) 52) 52) 52)
EXAMPLE	API I 28 28 28 28 29 29 29 29 29 29	No. 7 8 9 0 1 2	32-b (2 and	it con FOR FOR FOR FOR FOR	mmar	nds "On	," or	Cond	lition (S1 (S1 (S1 (S1 (S1) (S1)	s for) = () > () < () ≠ () ≤ (activ S2 S2 S2 S2 S2 S2 S2 S2	vation		$ \begin{array}{l} \text{nditions} \\ \text{activati} \\ \hline 1 \neq (\\ \hline 1) \leq (\\ \hline 1) \geq (\\ 1) \geq $	on 52) 52) 52) 52) 52) 52) 52)
EXAMPLE	API I 28 28 28 28 29 29 29 29 29 29	No. 7 8 9 0 1 2 2 n both 2 er than	32-b K2 and or equ	it con FOR FOR FOR FOR FOR	mmar	nds "On	," or	Cond	lition (S1 (S1 (S1 (S1 (S1) (S1)	s for) = () > () < () ≠ () ≤ (activ S2 S2 S2 S2 S2 S2 S2 S2	vation		$ \begin{array}{l} \text{nditions} \\ \text{activati} \\ \hline 1 \neq (\\ \hline 1) \leq (\\ \hline 1) \geq (\\ 1) \geq $	on 52) 52) 52) 52) 52) 52) 52) 52)
EXAMPLE	API I 28 28 28 29 29 29 29 29 29	No. 7 8 9 0 1 2 2 n both 2 er than	32-b K2 and or equ	it con FOR FOR FOR FOR FOR	mmar	nds "On	," or	Cond	lition (S1 (S1 (S1 (S1 (S1) (S1)	s for) = () > () < () ≠ () ≤ (activ <u>S2</u> <u>S2</u> <u>S2</u> <u>S2</u> <u>S2</u> <u>S2</u> <u>S2</u> <u>S2</u> <u>S2</u>	vation		$ \begin{array}{l} \text{nditions} \\ \text{activati} \\ \hline 1 \neq (\\ \hline 1) \leq (\\ \hline 1) \geq (\\ 1) \geq $	on 52) 52) 52) 52) 52) 52) 52) 52)
EXAMPLE	API I 28 28 28 29 29 29 29 29 29	No. 7 8 9 0 1 2 2 n both 2 er than	32-b K2 and or equ	it con FOR FOR FOR FOR FOR	mmar	nds "On	," or	Cond	lition (S1 (S1 (S1 (S1 (S1) (S1)	s for) = () > () < () ≠ () ≤ (activ <u>S2</u> <u>S2</u> <u>S2</u> <u>S2</u> <u>S2</u> <u>S2</u> <u>S2</u> <u>S2</u> <u>S2</u>	number		$ \begin{array}{l} \text{nditions} \\ \text{activati} \\ \hline 1 \neq (\\ \hline 1) \leq (\\ \hline 1) \geq (\\ 1) \geq $	on 52) 52) 52) 52) 52) 52) 52) 52)
EXAMPLE	API I 28 28 28 29 29 29 29 29 29 29 29	No. 7 8 9 0 1 2 2 n both 2 er than	32-b K2 and or equa	it con FOR FOR FOR FOR FOR	nmar { = { > { < { ≤ } ≥	nds "On	," or /60 =	Cond	lition (S1 (S1 (S1 (S1 (S1) (S1)	s for) = () > () < () ≠ () ≤ (activ <u>S2</u> <u>S2</u> <u>S2</u> <u>S2</u> <u>S2</u> <u>S2</u> <u>S2</u> <u>S2</u> <u>S2</u>	number		$ \begin{array}{l} \text{nditions} \\ \text{activati} \\ \hline 1 \neq (\\ \hline 1) \leq (\\ \hline 1) \geq (\\ 1) \geq $	on 52) 52) 52) 52) 52) 52) 52) 52)

	AF		IC	OMR	Ρ	(S1		<u>52</u> (S 3	(S4) Int	terna	l commu	inications rea	ad	
	32		,		Р											
		Bit	devic	e			١	Nord	device				16-bit c	ommand (9 st	teps)	
		Х	Y	М	К	Н	KnX	KnY	KnM	Т	С	D		Continuous		Pulse exe-
	S1				*	*						*	ICOMR	execution type	ICOMRP	cution type
	S2 S3				*	*						*	32-bit c	ommand (17 s	stone)	
												-		Continuous	DICO	Pulse exe-
	S4				*	*						*	DICOMR	execution type	MRP	cution type
	Note	s on op	erand	usage	: none	9							Flag sig	nal: M1077, M	1078, M1	079
DESCRIPTION	-	(S3) The): The	e add /IR co	lress	to w	rite i	n. (S	4): T	he d	ata to	o be	written	converter, [,] in. rter and the		
	AF 32			OMW	Ρ	(S1		<u>52</u>) (<u>S3</u>	D) Int	terna	l commu	inications wr	te	
		Bit	devic	e			<u>\</u>	Nord (device				16-bit c	ommand (9 st	teps)	
		Х	Y	М	К	Н	KnX	KnY	KnM	Т	С	D				
	S1				*	*						*	ICOMW	Continuous execution type	ICOMW P	Pulse exe- cution type
	S2				*	*						*				

Notes on operand usage: none

*

*

*

*

DESCRIPTION

S3

D

S1: Selection of slave device. S2: Device selection (0: converter, 1: internal PLC).
 S3: Read address. D: Saving target.

*

*

DICOM W

32-bit command (17 steps)

Continuous execution type

Flag signal: M1077, M1078, M1079

DICOM WP Pulse execution type

The ICOMW command write a value to the slave station's converter or the internal PLC's register.

EXAMPLE	Please refer to the following exa	ample:
---------	-----------------------------------	--------

online node, M1000	error mappi	ng Inte	rnal communi		K011700	
	in contract		MOV	D1117	K2M700 nal node has online	
normally ope of operation	en contact	a)			ping at node 0	;
or operation	monitoring (u)	МОУ	D1116	K2M720	
				inter	nal node has error	
					ping at node 0	
			MOV	K1	D1110 munication control	
					ternal node	
				and the second	M1035)	
read and wri	te data				enable internal	
M1002					communication cor	ntrol
	forward		M	OV K1	K4M0	
start running (instantaneo				read the	status of MI at node	90
M4						
repeat						
M120 M5	о мо					
			-TICOMW K) ко на	2600 D0	
InnerCOM Se	end M1	MI at node 0		110 11		
Ready requ			- ICOMW K) КО Н	2660 D1	
	M2	AVI at node 0				
			-TICOMW K) ко на	2640 D5	
	M3	Output status at node 0	<u>Lieunite na</u>			
			ICOMW K) КО Н	26A0 D6	
M1002		AFM1 at node 0			ZUAU DU	
M1002			M	OV KO	D100	
		tantaneously)	1.00	01 110	MI at node 0	
M1077 M10	78 M1079		10	OLP K4		
485R&W 485	R&W 485R&V		R	JLP K4	M0 K1 MI at node 0	
completed erro						
M1077						
				INC INC	D30	
485R&W completed					on reading & writing al communication	
	D30 K1	<u> </u>			K0 D30	
	reading & writin	g			on reading & writing	
internal o	communication			internal	communication	
		L			(M50)	
					Send request	

16.7 Error display and handling

ID	Description	Recommended handling approach
47	RTC time check	Turn power on and off when resetting the keypad time.
49	(incorrect RTC mode)	Turn power on and off after making sure that the keypad is securely con- nected.
50	Data writing memory error	Check whether the program has an error and download the program again.
51	Data write memory error during program execution	Restart power and download the pro- gram again.
52	Program transmission error	Try uploading again; if the error per- sists, sent to the manufacturer for ser- vice.
53	Command error while downloading program	Check whether the program has an error and download the program again.
54	Program exceeds memory capacity or no program	Restart power and download the pro- gram again.
55	Command error during program execution	
56	Check code error	Check whether the program has an
57	Program has no END stop command	error and download the program
58	MC command has been used continu- ously more than nine times	again.
59	Download program error	
60	PLC scan time excessively long	Check whether the program code has a writing error and download again.
	47 49 50 51 52 53 54 55 56 57 58 59	 47 RTC time check 49 (incorrect RTC mode) 50 Data writing memory error 51 Data write memory error during program execution 52 Program transmission error 53 Command error while downloading program 54 Program exceeds memory capacity or no program 55 Command error during program execution 56 Check code error 57 Program has no END stop command 58 MC command has been used continuously more than nine times 59 Download program error

Tab. 16-26: Error codes

16.8 CANopen[®] Master control applications

Control of a simple multi-axis application is required in certain situations. If the device supports the CANopen[®] protocol, a C2000 can serve as the master in implementing simple control (position, speed, homing, and torque control). The setting method comprises the following seven steps:

Step 1: Activating CANopen® master functions

- ① Parameter 09-45 = 1 (initiates Master functions); restart power after completing setting, the status bar on the KPC-CC01 digital keypad will display "CAN Master".
- ② Parameter 00-02 = 6 reset PLC (please note that this action will reset the program and PLC registers to the default values).
- ③ Turn power off and on again.
- ④ Use the KPC-CC01 digital keypad to set the PLC control mode as "PLC Stop" (if the KPC-CE01 digital keypad is used, set as "PLC 2"; if a newly-introduced driver is used, the blank internal PLC program will cause a PLFF warning code to be issued).

Step 2: master memory settings

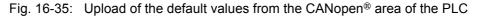
- After connecting the 485 communications cable, use WPL Soft to set the PLC status as Stop (if the PLC mode has been switched to the "PLC Stop" mode, the PLC status should already be Stop).
- ② Set the address and corresponding station number of the slave station to be controlled. For instance, if it is wished to control two slave stations (a maximum of 8 stations can be controlled simultaneously), and the station numbers are 20 and 21, it is only necessary to set D2000 and D2100 as 20 and 21, and then set D2200, D2300, D2400, D2500, D2600, and D2700 as 0.
- ③ The setting method involves use of the PLC's WPL editing software WPL as follows:
 - Open WPL and implement communications > register edit (T C D) function.

Fig. 16-33: Selection for register edit

DO	+0										
DO		+1	+2	+3	+4	+5	+6	+7	+8	+9	^
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	
D20	0	0	0	0	0	0	0	0	0	0	
D30	0	0	0	0	0	0	0	0	0	0	
D40	0	0	0	0	0	0	0	0	0	0	
D50	0	0	0	0	0	0	0	0	0	0	
D60	0	0	0	0	0	0	0	0	0	0	
D70	0	0	0	0	0	0	0	0	0	0	
D80	0	0	0	0	0	0	0	0	0	0	
D90	0	0	0	0	0	0	0	0	0	0	
D100	0	0	0	0	0	0	0	0	0	0	
D110	0	0	0	0	0	0	0	0	0	0	
D120	0	0	0	0	0	0	0	0	0	0	
D130	0	0	0	0	0	0	0	0	0	0	
D140	0	0	0	0	0	0	0	0	0	0	
D150	0	0	0	0	0	0	0	0	0	0	
D160	0	0	0	0	0	0	0	0	0	0	
D170	0	0	0	0	0	0	0	0	0	0	
D180	Ω			0		0	0	0	0	0	

 After leaving the PLC register window, the register setting screen will appear, as shown below:

Fig. 16-34: Dialog for register content edit


If there is a new PLC program and no settings have yet been made, you can read default data from the converter, and merely edit it to suit the current application.

If settings have already been made, however, the special D in the CANopen[®] area will display the saved status (the CANopen[®] D area is located at D1070 to D1099 and D2000 to D2799).

Assuming it is a new program, we will first read the default data from the converter; check the communications format if there is no communications link (the default PLC station number is 2, 9600, 7N2, ASCII). Perform the following steps:

- 1. Switch the PLC to Stop status
- 2. Press the transmit button
- 3. Click on read memory after exiting the window
- 4. Ignore D0-D399
- 5. Click on the confirm button.

い 宿知	E(E) 編輯(E) 编譯(E)	註解(M)	搜尋(5) 檢	視(型) 通訊	(C) 設定(O)	猪靈①	乳窗(型) 説	.明(<u>H</u>)	
	: 🖪 🗃	00	XDD	012	999	0	1 3 0	00	000	
		🖄 🕸 🛄				1 Karmana				
				2hits) 1						
D 包存 數值型 (* 16 (* 32	態 bits bits	■		2. 		提示				
	+1	+1	+2.	+3	+4	+5	+h	+7	+8	+9
DA	n	n	n	n	n	n	n	n	n	n
D10	0	0	0	0	0	_	0	0	0	
D20	0	0	0	0	0	通訊設定				
D30	0	0	0	0	0). (⊂ :≑#	PLC 資料	新古巣	5.	確定
D40	0	0	0	0	0		PLC 資料	the second se		取消
DSU	U	U	U	U	U					1.03
D6U	U	U	U	U	U	區域設定				
070	0	0	0	0	0	「區」	战定確認		起始 0	结束 309
U80	0	0	0	0	0			設定新	图:D0~D	300
090	0	0	0	0	0			-		
D100	0	0	0	0	0		成設定確認		起始 1000	結束 1099
D110	0	0	0	0	0			-		
D120	0	0	0	0	0			設定範	圉: D1000	~ D1099
D130	0	0	0	0	0				#P #4 2000	結束 2799
D140	0	0	0	0	0	▼ 區場	成設定確認	1.92	NEXA 2000	mm 2199
D150	0	0	0	0	0			設定範	图: D2000	~ D2799
D160	0	0	0	n	0					

After reading the data, it is necessary to perform some special D settings. Before proceeding, we will first introduce the special D implications and setting range.

The CANopen[®] Master's special D range is currently D1070 to D1099 and D2000 to D2799; this range is divided into 3 blocks:

- The first block is used to display CANopen[®]'s current status, and has a range of D1070 to D1089;
- The second block is used for CANopen[®]'s basic settings, and has a range of D1090 to D1099;
- The third block is the slave station mapping and control area, and has a range of D2000 to D2799.

D1070 to D1089 (CANopen® status display)

When the master initializes a slave station, we can from find out from D1070 whether configuration of the slave device has been completed; we can find out whether an error occurred in the configuration process from D1071 and whether the configuration is inappropriate from D1074.

After entering normal control, we can find out whether the slave device is offline from D1073. In addition, we can check the slave device's read/write information using the CANRX, CANTX, and CANFLS commands; error information can be obtained from D1076 to D1079 if there has been a read/write failure.

Special D	Description of function	R/W
D1070	Channel opened by CANopen [®] initialization (bit 0 = Machine code 0)	R
D1071	Error channel occurring in CANopen [®] initialization process (bit 0 = Machine code 0)	R
D1072	Reserved	—
D1073	CANopen [®] break channel (bit 0 = Machine code 0)	R
D1074	Error code of master error 0: No error 1: Slave station setting error 2: Synchronizing cycle setting error (too small)	R
D1075	Reserved	—
D1076	SDO error message (main index value)	R
D1077	SDO error message (secondary index value)	R
D1078	SDO error message (error code L)	R
D1079	SDO error message (error code H)	R
Tab. 16.07	2: Special register D1070 to D1070	

Tab. 16-27: Special register D1070 to D1079

D1090 to D1099 (basic CANopen® settings)

NOTE

For settings in the area D1090 bis D1099, the PLC must be **stopped**.

We must set the information exchange time for the master and slave station,

Special D	Description of function	Default	R/W
D1090	Synchronizing cycle setting	4	RW

Use D1090 to perform settings; setting time relationships include:

Synchronizing cycle [ms] $\geq \frac{1 \text{ MBit/s}}{v} * \frac{N}{4}$ v: Transmission speed N: TXPDO + RXPDO

For instance, when communications speed is 500K, TXPDO + RXPDO have 8 sets, and synchronizing time will require more than 4 ms.

We must also define how many slave stations will be open. D1091 is the channel for defining station opening, and D2000 + 100^{*} n is the station number defining this channel. See the detailed explanation below.

Slave station number n = 0-7:

Special D	Description of function	R/W
D1091	Sets slave station On or Off (bit 0–bit 7 correspond to slave stations number 0–7)	RW
D2000 +100* n	Slave station number	RW

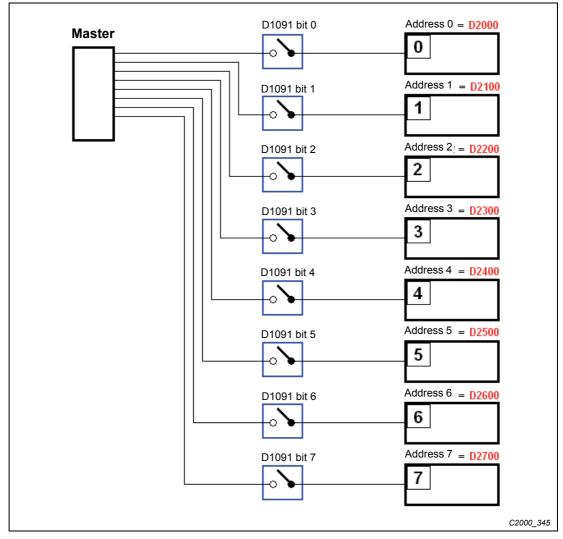


Fig. 16-36: The contents of D1091 determines the slave to communicate with

If slave devices have a slow start-up, the master can delay for a short time before performing slave station configuration; this time delay can be set via D1092.

Special D	Description of function	Default	R/W
D1092	Delay before start of initialization	0	RW

With regard to slave device initialization, a delay time can be set to judge whether failure has occurred. If the communications speed is relatively slow, the delay time can be adjusted to judge whether initialization has been completed, which will ensure that there is time to perform slave device initialization.

Special D	Description of function	Default	R/W
D1099	Initialization completion delay time Setting range: 1 to 60000 sec	15 sec.	RW

After communication is successful, the system must detect whether there is a break in communications with the slave station. D1093 is used to set detection time, and D1094 sets the number of consecutive errors that will trigger a break error.

Special D	Description of function	Default	R/W
D1093	Break time detection	1000 ms	RW
D1094	Break number detection	3	RW

The packet type transmitted by PDO is set before establishing normal communications and generally does not require adjustment.

Special D	Description of function	Default	R/W
D1097	Corresponding real-time transmission type (PDO) Setting range: 1–240	1	RW
D1098	Corresponding real-time receiving type (PDO) Setting range: 1–240	1	RW

D2000 to D2799 (slave station mapping and control area)

CANopen[®] provides a PDO method to perform mapping of the master and slave station memory, and enables the master to directly access read/write data in a certain memory area. The master will automatically perform data exchange with the corresponding slave device, and the read/write values can be seen directly from the special D area after real-time exchange (M1034 = 1 time) has been established.

The C2000 currently supports real-time mapping of four PDOs, and there are two types of PDOs: RXPDO (reads slave device information) and TXPDO (writes to slave device). In addition, in order to facilitate control, the C2000 cannot perform mapping of commonly-used registers; the following is an overview of the current PDO mapping situation:

	ТХРДО											
PDO4 (1	PDO4 (Torque)		PDO3 (Position)		PDO2 (Remote I/O)		Speed)					
Description	Special D	Description	Special D	Description	Special D	Description	Special D					
Controller Word	D2008 + 100*n	Controller Word	D2008 + 100*n	Slave device MO	D2027 + 100*n	Controller Word	D2008 + 100*n					
Target torque	D2017 + 100*n	Target	D2020 + 100*n	Slave device AO1	D2031 + 100*n	Target speed	D2012 + 100*n					
			D2021 + 100*n									
Control method	D2010 + 100*n	Control method	D2010 + 100*n	Slave device AO2	D2032+ 100*n							
				Slave device AO3	D2033+ 100*n							

Tab. 16-28: Mapping of TXPDOs in special register

	RXPDO											
PDO4 (1	PDO4 (Torque)		PDO3 (Position)		PDO2 (Remote I/O)		Speed)					
Description	Special D	Description	Special D	Description	Special D	Description	Special D					
Mode word	D2009 + 100*n	Mode word	D2009 + 100*n	Slave device MI	D2026 + 100*n	Mode word	D2009 + 100*n					
Actual torque	D2018 + 100*n	Actual position	D2022 + 100*n D2023 + 100*n	Slave device Al1	D2028 + 100*n	Actual frequency	D2013 + 100*n					
Actual mode	D2011 + 100*n	Actual mode	D2011 + 100*n	Slave device Al2	D2029 + 100*n							
				Slave device Al3	D2030 + 100*n							

Tab. 16-29: Mapping of RXPDOs in special register

Because usage requires only simple to open the corresponding PDO, where TXPDO employs D2034 + 100*n settings and RXPDO employs D2067 + 100*n settings.

These two special D areas are defined as follows:

	PDO4		PDO3		PDO2		PDO1	
Default definition	Torque		Position		Remote I/O		Speed	
Bit	15	14 – 12	11	10 – 8	7	6 – 4	3	2 – 0
Definition	En ^①	Length ²						

Tab. 16-30: Statement for the length of a PDO

- 1 indicates whether PDO is used
- ⁽²⁾ indicates mapping of several variables

In a simple example, if we wish to control a C2000 slave device and cause it to operate in speed mode, we only have to make the following settings:

Setting D2034 + 100*n = 000AH

				ТХІ	PDO			
	PDO4		PDO3		PD	PDO2		01
Length	Description	Special D	Description	Special D	Description	Special D	Description	Special D
1	Controller Word	D2008 + 100*n	Controller Word	D2008 + 100*n	Slave device MO	D2027 + 100*n	Controller Word	D2008 + 100*n
2	Target torque	D2017 + 100*n	Target	D2020 + 100*n D2021 + 100*n	Slave device AO1	D2031 + 100*n	Target torque	D2012 + 100*n
3	Control method	D2010 + 100*n	Control method	D2010 + 100*n	Slave device AO2	D2032 + 100*n		
4					Slave device AO3	D2033 + 100*n		

Tab. 16-31: For this example the TXPDO1 (Speed) is used

	P	004	PI	DO3	Pl	DO2	Pl	001
Definition	То	rque	Po	sition	Rem	ote I/O	Sp	beed
Bit	15	14 – 12	11	10 – 8	7	6 – 4	3	2 – 0
Definition	0	0	0	0	0	0	1	2

Tab. 16-32: Meaning of the setting in D2034 + 100*n: PDO1 with 2 Words is used (Bit 3 = 1, bit 1 = 1, which results in the value Wert 000AH)

Setting D2067 + 100*n = 000Ah

				ТХ	PDO			
	PDO4		PDO3		PDO2		PDO1	
Length	Description	Special D	Description	Special D	Description	Special D	Description	Special D
1	Controller Word	D2009 + 100*n	Controller Word	D2009 + 100*n	Slave device MI	D2026 + 100*n	Controller Word	D2009 + 100*n
2	Actual torque	D2018 + 100*n	Actual position	D2022 + 100*n D2023 + 100*n	Slave device Al1	D2028 + 100*n	Actual frequency	D2013 + 100*n
3	Actual mode	D2011 + 100*n	Actual mode	D2011 + 100*n	Slave device Al2	D2029 + 100*n		
4					Slave device Al3	D2030 + 100*n		

Tab. 16-33: For this example the RXPDO1 (Speed) is used

	PI	004	P	DO3	P	DO2	P	DO1
Definition	То	rque	Po	sition	Rem	ote I/O	Sp	beed
Bit	15	14 – 12	11	10 – 8	7	6 – 4	3	2 – 0
Definition	0	0	0	0	0	0	1	2

Tab. 16-34: Meaning of the setting in D2067 + 100*n: PDO1 with 2 Words is used (Bit 3 = 1, bit 1 = 1, which results in the value Wert 000AH)

Switch the PLC to Run after completing settings. Now wait for successful initialization of CANopen[®] (M1059 = 1 and M1061 = 0), and then initiate CANopen[®] memory mapping (M1034 = 1). The control word and frequency command will now automatically refresh to the corresponding slave device (D2008 + n*100 and D2012 + n*100), and the slave device's status word and currently frequency will also be automatically sent back to the master station (D2009 + n*100 and D2013 + n*100). This also illustrates how the master can handle these tasks through read/write operations in the special D area.

Furthermore, it should be noted that the remote I/O of PDO2 can obtain the slave device's current DI and AI status, and can also control the slave device's DO and AO status. Nevertheless, after introducing a fully automatic mapping special D, the C2000 CANopen master also provides additional information refreshes. For instance, while in speed mode, acceleration/deceleration settings may have been refreshed. The special D therefore also stores some seldom-used real-time information, and these commands can be refreshed using the CANFLS command. The following is the C2000's current CANopen[®] master data conversion area, which has a range of D2001 + $100^*n - D2033 + 100^*n$, as shown below:

n						PDO D	Default		
Function	Special D	Description of function	Default	CAN index	1	2	3	4	R/W
	D2000+100*n	Station number n of slave station Setting range: 0–127 0: No CANopen® function	0	_	_	_	_	_	RW
<u>a</u>	D2002+100*n	Manufacturer code of slave station number n (L)	0	_	_	—	—	—	R
General	D2003+100*n	Manufacturer code of slave station number n (H)	0	_	_	—	—	—	R
	D2004+100*n	Manufacturer's product code of slave station number n (L)	0	—	_	_	_	—	R
	D2005+100*n	Manufacturer's product code of slave station number n (H)	0	_	_	_	—	—	R

The range of n in the following table is 0-7.

Tab. 16-35: Special register with information about CANopen[®] slave stations

Basic definitions	Special D D2006+100*n D2007+100*n D2008+100*n	Description of function Communications break handling method of slave station number n Error code of slave station	Default 0	CAN index	1	2	3		R/W
c definitions	D2007+100*n D2008+100*n	method of slave station number n	0				J	4	
c definitions	D2008+100*n	Error code of slave station	0	6007н-0010н	0	0	0	0	RW
c definitio		number n error	0	603Fн-0010н	0	0	0	0	R
c de	D0000 100+	Control word of slave station number n	0	6040н-0010н	٠	0	•	•	RW
SI.	D2009+100*n	Status word of slave station number n	0	6041н-0010н	▲	0	▲		R
Ba	D2010+100*n	Control mode of slave station number n	2	6060н-0008н	0	0	0	0	RW
	D2011+100*n	Actual mode of slave station number n	2	6061н-0008н	0	0	0	0	R
	D2001+100*n	Torque restriction on slave station number n	0	6072н-0010н	0	0	0	0	RW
2	D2012+100*n	Target speed of slave station number n	0	6042н-0010н	٠	0	0	0	RW
Velocity Control	D2013+100*n	Actual speed of slave station number n	0	6043н-0010н	▲	0	0	0	R
elocity	D2014+100*n	Error speed of slave station number n	0	6044н-0010н	0	0	0	0	R
>	D2015+100*n	Acceleration time of slave station number n	1000	604Fн-0020н	0	0	0	0	R
	D2016+100*n	Deceleration time of slave station number n	1000	6050н-0020н	0	0	0	0	RW
ltrol	D2017+100*n	Target torque of slave station number n	0	6071н-0010н	0	0	0	•	RW
Torque control	D2018+100*n	Actual torque of slave station number n	0	6077н-0010н	0	0	0		R
Torqu	D2019+100*n	Actual current of slave station number n	0	6078н-0010н	0	0	0	0	R
	D2020+100*n	Target of slave station number n (L)	0	607Ан-0020н	\sim	\sim	•	0	RW
	D2021+100*n	Target of slave station number n (H)	0	007An-0020n	0	0	•	0	INV
ontrol	D2022+100*n	Actual position of slave station number n (L)	0	6064н-0020н	0	0		0	R
Position control	D2023+100*n	Actual position of slave station number n (H)	0	000411-002011	0	0	-	0	IX.
Pos	D2024+100*n	Speed chart of slave station number n (L)	10000	6081н-0020н	0	0	0	0	RW
	D2025+100*n	Speed chart of slave station number n (H)	0	00011-002011	0	0	0	0	1
	D2026+100*n	MI status of slave station number n	0	2026H-0110H	0	A	0	0	
	D2027+100*n	MO setting of slave station number n	0	2026н-4110н	0	•	0	0	
ences	D2028+100*n	Al1 status of slave station number n	0	2026н-6110н	0		0	0	
Ponde AI AO	D2029+100*n	Al2 status of slave station number n	0	2026н-6210н	0		0	0	
corres I MO ,	D2030+100*n	AI3 status of slave station number n	0	2026н-6310н	0		0	0	RW
20XXH correspondences: MI MO AI AO	D2031+100*n	AO1 status of slave station number n	0	2026н-А110н	0	•	0	0	
20	D2032+100*n	AO2 status of slave station number n	0	2026н-А210н	0	•	0	0	
	D2033+100*n	AO3 status of slave station number n	0	2026н-А310н	0	•	0	0	
tion	D2034+100*n	Real-time transmission setting of slave station number n	000Ан	_	—	_	—	_	
PDO reflection length setting	D2067+100*n	Real-time reception setting of slave station number n	0000н	_	_	_	_	_	RW

Tab. 16-35: Special register with information about CANopen® slave stations

- •: Indicates TXPDO
- ▲: Indicates RXPDO
- $_{\bigcirc}$ Special D can be refreshed using the CANFLS command

After gaining an understanding of special D definitions, we return to setting steps. After entering the values corresponding to D1090 to D1099, D2000 + 100*n, D2034 + 100*n and D2067+100*n, we can begin to perform downloading, which is performed in accordance with the following steps:

- 1. D2000 and D2100 are set as 20 and 21, and D2200, D2300, D2400, D2500, D2600, and D2700 are set as 0; if a setting of 0 causes problems, D1091 can be set as 3, and slave stations 2 to 7 can be closed.
- 2. Switch PLC to Stop status.
- 3. Press the transmit button.
- 4. Click on write memory after exiting the window.
- 5. Ignore D0-D399.
- 6. Change the second range to D1090-D1099.
- 7. Click on Confirm.

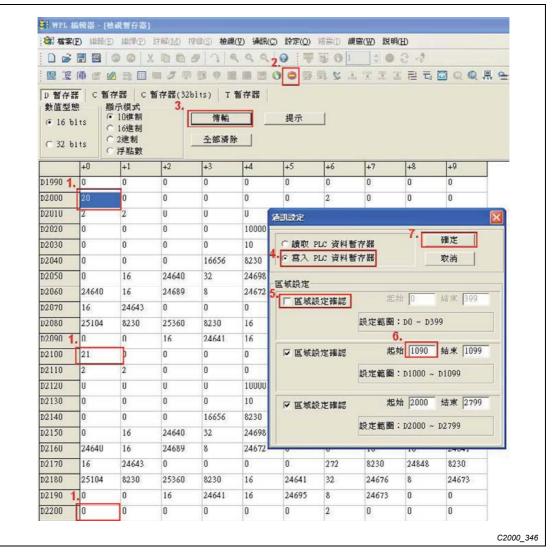


Fig. 16-37: Changing the contents of the special registers for CANopen[®] and download to the PLC

Another method can be used to set D1091: Determine which of slave stations 0 to 7 will not be needed, and set the corresponding bits to 0. For instance, if it is not necessary to control slave stations 2, 6 and 7, merely set D1091 = 003B, and the setting method is the same as described above: Use WPL to initiate **communications > use register edit (T C D)** function to perform settings.

Step 3: set the master's communications station number and communications speed

- ① When setting the master's station number (parameter 09-46, default is set as 100), make sure not to use the same number as a slave station.
- ② Set the CANopen[®] communications speed (parameter 09-37); regardless of whether the driver is defined as a master or slave station, the communications speed is set via this parameter.

Step 4: write program code

- Real-time access: Can directly read/write to or from the corresponding D area.
- Non real-time access:

Read command: Use the CANRX command for reading. M1066 will be 1 when reading is complete; M1067 will be 1 if reading is successful, and M1067 will be 0 if an error has occurred.

Write command: Use the CANTX command for writing. M1066 will be 1 when writing is complete; M1067 will be 1 if writing is successful, and M1067 will be 0 if an error has occurred.

Refresh command: Use CANFLS command to refresh (if there are RW attributes, the master will write to the slave station; if there are R attributes, the slave station will return the read values to the master); M1066 will be 1 if refresh has been completed; M1067 will be 1 if refresh is successful, and M1067 will be 0 if an error has occurred.

NOTE

When using CANRX, CANTX or CANFLS, internal implementation commands will wait until M1066 is completed before executing the next CANRX, CANTX or CANFLS.

Afterwards, download program to the driver (Please note that the PLC's default communications format is ASCII 7N2 9600, and the station number is 2. The WPL must therefore be modified, and the WPL setting pathway is settings > communications settings.)

Step 5: set the slave stations' station numbers, communications speed, control source, and command source

Delta's C2000 and EC series devices currently support the CANopen[®] communications interface driver, and the corresponding slave station numbers and communications speed parameters are as follows:

Setting	Corresponding device parameters		Value	Definition
Ŭ	C2000	EC		
Slave station address	09-36	09-20	0	Disable CANopen [®] hardware interface
			1–127	CANopen [®] Communication address
			0	1 Mbps
			1	500 kbps
Communication around	09-37	09-21	2	250 kbps
Communication speed	09-37		3	125 kbps
			4	100 kbps
			5	50 kbps
Control source	00-21		3	
Control source	_	02-01	5	
Fraguenov source	00-20		6	
Frequency source	_	02-00	5	
	11-33		3	
Torque source	—		—	
Position source	11-40	—	3	
FUSICION SOULCE	_	—	—	

Tab. 16-36: Parameter for CANopen® Communication in C2000 and EC

Delta's A2 Servo currently supports the CANopen[®] communications interface, and the corresponding slave station numbers and communications speed parameters are as follows:

Setting	Corresponding device parameters A2	Value	Definition
Slave station address	03-00	1–127	CANopen [®] Communication address
		R = 0	125 kbps
		R = 1	250 kbps
Communication speed	03-01 bit 8-11 XRXX	R = 2	500 kbps
opood	,	R = 3	750 kbps
		R = 4	1 Mbps
Control/command source	01-01	В	

Tab. 16-37: Parameter for CANopen® Communication in an A2 Servo

Step 6: connect hardware wiring

When performing wiring, note the head and tail terminal resistance; connection methods are as follows:

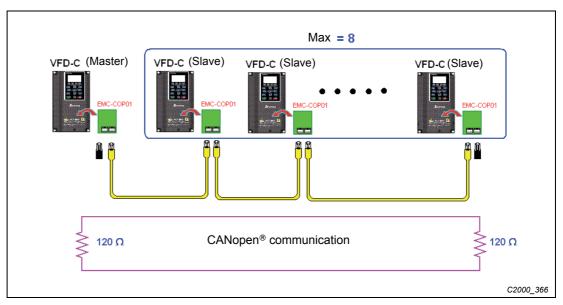
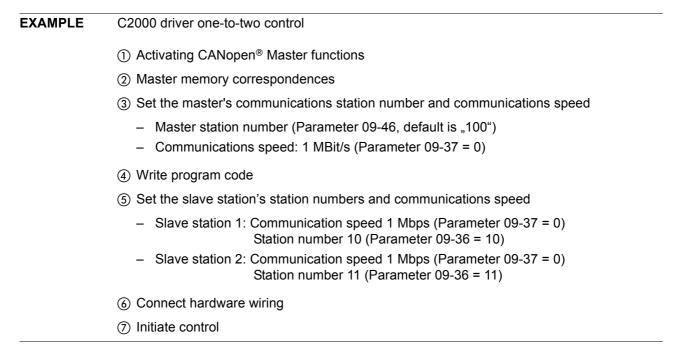



Fig. 16-38: Example for the connection of VFDs via CAN

Step 7: Initiate control

After a program has been written and downloaded, switch the PLC mode to Run. Merely turn power to master and slave stations off and then on again.

Refer to CANMasterTest 1 vs. 2 driver.dvp.

16.9 Explanation of various PLC mode controls (speed, torque, homing, and position)

The torque mode and position mode are based on FOC vector control and speed mode also supports FOC vector control. Control therefore cannot be performed successfully unless you study motor parameters ahead of time for the torque mode and position mode, and the speed mode based on FOC.

In addition, motors are classified as two types: IM and PM. You therefore need to study IM motor parameters. For PM motors, after completing motor parameter study, you must also complete study of motor origin angle of deviation. Please refer to parameters Pr. 05-00 detailed explanation.

NOTE

If a PM motor belongs to Delta's ECMA series, motor parameters can be directly input from data in the servo motor catalog, and parameter study will not be needed.

	pecial M pecial D	Description of function	Attributes
	M1025	Driver frequency = set frequency (ON)/driver frequency = 0 (OFF)	RW
M	M1026	Driver operating direction FWD (OFF)/REV(ON)	RW
ecia	M1040	Hardware power (Servo ON)	RW
ol sp	M1042	Quick stop	RW
Control special M	M1044	Pause (Halt)	RW
ŏ	M1052	Lock frequency (lock, frequency locked at the current operating frequency)	RW
Σ	M1015	Frequency attained (when used together with M1025)	R
ecial	M1056	Servo On Ready	R
Status special M	M1058	On Quick Stopping	R
Control special D	D1060	Mode setting (speed mode is 0)	RW
	D1037	Converter output frequency (0.00-600.00)	R
Status special D	D1050	Actual operating mode (speed mode is 0)	R

Control methods and settings are explained as follows:

Tab. 16-38: Special relays and special register for speed mode

Speed mode control commands FREQ (P)

- S1: Target speed
- (S2): The first acceleration time setting
- S3: The first deceleration time setting
- **EXAMPLE** Before performing speed control, if the FOC (magnetic field orientation) control method is used, setting of electromechanical parameters must first be completed.
 - Setting D1060 = 0 will shift the converter to the speed mode (default).
 - Use the FREQ command to control frequency, acceleration time, and deceleration time.
 - Set M1040 = 1, the driver will now be excited, but the frequency will be 0.
 - Set M1025 = 1, the driver frequency command will now jump to the frequency designated by FREQ, and acceleration/deceleration will be controlled on the basis of the acceleration time and deceleration time specified by FREQ.
 - M1052 can be used to lock the current operating frequency.
 - M1044 can be used to temporarily pause operation, and the deceleration method will comply with deceleration settings.
 - M1042 can be used to perform quick stop, and deceleration will be as quick as possible without giving rise to an error. (There may still be a jump error if the load is too large.)
 - Control user rights: M1040 (Servo ON) > M1042 (Quick Stop) > M1044 (Halt) > M1052 (LOCK)

	MOV K0 D1060
"1" for one PLC cycle after RUN	control mode setup (0: speed)
Х0 —И	FREQ K3500 K100 K200
x0 11	FREQ K4500 K40 K50
×1	(M1026) Running direction of the motor drive FWD (OFF)
X2	(M1040) Servo ON (M1025)
X3	M1025=On: Driver frequency = set frequency M1025=Off: Driver frequency =0 (M1044)
X4	Pause
 X5	(M1052) Frequency locked
-1Ĩ	(M1042) Quick stop
	END
9	

	pecial M pecial D	Description of function	Attributes
Status special M Control special M	M1040	Servo On	RW
Σ	M1056	Servo On Ready	R
Status specia	M1063	Torque attained	R
Control special D	D1060	Operating mode setting (torque mode is 2)	RW
Q	D1050	Actual operating mode (torque mode is 2)	R
Status special D	D1053	Actual torque	R

Torque control

Tab. 16-39: Special relays and special register for torque mode

Torque mode control commands TORQ (P)

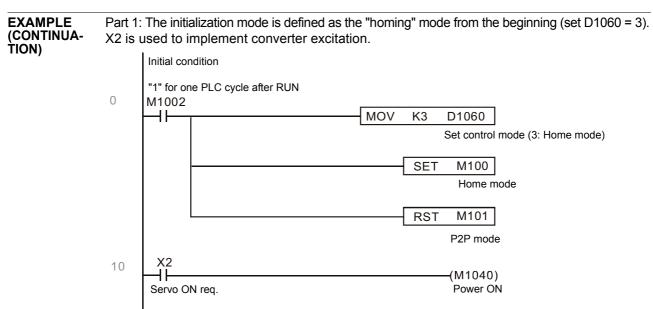
- (S1): Target torque (with numbers)
- S2: Frequency restrictions
- **EXAMPLE** The setting of electromechanical parameters involved in torque control must be completed before implementing torque control.
 - Set D1060 = 2 to change the converted to the torque mode.
 - Use the TORQ command to implement torque control and speed limits.
 - Set M1040 = 1; the driver will now be excited, and immediately jump to the target torque or speed limit. D1053 can be used to find out the current torque.

M1002	
"1" for one PLC cycle after RUN	MOV K2 D1060
M1000	Set control mode (2: Torque mode)
┝-┫┣──┬────	TMR T0 K30
Always "1"	Power ON delay
То	(M0)
Power ON delay	Ready
3 X1 	TORQ K100 K1000
9 X1 	TORQ K-200 K1000
5 M0 X4 	(M1040) Power ON
8	
999	END
I	C200

	pecial M pecial D	Description of function	Attributes
	M1040	Servo ON	RW
Control special M	M1048	Move to new position, must use control mode as position mode $(D1060 = 1)$ and $M1040 = 1$	RW
Control pecial 1	M1050	Absolute position/relative position (0: relative/1: absolute)	RW
S	M1055	Search for origin (home start), must use control mode as homing mode (D1060 = 3) and M1040 = 1 $$	RW
≥₀	M1064	Target reached	R
Status special M	M1070	Return home complete	R
spes	M1071	Homing error	R
Control special D	D1060	Operating mode setting (position mode is 1, homing mode is 3)	RW
_ م	D1050	Actual operating mode (homing mode is 3)	R
Status special D	D1051*	Actual position (Low word)	R
spe	D1052*	Actual position (High word)	R

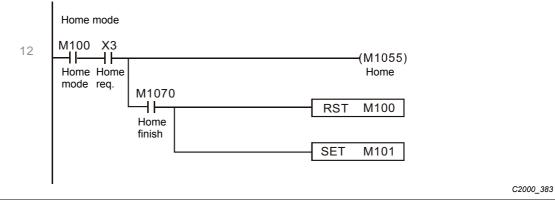
Homing control/position control

Tab. 16-40: Special relays and special register for homing mode/position mode


* D1051 and D1052 must be combined to give the actual location.

Position mode control commands DPOS (P)

S1: Target (with numbers)


EXAMPLE First complete setting of electromechanical parameters connected with position before implementing homing control or position control.

- Set 00-40 to select the homing method and the corresponding limit sensors and origin. (Setting the MI function gives a reverse rotation limit of 44, a forward rotation limit of 45, and an origin proximity of 46. Because the C2000 current only supports a Z-phase origin, the encoder card must a provide Z-phase.)
- Set D1060 = 3 to change the converter to the homing mode.
- Set M1040 = 1
 In the VF/SVC/VFPG mode, will enter the STANDBY mode (01-34 can be used to access the STANDBY mode's action options).
 In the FOC + PG mode, zero speed holding will occur
- In the FOC + PG mode, Zero speed holding will occur
- Set M1055 = 1, and the driver will now start to search for the origin.
- When homing is complete, M1070 will change to ON. If you now set D1060 = 1, the control mode will switch to position mode (please note that M1040 will not change to OFF; this mechanical origin move).
- The DPOS command can now be used to designate the driver's target location. M1050 or parameter 00-12 can be used to set a change in absolute or relative position.
- Implement M1048 Pulse ON once (must be more than 1 ms in duration), and the converter will begin to move toward the target (M1040 must be 1 to be effective). The current position can be obtained from D1051 and D1052.

C2000_382

Part 2: Homing; Use X3 to trigger homing action; will automatically switch to position mode after completion.

EXAMPLE (CONTINUA-		B-point-to-point movement: Switch to position poetween position points (+300000 to –30000	
TION)		P2P mode	,
	20	M101	
		P2P mode	MOV K1 D1060
			Set control mode (1: Position mode)
			MOV K1 K4M200 +300000
	33	M200	
		+300000	DPOS_K300000
	43		- TMR T100 K10
		M201 M1064	- TMR T101 K10
	49	Ack Target position reached	
		M202	DPOS K300000
		-300000	
		M203 M1064	- TMR T102 K10
	59	<u> </u> −4 −−−4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−	TMR T103 K10
	65	Ack Target position reached M200 T100	
			ROLP K4M200 K1
		+300000 M201 T101	+300000
		├──┤ ┝─── ┥┝─── +300000	
		M202 T102	
		 +300000	
		M203 T103	
		+300000	
	81	M201	(M1048)
		Ack	(111048)
		M203	
	84	Ack	
			END

C2000_384

If homing is not needed in an application, the first and second parts can be skipped. However, the M1040 condition from Part 1 must be included, and the writing method in Part 1 involve the use of X2 to achieve direct access. In addition, when M101 is used at the beginning of Part 3 to set the control mode, it can be rewritten as M1002, which will put the PLC immediately into the position mode when it starts running.

16.10 Internal communications main node control

The protocol has been developed in order to facilitate the use of 485 instead of CANopen[®] in certain application situations. The 485 protocol offers similar real-time characteristics as CANopen[®]; this protocol can only be used on the C2000 and CT2000 devices. The maximum number of slave devices is 8.

Internal communications have a master-slave structure. The initiation method is very simple:

Slave device

Set parameter 09-31 = -1 to -8 in order to access 8 nodes, and set parameter 00-20 = 1 to define the control source as 485 and access the reference sources that must be controlled, namely speed mode (00-21 = 2), torque mode (11-33 = 1), and position mode (11-40=2). This will complete slave device settings. (PLC functions do not need to be activated)

Master

Setting the master is even simpler; it is only necessary to set parameter 09-31 = -10, and enable the PLC.

Hardware wiring

The master and slave stations are connected via the 485 serial port. The C2000 provide two types of 485 serial port interfaces, see the figure below (please refer to 06 Control terminals concerning detailed terminal connections).

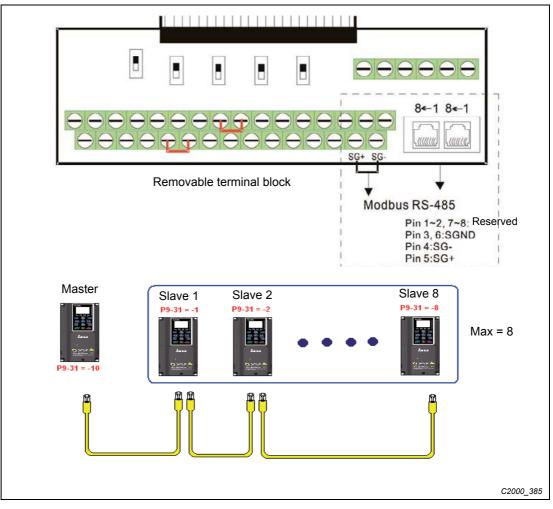
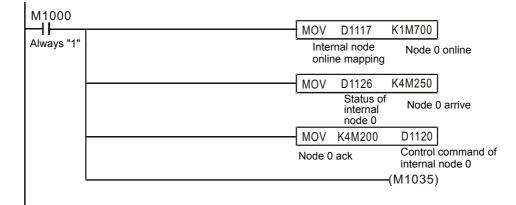


Fig. 16-39: Connection between master stations and slave stations

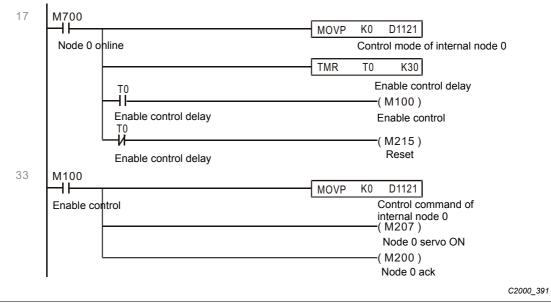
Master programming

In a program, D1110 can be used to define a slave station to be controlled (1-8, if set as 0, can jump between 8 stations). Afterwards, M1035 is set as 1, and the memory positions of the master and slave stations will correspond. At this time, it is only necessary to send commands to the correlation slave station address to control that station. The following is a register table connected with internal communications.


pec	ial M ial D	Description of func	tion						Att but		
special M	M1035	Initiates internal com	iates internal communications control								
special D	D1110	Internal node commu (set the station numb				olled)			RW		
				Descri	ption of functi	on			• • •		
spec	ial D	Definition	Bit	User rights	Speed mode	Location mode	Torque mode	Homing mode	Att but		
			0	4	Command functions	_	_	Homing origin			
			1	4	Reverse rotation require- ments	Imme- diate change	_	_			
			2	4	_	_	_	_			
	D1120 + 10*N		3	3	Temporary pause	Tem- porary pause	_	_	RW		
) + Internal node N control command	4	4	Frequency locking	_	_	Tem- porary pause			
			5	4	JOG	_	_	_			
\cap			6	2	Quick Stop	Quick Stop	Quick Stop	Quick Stop			
pecial I			7	1	Servo ON	Servo ON	Servo ON	Servo ON			
Control special D			11–8	4	Speed interval switching	Speed interval switching	_	_			
0			13–12	4	Decelera- tion time change	_	_	_			
			14	4	Enable Bit 13 – 8	Enable Bit 13 – 8	—	_			
			15	4	Clear error code	Clear error code	Clear error code	Clear error code			
	D1121 + 10*N	Internal node N control mode			0	1	2	3	R۱		
	D1122 + 10*N	Internal node N ref- erence command L			Speed command (no number)	Position command (with numbers)	Torque command (with numbers)	_	R\		
	D1123 + 10*N	Internal node N ref- erence command H			_		Speed limit	_	R۱		
pec	ial D	Description of func	tion						Att but		
~	D1115	Internal node synchr	onizina c	ycle (ms)					R		
cial D	D1116	Internal node error (b	-			e device 2, b	it 7 = slave	device 8)	R		
special D	D1117	Internal node online bit 7 = slave device 8	correspo						R		

0

Spec	ial D			Description of F	unction		Attri-
Spec		Bit	Speed mode Location mode		Torque mode	Homing mode	butes
		0	Frequency command arrival	Position com- mand attained	Torque com- mand attained	Zero command completed	
			Clockwise	Clockwise	Clockwise	Clockwise	
Ω		1	Counterclockwise	Counterclockwise	Counterclockwise	Counter- clockwise	
special D	D1126 + 10*N	2	Warning	Warning	Warning	Warning	R
spe		3	Error	Error	Error	Error	
Sn		5	JOG				
Status		6	Quick Stop	Quick Stop	Quick Stop	Quick Stop	
		7	Servo ON	Servo ON	Servo ON	Servo ON	
	D1127 + 10*N		Actual frequency	Actual position (with numbers)	Actual torque (with numbers)	_	R
	D1128 + 10*N		—	(with humbers)	—	_	


Tab. 16-42: Special relays and registers for internal communication (2) * N = 0–7

EXAMPLE Assume it is desired to control slave station 1 operation at frequencies of 30.00 Hz and 60.00 Hz, status, and online node correspondences:

C2000_390

When it is judged that slave station 1 is online, delay 3 sec. and begin control:

It is required slave station 1 maintain forward rotation at 30.00 Hz for 1 sec., and maintain **EXAMPLE** (CONTINUAreverse rotation at 60.00 Hz for 1 sec., and repeat this cycle continuously. TION) M300 +30.00Hz 41 MOV K3000 D1122 Reference command L of the internal node 0 M250 K10 ┥┝ TMR T10 Node 0 arrive 52 M301 H۲ (M200) -60.00Hz Rev. MOV K6000 D1122 Reference command L of the internal node 0 M250 TMR K10 T11 Node 0 arrive M302 64 ┥┝ MOV K1 K1M300 Repeat +30.00Hz M100 ┥ᡲ⊦ Enable control 73 M300 T10 M100 -1┥┝ ┥┟ ROLP K4M300 K1 +30.00Hz +30.00Hz Enable control M301 T11 -11----60.00Hz 84 END C2000_392

16.11 Count function using MI8

16.11.1 High-speed count function

The C2000's MI8 supports one-way pulse counting, and the maximum speed is 100K. The starting method is very simple, and only requires setting M1038 to begin counting. The 32 bit count value is stored on D1054 and D1055 in non-numerical form. M1039 can reset the count value to 0.

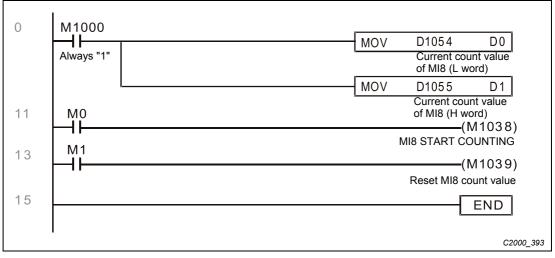


Fig. 16-40: Program example for high-speed count function using MI8

NOTE

When the PLC program defines MI8 for use as a high-speed counter, and also for use in PLC procedures, it must be written to M1038 or M1039, and the original MI8 functions will be disabled.

16.11.2 Frequency calculation function

Apart from high-speed counting, the C2000's MI8 can also convert a received pulse to frequency. The following figure shows that there is no conflict between frequency conversion and count calculations, which can be performed simultaneously.

In D1058 the calculation interval (gate time) for frequency measurement on MI8 is stored in the unit "milliseconds". For a calculation interval of one second D1058 must contain the value 1000 [ms] = 1.0 s.

Assuming that there are 5 input pulses each second, (see figure below) we set D1058 = 1000 ms = 1.0 sec. as the calculation interval. This enables five pulses to be sent to the converter each second.

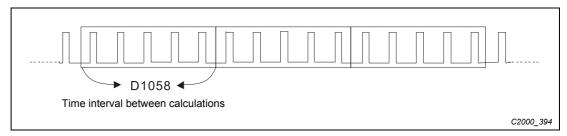


Fig. 16-41: Example for pulses on terminal MI8 of the variable frequency drive

The result of the calculation is stored in D1056.

In D1057 a multiplication factor can be set. Assuming that each 5 pulses correspond to 1 Hz, we set D1057 = 5.

D1059 contains information about decimal places. Assuming that we wish to display numbers to two decimal places, we set D1059 = 2. A calculated frequency of 1.00 Hz will therefore be stored as 100 in D1059.

The D1056 calculation formula is shown below:

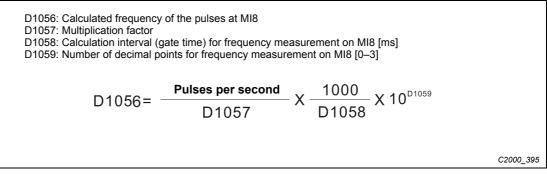


Fig. 16-42: MI8 frequency calculation formula

For this example the following frequency is calculated:

Frequency = 5/1000 x 1000/5 x 100 = 100 > 1,00 Hz (because of [D1059] = 2)

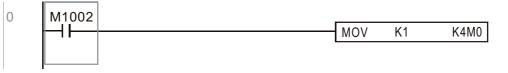
16.12 MODBUS[®] remote IO control applications (MODRW)

The C2000's internal PLC supports 485 read/write functions, which can be realized using the MODRW command. However, the 485 serial port must be defined as available for the PLC's 485 use before writing a program, and the parameter 09-31 must be set as -12. After completing settings, the standard functions defined by 485 can be used to implement read/write commands at other stations. Communications speed is defined by parameter 09-01, the communications format is defined by parameter 09-04, and the PLC's current station number is defined by parameter 09-35.

The C2000 currently supports the functions read coil (0 x 01), read input (0 x 02), read register (0 x 03), write to single register (0 x 06), write to several coils (0 x 0F), and write to several registers (0 x 10). Explanations and the usage of these functions are provided as follows:

	MOD	RW com	mand				
S1	S2	S3	S	n			
Node ID	Command	Address	Register	Length	General meaning	Slave device is Delta's PLC meaning	Slave device is Delta's converter meaning
K3	H01	H500	D0	K18	Read coil (Bit)	Read 18 bits of data corre- sponding to slave station 3 PLC Y0 to Y21. This data is stored by bit 0 to 15 of the this station's D0 and bit 0 to bit 3 of D1.	Does not support this function
K3	H02	H400	D10	K10	Read input (Bit)	Read 10 bits of data corre- sponding to slave station 3 PLC X0 to X11. This data is stored by bit 0 to 9 of this station's D10.	Does not support this function
K3	H03	H600	D20	K3	Read register (word)	Read 3 words of data corre- sponding to slave station 3 PLC T0 to T2. This data is stored by D20 to D22.	Read 3 words of data corresponding to slave station 3 converter parameters 06-00 to 06-02. This data is stored by D20 to D22.
K3	H06	H610	D30	XX*	Write to sin- gle register (word)	Writes this station's D30 value to slave station 3 PLC's T16.	Writes this station's D30 value to slave station 3 converter parameter 06-10.
К3	H0F	H509	D40	K10	Write to multi- ple coils (Bit)	Writes bit 0 to 9 of D40 to slave station 3 PLC's Y11 to Y22.	Does not support this function
K3	H10	H602	D50	K4	Write to multi- ple registers (word)	Writes D50 to D53 to slave station 3 PLC's T2 to T5.	Writes his station's D50 to D53 to slave station 3 converter parameters 06-02 to 06-05

Tab. 16-43: Examples for MODRW commands


* Indicates doesn't matter.

Т

After implementing MODRW, the status will be displayed in M1077 (485 read/write complete), M1078 (485 read/write error), and M1079 (485 read/write time out). M1077 is defined so as to immediately revert to 0 after the MODRW command has been implemented. However, any of three situations-a report of no error, a data error report, or time out with no report-will cause the status of M1077 to change to On.

C2000_397

When the reported message indicates no error, it will switch to the next transmitted command:

C2000_398

If time out occurs or an error is reported, the M1077 will change to On. At this time, after a delay of 40 scanning cycles, it will re-issue the original command once.

M1077	
485 R/W rite is co	ADD D30 K1 D30
_ до к40 р	MOV K0 D30
	——————————————————————————————————————
M1002 ON only for 1 scan M200	(M100) Req.TXOnce
Delay cycle	
M100 M0	MODRW K2 H1 H500 D200 K16
Req.TX M1	MODIAW 12 111 11000 0200 1010
	MODRW K2 HF H500 D100 K16
	MODRW K2 H2 H410 D201 K16
M3	MODRW K3 H3 H2100 D300 K2
M4	MODRW K2 H2 H410 D201 K16
I	C200

EXAMPLE (CONTINUA-	lt will re	epeat after sending all commands:	
τιοn)	102	M5 	
			C2000_400

Actual use to control the RTU485 module

- ① Set the communications format. Assume that the communications format is 115200, 8, N, 2, RTU
 - C2000: The default PLC station number is set as 2 (09-35); 09-31=-12 (COM1 is controlled by the PLC), 09-01=115.2 (The communication speed is 115200); 09-04=13 (The format is 8,N,2, RTU)
 - RTU485: The station number is 8 (refer to the figure below).

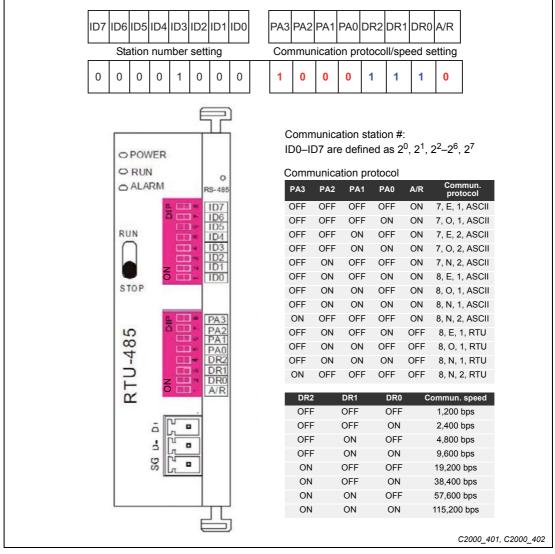


Fig. 16-43: Setting of station number, communication protocol, and communication speed

- ② Install control equipment. We sequentially connect to the RTU-485:
 - DVP-16SP (8 IN, 8 OUT)
 - DVP-04AD (4 channels AD)
 - DVP-02DA (2 channels DA), and
 - DVP-08ST (8 switches)

The following corresponding locations can be obtained from the RTU-485's configuration definitions:

Module	Terminals	485 Address
DVP-16SP	X0 – X7	0400H – 0407H
DVF-103F	Y0 – Y7	0500H – 0507H
DVP-04AD	AD0 – AD3	1600H – 1603H
DVP-02DA	DA0 – DA1	1640H – 1641H
DVP-08ST	Switch 0 – 7	0408H – 040FH

Tab. 16-44: Devices and addresses for this example

③ Physical configuration

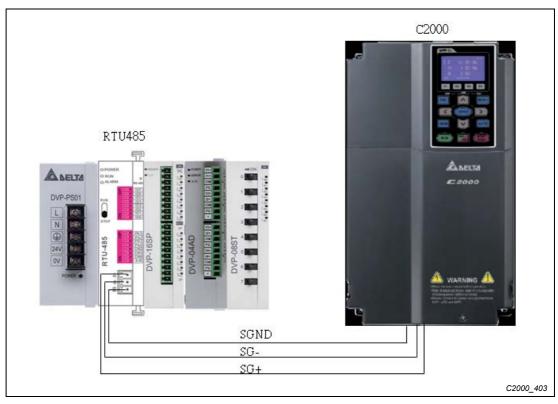


Fig. 16-44: The C2000 communicates with the RTU-485 via the RS485 interface

④ Write to PLC program

Setting remote I/O command and register mapping]					
M1002				MOV	К1	K4M0
ON only for 1 scan a M3						X input read
Multi-word write						
	MODRVV	K8	H2.	H400	DO	K16
ON only X input for 1 read scan a	3.					
	MODRVV	K8	HF	H500	D100	K8
Delay Multi-Y cycle out write						
M2	MODRWV	K8	НЗ	H1606	D200	K4
Word read	2				AD 1 va	lue
M1077 M1078 M1079				ROLP	K4MD	KI
485 read/ 485 read/ 485 read/write timeo write is co write fail					X inpur read	t
M1077					INC	D30
485 read/write is co						Delay cycle times
> 030 к10				MOV	KU	D30
Delay cycle times					Sectory and	Delay cycle times
						—(M50) Delay cyc
						C2000

Fig. 16-45: PLC program for communication between C2000 and RTU-485 (1)

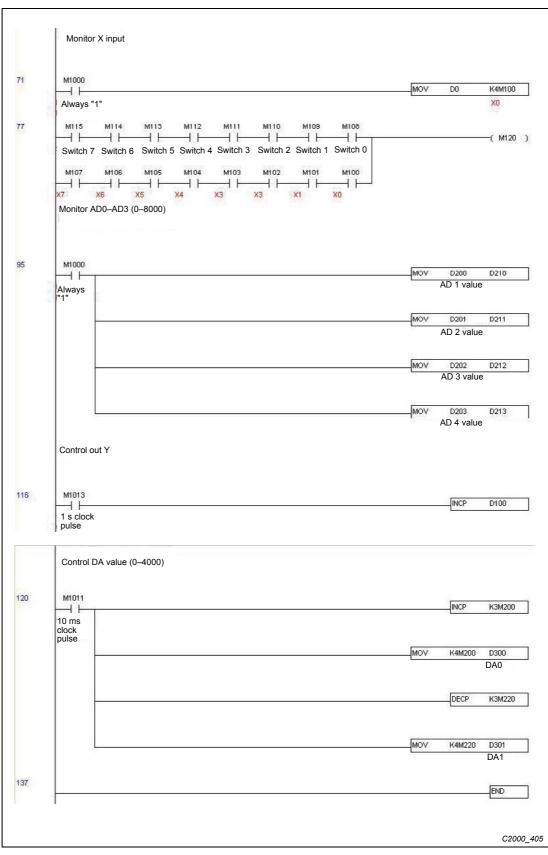


Fig. 16-46: PLC program for communication between C2000 and RTU-485 (2)

(5) Actual testing situation

I/O testing: When the switch is activated, it can be discovered that the display corresponds to M115–M108. Furthermore, it can be seen that one output point light is added every 1 sec. (the display uses a binary format).

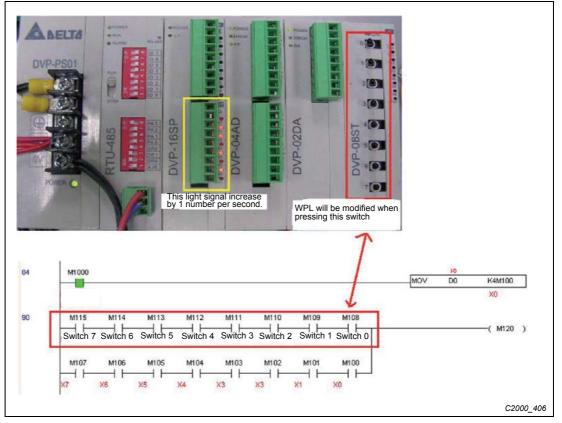


Fig. 16-47: Displaying the status of inputs and switches in WPLSoft

 AD DA testing: It can be discovered that D200 and D201 are roughly twice the D300, and continue to increase progressively. For their part, the D202 and D203 are roughly twice the D301, and continue to decrease progressively.

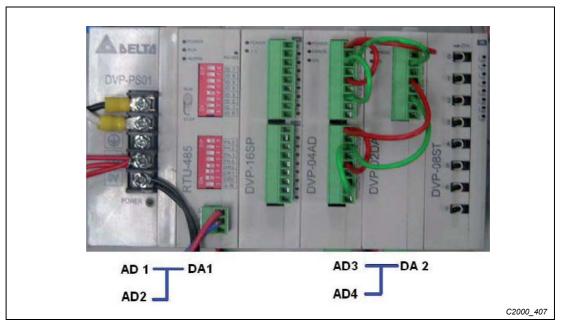


Fig. 16-48: For testing, the analog inputs and outputs are connected.



Fig. 16-49: Program part for analog inputs and outputs

16.13 Calendar functions

The C2000's internal PLC includes calendar functions, but these may only be used when a keypad (KPC-CC01) is connected, and otherwise cannot be used. Currently-support commands include TCMP (comparison of calendar data), TZCP (calendar data range comparison), TADD (calendar data addition), TSUB (calendar data subtraction), and TRD (calendar reading). Please refer to the explanation of relevant commands and functions for the usage of these commands.

In real applications, the internal PLC can judge whether calendar function have been activated; if they have been activated, calendar warning codes may be displayed in some situations. The basis for whether a calendar function has been activated is whether the program has written the calendar time (D1063 to D1069) in connection with the foregoing calendar commands or programs.

The calendar's time display is currently assigned to D1063 to D1069, and is defined as follows:

Special D	ltem	Content	Attributes
D1063	Year (Western)	20xx (2000–2099)	R
D1064	Weeks	1–7	R
D1065	Month	1–12	R
D1066	Day	1–31	R
D1067	Hour	0–23	R
D1068	Minute	0–59	R
D1069	Second	0–59	R

Tab. 16-45: The special registers D1063 to D1069 contain date and time

Special D	Item	Attributes
M1068	Calendar time error	R
M1076	Calendar time error or refresh time out	R
M1036	Ignore calendar warning	RW

Calendar-related special M items are defined as follows:

Tab. 16-46: Special relays for the calendar function

NOTES

- When a program writes to the commands TCMP, TZCP, TADD, or TSUB, if it is discovered that a value exceeds the reasonable range, M1068 will be 1.
- When the keypad display is PLra (RTC correction warning) or PLrt (RTC time out warning), M1076 will be ON.
- When M1036 is 1, the PLC will ignore the calendar warning.

16 - 170

Calendar trigger warning code is defined as follows:

Warning	Description	Reset approach	Whether it affects PLC operation
PLra	Calendar time correction	Requires power restart	Will not have any effect
PLrt	Calendar time refresh time out	Requires power restart	will not have any ellect

Tab. 16-47: Warnings for the PLC clock

NOTES

- When the PLC's calendar functions are operating, if the keypad is replaced with another keypad, it will jump to PLra.
- When it is discovered at startup that the keypad has not been powered for more than 7 days, or the time is wrong, PLra will be triggered.
- When it is discovered that the C2000 has no keypad 10 sec. after startup, PLrt will be triggered.
- If the keypad is suddenly pulled out while the calendar is operating normally, and is not reconnected for more than 1 minute, PLrt will be triggered.

Practical applications

We will perform a demo of simple applications. We first correct the keypad time. After pressing Menu on the keypad, select the 9th time setting option. After selection, set the current time.

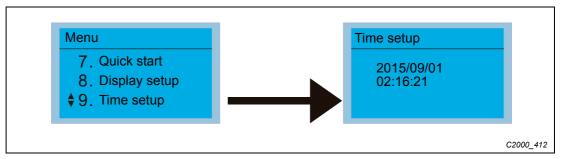
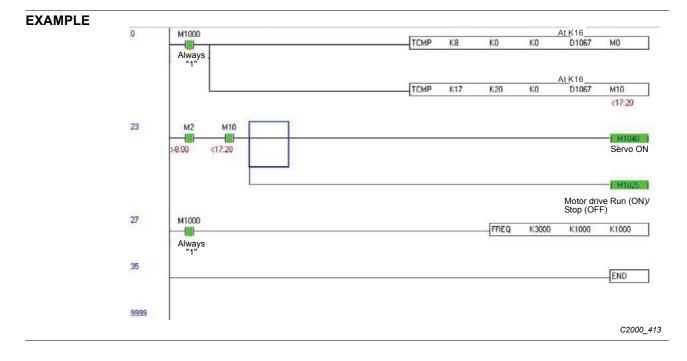



Fig. 16-50: Setting the time and date on the keypad KPC-CC01

We set converter ON during the period of 8:00-17:20, which allows us to write the following example.

17 How to select the right AC motor drive

The choice of the right AC motor drive for the application is very important and has great influence on its lifetime. If the capacity of AC motor drive is too large, it cannot offer complete protection to the motor and motor maybe damaged. If the capacity of AC motor drive is too small, it cannot offer the required performance and the AC motor drive maybe damaged due to overloading.

But by simply selecting the AC motor drive of the same capacity as the motor, user application requirements cannot be met completely. Therefore, a designer should consider all the conditions, including load type, load speed, load characteristic, operation method, rated output, rated speed, power and the change of load capacity. The following table lists the factors you need to consider, depending on your requirements.

		Rel	ated Specifi	ication	
It	tem	Speed and torque characteristics	Time ratings	Overload capacity	Starting torque
Load type	Friction load and weight load Liquid (viscous) load Inertia load Load with power transmission	•			•
Load speed and torque characteristics	Constant torque Constant output Decreasing torque Decreasing output	•	•		
Load characteristics	Constant load Shock load Repetitive load High starting torque Low starting torque	•	•	•	•
	n, Short-time operation at medium/low speeds		•	•	
Maximum output curre Constant output curre		•		•	
Maximum frequency,	, Base frequency	•			
Power supply transfor percentage impedant Voltage fluctuations a Number of phases, s Frequency	ce			•	•
Mechanical friction, lo	osses in wiring				
Duty cycle modification	on				

Tab. 17-1: Selection criterion for frequency inverters

17.1 Capacity formulas

17.1.1 When one AC motor drive operates one motor

The starting capacity should be less than 1.5x rated capacity of AC motor drive The starting capacity=

$$\frac{k \times N}{973 \times \eta \times \cos \varphi} \left(T_L + \frac{GD^2}{375} \times \frac{N}{t_A} \right) \leq 1.5 \ the_capacity_of AC_motor_drive [kVA]$$

17.1.2 When one AC motor drive operates more than one motor

The starting capacity should be less than the rated capacity of AC motor drive

■ Acceleration time ≤60 seconds

The starting capacity=

$$\frac{k \times N}{\eta \times \cos \varphi} \left[n_T + n_s(k_{s-1}) \right] = P_{C1} \left[1 + \frac{n_s}{n_T} (k_{s-1}) \right] \le 1.5 \times \text{the_capacity_of_AC_motor_drive[kVA]}$$

■ Acceleration time ≥60 seconds

The starting capacity=

$$\frac{k \times N}{\eta \times \cos \varphi} \left[n_T + n_s(k_{s-1}) \right] = P_{C1} \left[1 + \frac{n_s}{n_T} (k_{s-1}) \right] \le \text{the capacity of AC motor drive [kVA]}$$

The current should be less than the rated current of AC motor drive(A)

■ Acceleration time ≤60 seconds

$$n_T + I_M \left[1 + \frac{n_s}{n_T} (k_s - 1) \right] \le 1.5 \times the _rated _current _of _AC _motor _drive [A]$$

■ Acceleration time ≥60 seconds

$$n_{T} + I_{M} \left[1 + \frac{n_{s}}{n_{T}} (k_{s} - 1) \right] \leq the _rated_current_of_AC_motor_drive [A]$$

When it is running continuously

The requirement of load capacity should be less than the capacity of AC motor drive [kVA] The requirement of load capacity=

$$\frac{k \times P_M}{\eta \times \cos \varphi} \le the_capacity_of_AC_motor_drive(kVA)$$

- The motor capacity should be less than the capacity of AC motor drive $kx \sqrt{3}x V_M x I_M x 10^{-3} \le =$ the_capacity_of_AC_motor_drive [kVA]
- The current should be less than the rated current of AC motor drive [A] k x I_M ≤ the_rated_current_of_AC_motor_drive [A]

Symbol explanation

P_M	: Motor shaft output for load [kW]
η	: Motor efficiency (normally, approx. 0.85)
$\cos \varphi$: Motor power factor (normally, approx. 0.75)
V_M	: Motor rated voltage [V]
Ім	: Motor rated current [A], for commercial power
k	: Correction factor calculated from current distortion factor (1.05-1.1, depending on PWM method)
P_{C1}	: Continuous motor capacity [kVA]
ks	: Starting current/rated current of motor
n_T	: Number of motors in parallel
ns	: Number of simultaneously started motors
GD^2	: Total inertia [GD ²] calculated back to motor shaft [kg m ²]
T_L	: Load torque
<i>t</i> _A	: Motor acceleration time
Ν	: Motor speed

17.2 General precaution

Selection Note

- ① When the AC Motor Drive is connected directly to a large-capacity power transformer (600 kVA or above) or when a phase lead capacitor is switched, excess peak currents may occur in the power input circuit and the converter section may be damaged. To avoid this, use an AC input reactor (optional) before AC Motor Drive mains input to reduce the current and improve the input power efficiency.
- ② When a special motor is used or more than one motor is driven in parallel with a single AC Motor Drive, select the AC Motor Drive current ≥1.25x(Sum of the motor rated currents).
- ③ The starting and accel./decel. characteristics of a motor are limited by the rated current and the overload protection of the AC Motor Drive. Compared to running the motor D.O.L. (Direct On-Line), a lower starting torque output with AC Motor Drive can be expected. If higher starting torque is required (such as for elevators, mixers, tooling machines, etc.) use an AC Motor Drive of higher capacity or increase the capacities for both the motor and the AC Motor Drive.
- ④ When an error occurs on the drive, a protective circuit will be activated and the AC Motor Drive output is turned off. Then the motor will coast to stop. For an emergency stop, an external mechanical brake is needed to quickly stop the motor.

Parameter Settings Note

WARNING:

The AC Motor Drive can be driven at an output frequency up to 400 Hz (less for some models) with the digital keypad. Setting errors may create a dangerous situation. For safety, the use of the upper limit frequency function is strongly recommended.

CAUTION:

High DC brake operating voltages and long operation time (at low frequencies) may cause overheating of the motor. In that case, forced external motor cooling is recommended.

- Motor accel./decel. time is determined by motor rated torque, load torque, and load inertia.
- If the stall prevention function is activated, the accel./decel. time is automatically extended to
 a length that the AC Motor Drive can handle. If the motor needs to decelerate within a certain
 time with high load inertia that can't be handled by the AC Motor Drive in the required time,
 either use an external brake resistor and/or brake unit, depending on the model, (to shorten
 deceleration time only) or increase the capacity for both the motor and the AC Motor Drive.

17.3 How to choose a suitable motor

Standard motor

When using the AC Motor Drive to operate a standard 3-phase induction motor, take the following precautions:

- ① The energy loss is greater than for an inverter duty motor.
- ② Avoid running motor at low speed for a long time. Under this condition, the motor temperature may rise above the motor rating due to limited airflow produced by the motor's fan. Consider external forced motor cooling.
- ③ When the standard motor operates at low speed for long time, the output load must be decreased.
- ④ The load tolerance of a standard motor is as follows:

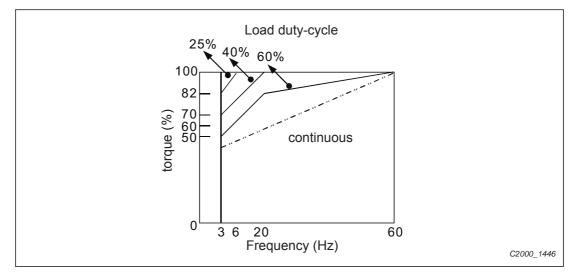


Fig. 17-1: Motor characteristics

- (5) If 100 % continuous torque is required at low speed, it may be necessary to use a special inverter duty motor.
- 6 Motor dynamic balance and rotor endurance should be considered once the operating speed exceeds the rated speed (60 Hz) of a standard motor.
- ⑦ Motor torque characteristics vary when an AC Motor Drive instead of commercial power supply drives the motor. Check the load torque characteristics of the machine to be connected.
- ⑧ Because of the high carrier frequency PWM control of the VFD series, pay attention to the following motor vibration problems:
 - Resonant mechanical vibration: anti-vibration (damping) rubbers should be used to mount equipment that runs at varying speed.
 - Motor imbalance: special care is required for operation at
 - 50 or 60 Hz and higher frequency.
 - To avoid resonances, use the Skip frequencies.
- (9) The motor fan will be very noisy when the motor speed exceeds 50 or 60 Hz.

Special motors:

1) Pole-changing (Dahlander) motor:

The rated current is differs from that of a standard motor. Please check before operation and select the capacity of the AC motor drive carefully. When changing the pole number the motor needs to be stopped first. If over current occurs during operation or regenerative voltage is too high, please let the motor free run to stop (coast).

② Submersible motor:

The rated current is higher than that of a standard motor. Please check before operation and choose the capacity of the AC motor drive carefully. With long motor cable between AC motor drive and motor, available motor torque is reduced.

- ③ Explosion-proof (Ex) motor: Needs to be installed in a safe place and the wiring should comply with the (Ex) requirements. Delta AC Motor Drives are not suitable for (Ex) areas with special precautions.
- ④ Gear reduction motor:

The lubricating method of reduction gearbox and speed range for continuous operation will be different and depending on brand. The lubricating function for operating long time at low speed and for high-speed operation needs to be considered carefully.

(5) Synchronous motor:

The rated current and starting current are higher than for standard motors. Please check before operation and choose the capacity of the AC motor drive carefully. When the AC motor drive operates more than one motor, please pay attention to starting and changing the motor.

Power transmission mechanism

Pay attention to reduced lubrication when operating gear reduction motors, gearboxes, belts and chains, etc. over longer periods at low speeds. At high speeds of 50/60 Hz and above, life-time reducing noises and vibrations may occur.

Motor torque

The torque characteristics of a motor operated by an AC motor drive and commercial mains power are different.

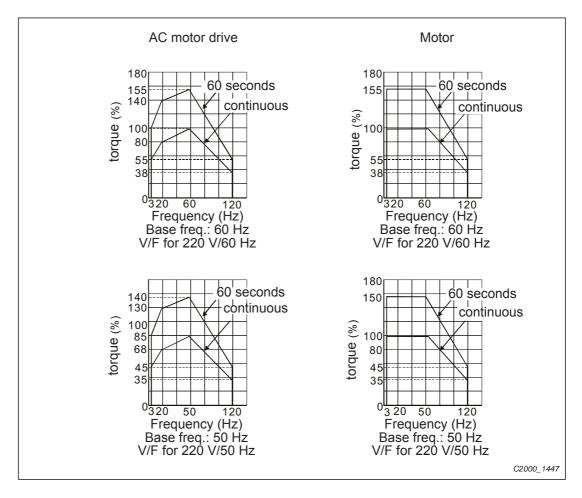


Fig. 17-2: Torque-speed characteristics of a standard motor (4-pole, 15 kW)

18 Suggestions and Error Corrections for Standard AC Motor Drives

The AC motor drive has a comprehensive fault diagnostic system that includes several different alarms and fault messages. Once a fault is detected, the corresponding protective functions will be activated. The following faults are displayed as shown on the AC motor drive digital keypad display. The six most recent faults can be read from the digital keypad or communication.

The AC motor drive is made up by numerous components, such as electronic components, including IC, resistor, capacity, transistor, and cooling fan, relay, etc. These components can't be used permanently. They have limited-life even under normal operation. Preventive maintenance is required to operate this AC motor drive in its optimal condition, and to ensure a long life.

Check your AC motor drive regularly to ensure there are no abnormalities during operation and follows the precautions

CAUTION:

- Wait 5 seconds after a fault has been cleared before performing reset via keypad of input terminal.
- When the power is off after 5 minutes for ≤22 kW models and 10 minutes for ≥30 kW models, please confirm that the capacitors have fully discharged by measuring the voltage between + and -. The voltage between + and should be less than 25 V DC.
- Only qualified personnel can install, wire and maintain drives. Please take off any metal objects, such as watches and rings, before operation. And only insulated tools are allowed.
- Never reassemble internal components or wiring.
- Make sure that installation environment comply with regulations without abnormal noise, vibration and smell.

18.1 Maintenance and Inspections

Before the check-up, always turn off the AC input power and remove the cover. Wait at least 10 minutes after all display lamps have gone out, and then confirm that the capacitors have fully discharged by measuring the voltage between DC+ and DC-. The voltage between DC+ and DC-should be less than 25 VDC.

Ambient environment

		Maintenance Period			
Check Items	Methods and Criterion	Daily	Half Year	One Year	
Check the ambient temperature, humid- ity, vibration and see if there are any dust, gas, oil or water drops	Visual inspection and measurement with equipment with standard specification	0			
If there are any dangerous objects	Visual inspection	0			

Tab. 18-1: Ambient environment

Voltage

		Maintenance Period			
Check Items	Methods and Criterion	Daily	Half Year	One Year	
Check if the voltage of main circuit and control circuit is correct	Measure with multimeter with standard specification	0			

Tab. 18-2: Voltage

Digital keypad display

		Maintenance Period		
Check Items	Methods and Criterion	Daily	Half Year	One Year
Is the display clear for reading	Visual inspection	0		
Any missing characters	Visual inspection	0		

Tab. 18-3: Digital keypad display

Mechanical parts

		Maintenance Period			
Check Items	Methods and Criterion	Daily	Half Year	One Year	
If there is any abnormal sound or vibration	Visual and aural inspection		\bigcirc		
If there are any loose screws	Tighten the screws		\bigcirc		
If any part is deformed or damaged	Visual inspection		\bigcirc		
If there is any color change by overheating	Visual inspection		\bigcirc		
If there is any dust or dirt	Visual inspection		0		

Tab. 18-4: Mechanical parts

Main circuit

		Maintenance Period		
Check Items	Methods and Criterion	Daily	Half Year	One Year
If there are any loose or missing screws	Tighten or replace the screw	0		
If machine or insulator is deformed, cracked, damaged or with color change due to overheating or ageing	Visual inspection NOTE: Please ignore the color change of copper plate		0	
If there is any dust or dirt	Visual inspection		\bigcirc	

Tab. 18-5: Main circuit

Terminals and wiring of main circuit

		Maintenance Period			
Check Items	Methods and Criterion	Daily	Half Year	One Year	
If the terminal or the plate is color change or deformation due to overheat	Visual inspection		\bigcirc		
If the insulator of wiring is damaged or color change	Visual inspection		\bigcirc		
If there is any damage	Visual inspection	\bigcirc			

Tab. 18-6: Terminals and wiring of main circuit

DC capacity of main circuit

		Maintenance Period		
Check Items	Methods and Criterion	Daily	Half Year	One Year
If there is any leak of liquid, color change, crack or deformation	Visual inspection	0		
If the safety valve is not removed? If valve is inflated?	Visual inspection	\bigcirc		
Measure static capacity when required		\bigcirc		

Tab. 18-7: DC capacity of main circuit

Resistor of main circuit

		Maintenance Period			
Check Items	Methods and Criterion	Daily	Half Year	One Year	
If there is any peculiar smell or insulator cracks due to overheat	Visual inspection, smell	0			
If there is any disconnection	Visual inspection	0			
If connection is damaged?	Measure with multimeter with standard specification	0			

Tab. 18-8: Resistor of main circuit

Transformer and reactor of main circuit

	Methods and Criterion	Maintenance Period			
Check Items		Daily	Half Year	One Year	
If there is any abnormal vibration or peculiar smell	Visual, aural inspection and smell	0			

Tab. 18-9: Transformer and reactor of main circuit

Magnetic contactor and relay of main circuit

		Maintenance Period			
Check Items	Methods and Criterion	Daily	Half Year	One Year	
If there are any loose screws	Visual and aural inspection	0			
If the contact works correctly	Visual inspection	0			

Tab. 18-10: Magnetic contactor and relay of main circuit

Printed circuit board and connector of main circuit

		Maintenance Period		
Check Items	Methods and Criterion	Daily	Half Year	One Year
If there are any loose screws and connectors	Tighten the screws and press the connectors firmly in place.		0	
If there is any peculiar smell and color change	Visual and smell inspection		0	
If there is any crack, damage, deformation or corrosion	Visual inspection		0	
If there is any liquid is leaked or deformation in capacity	Visual inspection		0	

Tab. 18-11: Printed circuit board and connector of main circuit

Cooling fan of cooling system

		Maintenance Period		
Check Items	Methods and Criterion	Daily	Half Year	One Year
If there is any abnormal sound or vibration	Visual, aural inspection and turn the fan with hand (turn off the power before oper- ation) to see if it rotates smoothly		0	
If there is any loose screw	Tighten the screw		\bigcirc	
If there is any color change due to overheat	Change fan		\bigcirc	

Tab. 18-12: Cooling fan of cooling system

Ventilation channel of cooling system

	Methods and Criterion	Maintenance Period		
Check Items		Daily	Half Year	One Year
If there is any obstruction in the heat sink, air intake or air outlet	Visual inspection		\bigcirc	

Tab. 18-13: Ventilation channel of cooling system

NOTE Please use the neutral cloth for clean and use dust cleaner to remove dust when necessary.

18.2 Greasy dirt problem

Serious greasy dirt problems generally occur in processing industries such as machine tools, punching machines and so on. Please be aware of the possible damages that greasy oil may cause to your drive:

- ① Electronic components that silt up with greasy oil may cause the drive to burn out or even explode.
- ② Most greasy dirt contains corrosive substances that may damage the drive.

Solution:

Install the AC motor drive in a standard cabinet to keep it away from dirt. Clean and remove greasy dirt regularly to prevent damage of the drive.

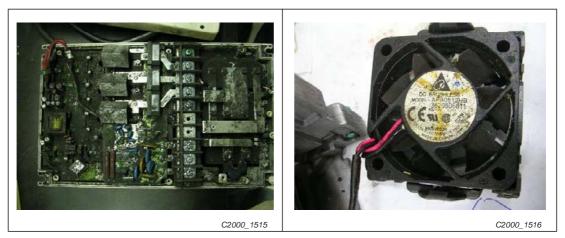


Fig. 18-1: Greasy dirt inside the frequency inverter and at the cooling fans

18.3 Fiber dust problem

Serious fiber dust problems generally occur in the textile industry. Please be aware of the possible damages that fiber may cause to your drives:

- ① Fiber that accumulates or adheres to the fans will lead to poor ventilation and cause overheating problems.
- ② Plant environments in the textile industry have higher degrees of humidity that may cause the drive to burn out, become damaged or explode due to wet fiber dust adhering to the devices.

Solution:

Install the AC motor drive in a standard cabinet to keep it away from fiber dust. Clean and remove fiber dust regularly to prevent damage to the drive.

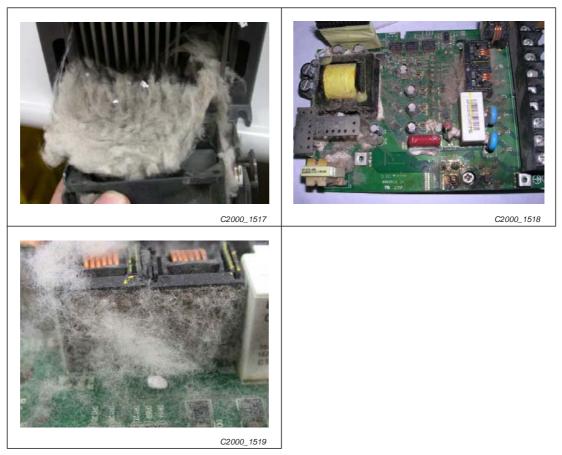


Fig. 18-2: Collection of fiber dust inside the frequency inverter

18.4 Erosion problem

Erosion problems may occur if any fluids flow into the drives. Please be aware of the damages that erosion may cause to your drive.

① Erosion of internal components may cause the drive to malfunction and possibility to explode.

Solution:

Install the AC motor drive in a standard cabinet to keep it away from fluids. Clean the drive regularly to prevent erosion.

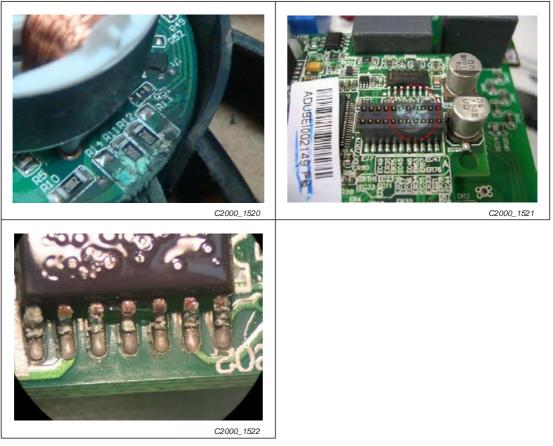


Fig. 18-3: Damage from corrosion

18.5 Industrial dust problem

Serious industrial dust pollution frequently occurs in stone processing plants, flour mills, cement plants, and so on. Please be aware of the possible damage that industrial dust may cause to your drives:

- ① Dust accumulating on electronic components may cause overheating problem and shorten the service life of the drive.
- ② Conductive dust may damage the circuit board and may even cause the drive to explode.

Solution:

Install the AC motor drive in a standard cabinet and cover the drive with a dust cover. Clean the cabinet and ventilation hole regularly for good ventilation.

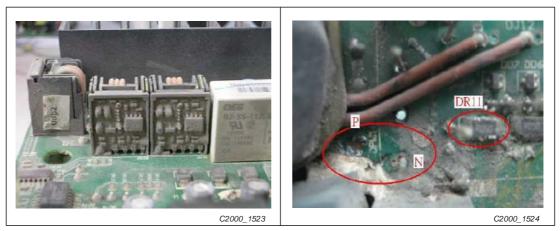


Fig. 18-4: Residue of industrial dust inside the frequency inverter

18.6 Wiring and installation problem

When wiring the drive, the most common problem is wrong wire installation or poor wiring. Please be aware of the possible damages that poor wiring may cause to your drives:

- ① Screws are not fully fastened. Occurrence of sparks as impedance increases.
- (2) If a customer has opened the drive and modified the internal circuit board, the internal components may have been damaged.

Solution:

Ensure all screws are fastened when installing the AC motor drive. If the AC motor drive functions abnormally, send it back to the repair station. DO NOT try to reassemble the internal components or wire.

Fig. 18-5: Poor wiring is an often error cause

18.7 Multi-function input/output terminals problem

Multi-function input/output terminal errors are generally caused by over usage of terminals and not following specifications. Please be aware of the possible damages that errors on multi-function input/output terminals may cause to your drives:

() Input/output circuit may burns out when the terminal usage exceeds its limit.

Solution:

Refer to the user manual for multi-function input output terminals usage and follow the specified voltage and current. DO NOT exceed the specification limits.

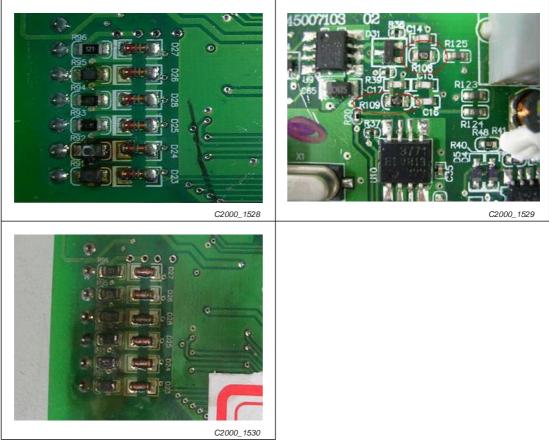


Fig. 18-6: Damage due to overload of the input/output terminals

19 EMC Standard Installation Guide

19.1 Introduction

19.1.1 What is EMC?

Electromagnetic Compatibility (EMC) is the ability of an electrical device to function properly in electromagnetic environments. It does not emit electromagnetic noise to surrounding equipment and is immune to interference from surrounding equipment. The goal is to achieve high immunity and low emission; these two properties define the quality of EMC. In general, electrical devices react to high and low frequency phenomena. High frequency phenomena are electrostatic discharge (ESD); pulse interference; radiated electromagnetic field; and conducted high frequency electrical surge. Low frequency phenomena refer to mains power harmonics and imbalance.

The standard emission and immunity levels for compliance depend on the installation location of the drive. A Power Drive System (PDS) is installed in an industrial or domestic environment. A PDS in a domestic environment must have lower emission levels and is allowed to have lower immunity levels. A PDS in an industrial environment is allowed to have higher emission levels but must have more severe immunity levels.

19.1.2 EMC for AC motor drive

When an AC motor drive is put into operation, harmonic signal will occur at the AC drive's power input and output side. It creates a certain level of electromagnetic interference to the surrounding electrical devices and the mains power network. An AC motor dive is usually applied in industrial environments with a strong electromagnetic interference. Under such conditions, an AC drive could disturb or be disturbed.

Delta's AC motor drives are designed for EMC and comply with EMC standard EN 61800-3 2004. Installing the AC motor drive accurately will decrease EMI influences and ensure long term stability of the electricity system. It is strongly suggested to follow Delta's user manual for wiring and grounding. If any difficulties or problems arise, please follow the instructions and measures as indicated in this EMC Standard Installation Guide.

19.2 How to prevent EMI

19.2.1 Types of EMI: Common-mode and differential-mode noise

The electromagnetic noise of an AC motor drive can be distinguished into common-mode and differential-mode noise. Differential-mode noise is caused by the stray capacitance between the conducting wires and common-mode noise is caused by the common-mode coupling current path created by the stray capacitance between the conducting wires and ground.

Basically, differential-mode noise has a greater impact to the AC motor drive and commonmode noise has a greater impact to high-sensitivity electronic devices. An excessive amount of differential-mode noise may trigger the circuit protection system of the AC motor drive. Common-mode noise affects peripheral electronic devices via the common ground connection.

EMC problems can be more serious when the following conditions apply:

- When a large horsepower AC motor drive is connected to a large horsepower motor.
- The AC motor drive's operation voltage increases.
- Fast switching of the IGBTs.
- When a long cable is used to connect the motor to the AC motor drive.

19.2.2 How does EMI transmit? (Noise transmission path)

Noise disturbs peripheral high-sensitivity electrical devices/systems via conduction and radiation, their transmission paths are shown hereafter:

 Noise current in the unshielded power cable is conducted to ground via stray capacitances into a common-mode voltage. Whether or not other modules are capable to resist this common-mode noise depends on their Common-Mode Rejection Ratio (CMRR), as shown in the following figure.

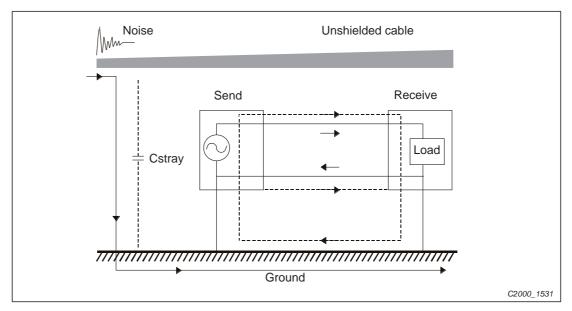
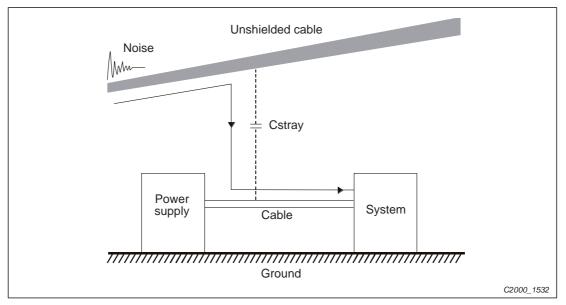
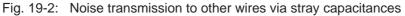




Fig. 19-1: Noise transmission to the ground via stray capacitances

② Common-mode noise in the power cable is transmitted through the stray capacitance and coupled into the adjacent signal cable, as shown in Figure 2. Several methods can be applied to reduce the effect of this common-mode noise; for example, shield the power cable and/or the signal cables, separate the power and signal cables, take the input and output side of the signal cable and twist them together to balance out the stray capacitance, let power cables and signal cables cross at 90°, etc.

③ Common-mode noise is coupled via the power cable to other power systems then the cable of such a power system is coupled to the transmission system, as shown in figure below.

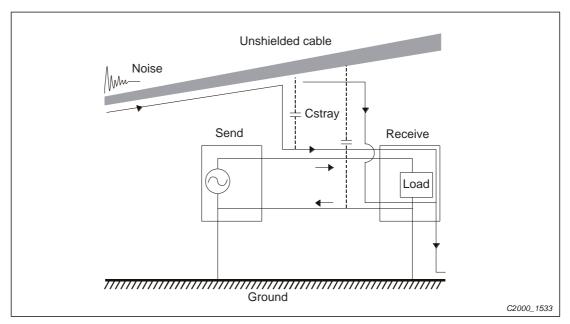


Fig. 19-3: Noise transmission to other systems via stray capacitances

④ The common-mode noise of an unshielded power cable is transmitted to the ground via the stray capacitance. Since both shielded wire and unshielded wire are connected to a common ground, other systems can be interfered with by the common-mode noise that is transmitted from the ground back to the system via the shield. See the figure below.

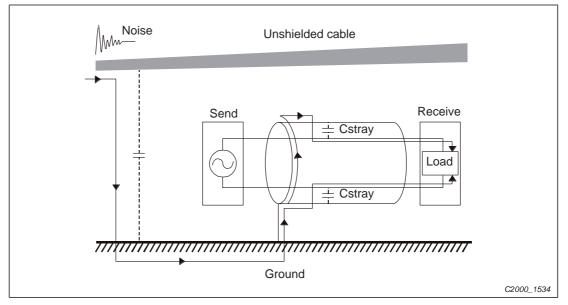


Fig. 19-4: Noise transmission to wire shields via stray capacitances

(5) When excessive pulse modulated currents pass through an un-grounded AC drive cable, it acts as an antenna and creates radiated interference.

19.3 Solution to EMI: grounding

The leakage current of an electronic equipment is conducted to ground via the grounding wire and the ground electrode. According to Ohm's law, potential differences may arise when the electrode's earth resistance and the ground's earth resistance are different.

19.3.1 Protective grounding & functional grounding

Please carefully read the following instruction if two types of grounding are applied at the same time.

Protective grounding is applied outside buildings and must have low resistance. On the other hand, functional grounding can be applied inside buildings and must have low impedance.

The goal of EMC is to avoid any interference effects. Grounding for EMC can be distinguished by frequency. For frequencies lower than 10 kHz, a single-point ground system should be used and for frequencies higher than 10 kHz, a multiple point ground system should be used.

- Single Point Grounding: all signal grounds of all IT equipment are connected in series to form a single reference point. This point can be grounded directly to earth; to the designated grounding point or to the safety point that is already grounded.
- Multiple Point Grounding: all signals of all IT equipment are grounded independently.
- Hybrid Grounding: this type of grounding behaves differently for low and high frequencies. When two pieces of IT equipment (A and B) are connected via a shielded cable, one end is connected directly to ground while the other end is connected to ground via a capacitor. This type of grounding system fulfils the criteria for high and low frequency grounding.
- Floating grounding: the signals of all IT equipment are isolated from each other and are not grounded.

DC current flows evenly throughout the conductor section. But AC current flows towards the conductor's surface as frequency increases; this is called the "skin effect". It causes the effective cross-section area to be reduced with increasing frequency. Therefore it is suggested to increase the effective ground cross-section area for high frequencies by replacing pigtail grounding by braided conductors or strip conductors. Refer to the following figure.

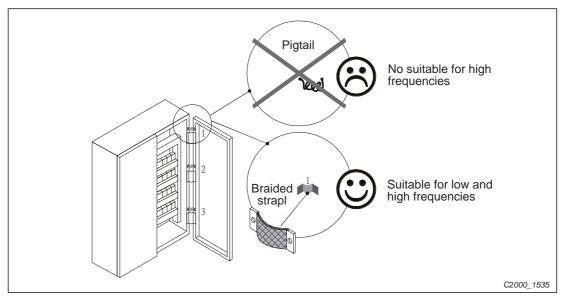


Fig. 19-5: Door connection of a control cabinet with a ground strap.

This is why a thick short ground wire must be implemented for connecting to the common grounding path or the ground busbar. Especially when a controller (e.g. PLC) is connected to an AC motor drive, it must be grounded by a short and thick conducting wire. It is suggested to use a flat braided conductor (ex: metal mesh) with a lower impedance at high frequencies.

If the grounding wire is too long, its inductance may interfere structure of the building or the control cabinet and form mutual inductance and stray capacitance. As shown in the following figure, a long grounding wire could become a vertical antenna and turn into a source of noise.

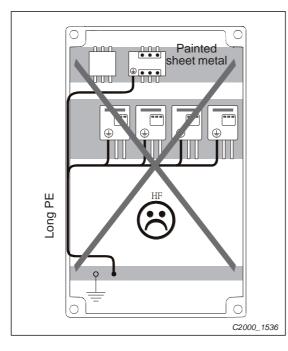


Fig.19-6: A long ground wire is bad at high frequencies

19.3.2 Ground loops

A ground loop occurs when the pieces of equipment are connected to more than one grounding path. In this case, the ground current may return to the grounding electrode via more than one path. There are three methods to prevent ground loops:

- ① Use a common power circuit.
- ② Single point grounding
- ③ Isolate signals, e.g. by photocouplers.

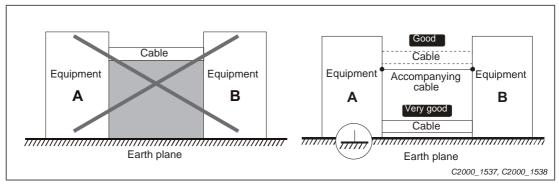


Fig. 19-7: EMC conform connection of two devices

In order to avoid "Common Mode Noise", please use parallel wires or twisted pair wiring. Follow this rule and also avoid long wires, it is suggested to place the two wires as close to each other as possible.

19.3.3 Earthing systems

The international standard IEC60364 distinguishes three different earthing system categories, using the two-letter codes TN, TT, IT.

The *first letter* indicates the type of earthing for the power supply equipment (generator or transformer).

T: One or more points of the power supply equipment are connected directly to the same earthing point.

I: Either no point is connected to earth (isolated) or it is connected to earth via a high impedance.

The second letter indicates the connection between earth and the power supply equipment.
 T: Connected directly to earth (This earthing point is separate from other earthing points in the power supply system.)

N: Connected to earth via the conductor that is provided by the power supply system

■ The *third and forth letter* indicate the location of the earth conductor.

S: Neutral and earth conductors are separate

C: Neutral and earth are combined into a single conductor

TN system

TN: The neutral point of the low voltage transformer or generator is earthed, usually the star point in a three-phase system. The body of the electrical device is connected to earth via this earth connection at the transformer.

Protective earth (PE): The conductor that connects the exposed metallic parts of the consumer.

Neutral (N): The conductor that connects to the start point in a 3-phase system or that carries the return current in a single phase system.

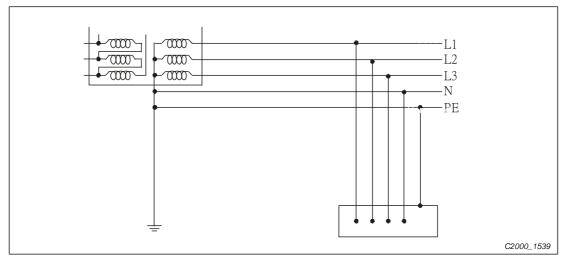


Fig. 19-8: TN system

TN-S system

TN-S: PE and N are two separate conductors that are combined together only near the power source (transformer or generator). It is the same as a three-phase 5-wire system.

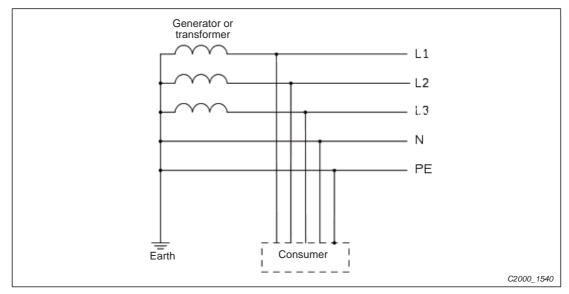


Fig. 19-9: TN-S system

TN-C system

TN-C: PE and N are combined into a PEN conductor similar to a three-phase 4 wire system.

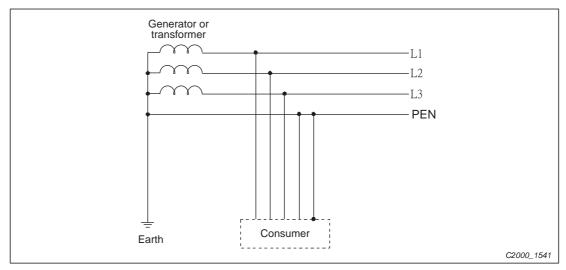


Fig. 19-10: TN-C system

TN-C-S system

TN-C-S: A combined earth and neutral system (PEN conductor) is used in certain systems but eventually split up into two separate conductors PE and N. A typical application of combined PEN conductor is from the substation to the building but within the building PEN is separated into the PE and N conductors. Direct connection of PE and N conductors to many earthing points at different locations in the field will reduce the risk of broken neutrals. Therefore this application is also known as *protective multiple earthing* (PME) in the UK or as *multiple earthed neutral (MEN)* in Australia.

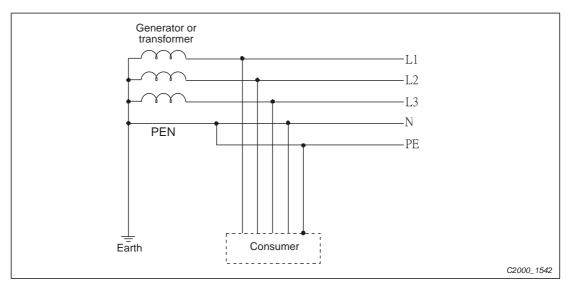
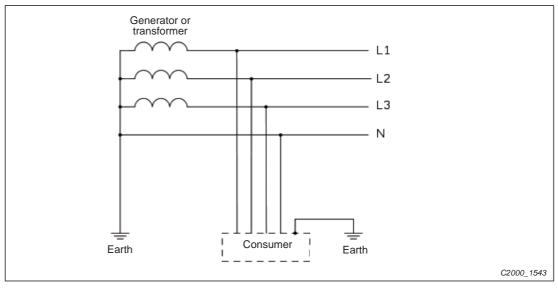
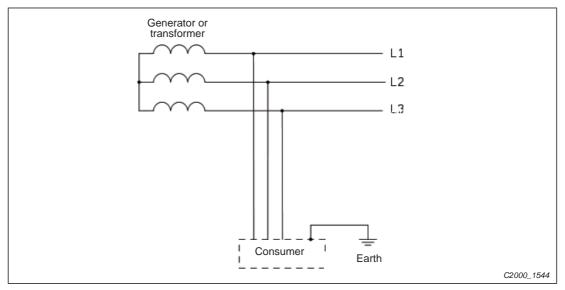


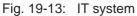
Fig. 19-11: TN-C-S system

TT system

TT: The neutral point (N) of the low voltage transformer and the equipment frames (PE) are connected to a separate earthing point. The Neutral (N) of the transformer and electrical equipment are connected.




Fig. 19-12: TT system


IT system

IT: The neutral point of the transformer and electrical equipment are not earthed, only the equipment frames PE are earthed.

In the IT network, the power distribution system Neutral is either not connected to earth or is earthed via a high impedance. In such a system, an insulated monitoring device is used for impedance monitoring.

A built-in filter should be disconnected by the RFI-jumper and an external filter should not be installed when the AC motor drive or the AC servo motor drive is connected to an IT system.

	TN-S	TN-C	TT	π
Safety of personnel	Good Continuity of the PE conductor must be ensured throughout the installation	Good Continuity of the PE conductor must be ensured throughout the installation	Good RCD is mandatory	Good Continuity of the PE conductor must be ensured throughout the installation
Safety of property	Poor High fault current (around 1 kA)	Poor High fault current (around 1 kA)	Good Medium fault current (< a few dozen amperes)	Good Low current at the first fault (< a few dozen mA) but high current at the second fault
Availability of energy	Good	Good	Good	Excellent
EMC behavior	Excellent Few equipotential Problems: - Need to handle the high leaking currents prob- lem of the de- vice - High fault cur- rent (transient disturbances)	 Poor (prohibited) Neutral and PE are the same Circulation of disturbance currents in exposed conductive parts (high magnetic-field radiation) High fault currents (transient disturbances) 	Good - Over-voltage risk - Equipotential Problems: - Need to handle the high leaking currents prob- lem of the de- vice - RCD (Residu- alcurrent de- vice)	 Poor (should be avoided) Over-voltage risk Common-mode filters and surge arrestors must handle the phase to phase voltage. RCDs subject to nuisance tripping when common-mode capacitors are present Equivalent to TN system for second fault

Tab. 19-1: Criteria for earthing system and EMC

19.4 Solution to EMI: shielding

19.4.1 What is shielding?

Electrostatic shielding is used to isolate equipment so that it will not create electromagnetic field interference or be influenced by an external electromagnetic field. A conductive material is used for electrostatic shielding to achieve this isolation.

A Faraday cage can be made from a mesh of metal or a conductive material.

One characteristic of metal is that it is highly conductive and not electrostatic, which offers shielding and prevents interference by external electrical fields. Metal with its high conductivity protects the internal devices from high voltages-no voltage will enter the cage even when the cage is experiencing a high current. In addition, electromagnetic fields can also pass through the Faraday cage without causing any disturbance.

Electromagnetic shielding is applied to some electrical devices and measurement equipment for the purpose of blocking interference. Examples of shielding include:

- earth high-voltage indoor equipment using a metal frame or a high-density metal mesh
- shielding a power transformer is achieved by wrapping a metal sheet between the primary and secondary windings or by adding an enamel wire to the winding wire which is then earthed.
- a shielding coating, which is made of metal mesh or conductive fibres to provide effective protection for the workers who work in a high-voltage environment.

In the picture below, the radio appears to be not fully covered by metal but if the conductivity of the metal is high, radio waves are completely blocked and the radio will not receive any signal.

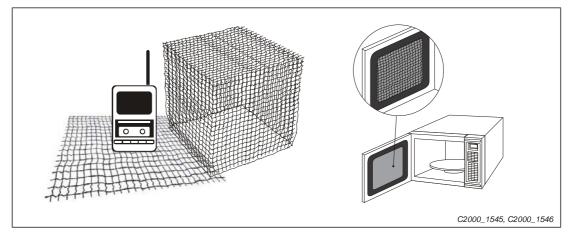


Fig. 19-14: Shielding of radio waves (left) and micro waves (right)

Mobile phone connections are also established through the transmission of radio waves. This is why the mobile phone reception is often cut off when we walk into an elevator. The metal walls of the elevator create the same shielding effect just as if we had entered a metal cage. Another example is a microwave oven. The microwave door may seem transparent in visible light, but the density of the metal mesh in the microwave door blocks the electromagnetic waves. A higher density of the metal mesh offers better shielding.

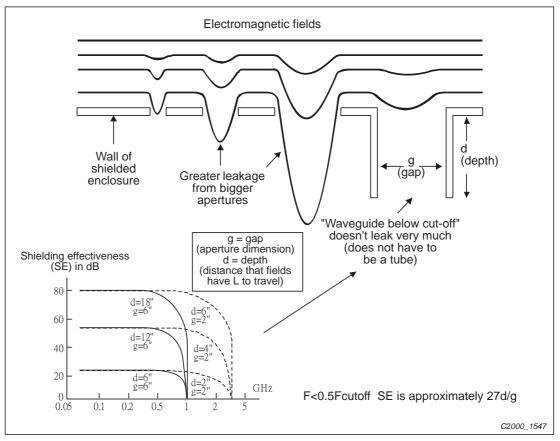


Fig. 19-15: Influence of the size of the holes and the depth to the shielding

19.4.2 How to reduce EMI by shielding?

Iron and other metals are high conductivity materials that provide effective shielding at extremely low frequencies. But conductivity will decrease as:

- High frequency signals are applied to the conductor.
- Equipment is located in a strong magnetic field.
- The shielding frame is forced into a specific form by machines.

It is difficult to select a suitable high-conductivity material for shielding without the help from a shielding material supplier or a related EMI institution.

Metallic shielding effectiveness

Shielding Effectiveness (SE) is used to assess the applicability of the shielding shell. The formula is:

SEdB = A + R + B (Measures in dB) where	A = Absorption loss (dB)
	R= Reflection loss (dB)
	B = Correction factor (dB) (for multiple reflections in thin shields)

The absorption loss refers to the amount of energy loss as the electromagnetic wave travels through the shield. The formula is:

AdB = 1.314 (fs μ) 1/2t where	f = frequency (MHz)	
	μ = permeability relative to copper	
	s = conductivity relative to copper	
	t = thickness of the shield in centimetres	

The reflection loss depends on the source of the electromagnetic wave and the distance from that source. For a rod or straight wire antenna, the wave impedance increases as it moves closer to the source and decreases as it moves away from the source until it reaches the impedance of free space (377 Ω) and shows no change. If the wave source is a small wire loop, the magnetic field is dominant and the wave impedance decreases as it moves closer to the source and increases as it moves away from the source; but it levels out at 377 Ω when the distance exceeds one-sixth of the wavelength.

Electrical cabinet design

In a high frequency electric field, shielding can be achieved by painting a thin layer of conductive metal on the enclosure or on the internal lining material. However, the coating must be thorough and all parts should be properly covered without any seams or gaps (just like a Faraday cage). That is only the ideal. Making a seamless shielding shell is practically impossible since the cage is composed of metal parts. In some conditions, it is necessary to drill holes in the shielding enclosure for installation of accessories (like optional cards and other devices).

- ① If the metallic components are properly welded using sophisticated welding technology to form an electrical cabinet, deformation during usage is unlikely to occur. But if the electrical cabinet is assembled with screws, the protective insulating layer under the screw must be properly removed before assembly to achieve the greatest conductivity and best shielding.
- ② Drilling holes for the installation of wires in the electrical cabinet lowers the shielding effectiveness and increases the chance of electric waves leaking through the openings and emitting interference. We recommend that the drilled holes are as narrow as possible. When the wiring holes are not used, properly cover the holes with metal plates or metal covers. The paint or the coating of the metal plate and metal cover should be thoroughly removed to ensure a metal-to-metal contact or a conductive gasket should be installed.
- ③ Install industrial conductive gaskets to completely seal the electrical cabinet and the cabinet door without gaps. If conductive gaskets are too costly, please screw the cabinet door to the electrical cabinet with a short distance between the screws.
- (4) Reserve a grounding terminal on the electrical cabinet door. This grounding terminal shall not be painted. If the paint already exists, please remove the paint before grounding.

Electrical wires and cables

Shielded Twisted Pair (STP) is a type of cable where two insulated copper wires are twisted together with a metal mesh surrounding the twisted pair that forms the electromagnetic shield-ing and can also be used for grounding.

The individual electrical wires and complete cable are surrounded by (synthetic) rubber, that provides insulation and also protects against damage.

There are two types of electrical cables: high voltage and low voltage. The high voltage cable differs from the low voltage cable in that it has an additional insulation layer called the dielectric insulator within the plastic sleeve. The dielectric insulator is the most important component in insulation. The low voltage cable is usually only filled with a soft polymer material for keeping the internal copper wire in place.

The shield has two functions.

- ① To shield the electrical wire and cable.
 - Electric currents increase as power flows through the power cable and generate an electrical field. Such interference can be suppressed inside the cable by shielding the power cables or the electrical wires.
 - To form a protective earthing. When the cable core is damaged, the leakage current will flow via the shield to ground.
- ② To protect the cable. A power cable used for the computer control purpose generates only relatively low amount of current inside the cable. Such power cable will not become the source of interferences but has great possibility to be interfered by the surrounding electrical devices.

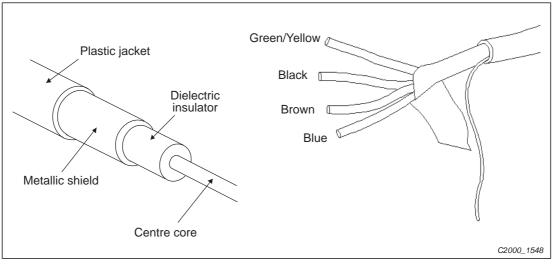


Fig. 19-16: Shielded cable structures

19.5 Solution to EMI: filter

19.5.1 Filter

Electromagnetic interference is transmitted in two ways, by radiation and by conduction. The most effective and economical method of reducing radiated interference is to use shielding and of reducing conducted interference is to use an electromagnetic filter.

Noise interference can be divided into two categories: high frequency (150 kHz–300 MHz) and low frequency (100 Hz–3000 Hz). High-frequency noise fades more over distance and has a shorter wave-length, while low-frequency noise fades less over distance and has a longer wave-length. Both types of interference are transmitted through power cables and power leads, affecting the power supply side.

High-frequency interference at the power side can be eliminated or attenuated by mounting a filter. The filter consists of coils and capacitors. Some drives do not have a built-in filter, in which case the installation of an external option filter is required. The drawing below shows a standard filter diagram:

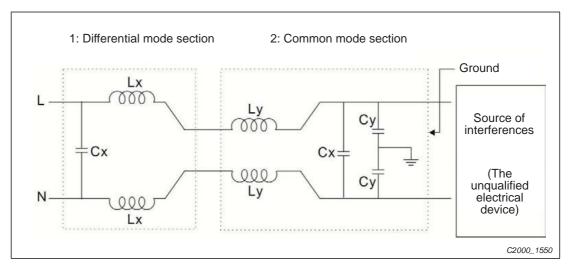


Fig. 19-17: Typical wire diagram of a noise filter

A filter is composed of a Differential Mode section (to eliminate noise below 150 kHz) and a Common Mode section (to eliminate noise above 150 kHz). For high-frequency noise, the inductor acts as a high impedance to form an open circuit and the capacitor acts as a low impedance to form a short circuit. Proper design and dimensioning of inductors and capacitors give a resonant circuit to absorb harmonic currents. Capacitor Cy is earthed to lead the harmonic currents to the ground.

External filter

The filter and the AC drive should be installed in the control cabinet or on the mounting plate that is earthed to ground. The motor cable must be shielded and as short as possible. Please use the filters recommended by Delta to ensure compliance with EMC standards.

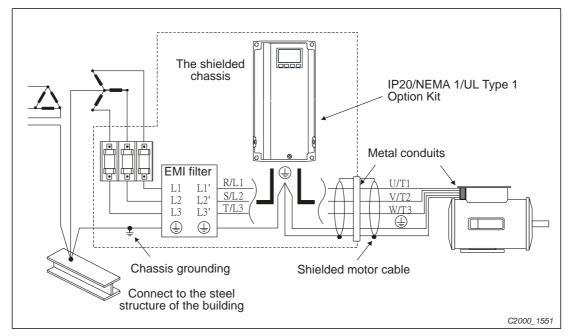


Fig. 19-18: Installation of an external noise filter

AC motor drives with built-in filter

- Since interferences are suppressed by installing an earthed capacitor in the filter, the amount of current to ground (leakage current) could result in electric shocks to personnel or the power system. Please be aware of this problem.
- Since the leakage current to ground can be high, it is crucial to implement protective earthing to prevent electrical shocks.

Filter installation (with and without)

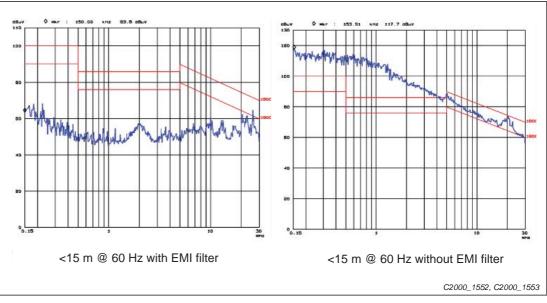


Fig. 19-19: Interferences (blue line) will be supressed by a noise filter

Zero phase reactor (choke)

Interferences can also be suppressed by installing a zero phase reactor at the power supply side and/or the AC Motor Drive's output, depending on where the interference is. Since currents are large at the power input and the AC Motor Drive's output, please carefully select the magnetic core with suitable current handling capability. An ideal magnetic material for large currents is compound magnetic powder. It has a higher current handling capability and higher impedance compared to pure metallic magnetic cores. It is therefore suitable to implement in a high frequency environment. The impedance can also be enhanced by increasing the turn ratio.

• Zero phase reactor installation

There are two installation methods, depending on the size of the zero phase reactor and the motor cable length.

① Wind the motor cable through the middle of a zero-phase reactor 4 times. Place the reactor and the AC Motor Drive as close to each other as possible.

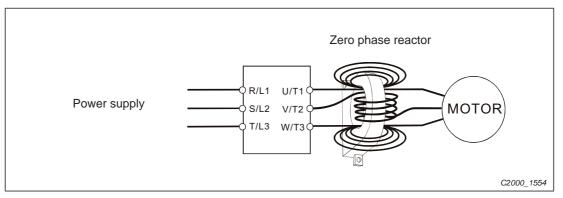
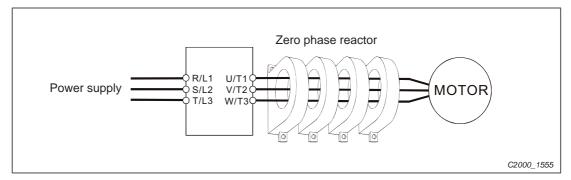



Fig. 19-20: The motor wire is winded through the middle of the zero phase reactor

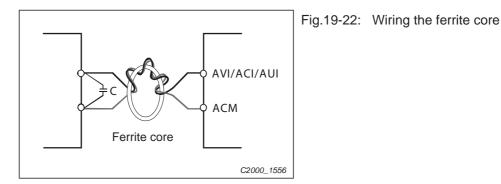
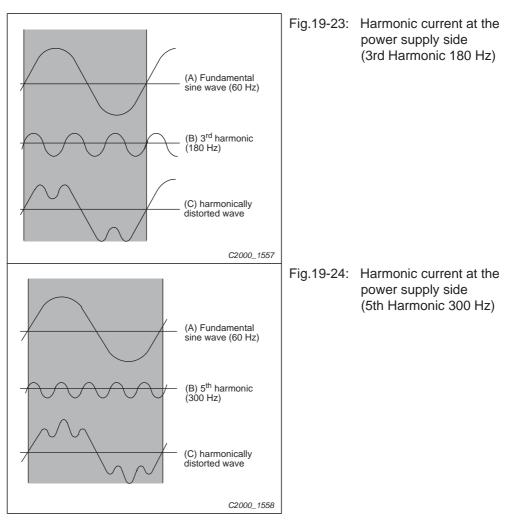

② Place all wires through the middle of four zero-phase reactors without winding.

Fig. 19-21: The motor wire is winded through 4 zero phase reactors

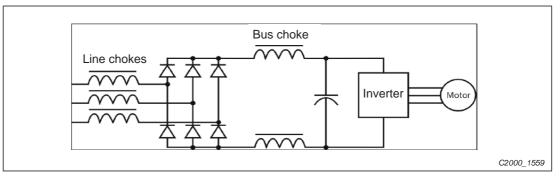
Analog input signals

If the analog input signals are affected by noise from the AC motor drive, please connect a capacitor and a ferrite core as indicated in the following diagram.


Wind the wires around the core in same direction for 3 times or more.

19.5.2 Harmonic interference

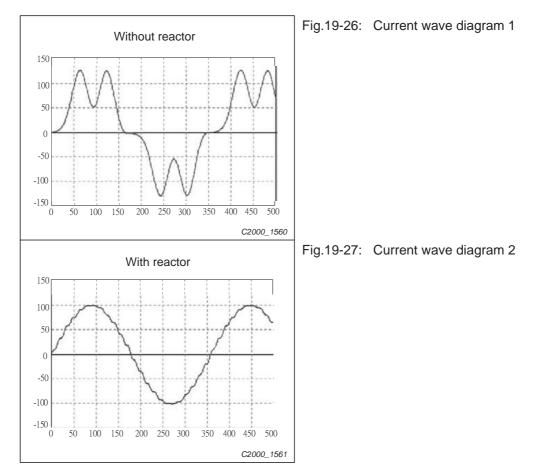
The AC motor drive's input current is non-linear, the input rectifier generates harmonics. Harmonics must be limited to within a certain range to avoid impact the mains power and to avoid current distortion to ensure surrounding devices are not influenced. An AC Motor Drive with built-in DC reactor suppresses harmonic currents (Total Harmonic Current Distortion THID) effectively and therefore reduces the harmonic voltage peaks (Total Harmonic Voltage Distortion).


Harmonic current at the power supply side

Suppression of harmonic currents

When a large portion of lower order harmonic currents (5th, 7th, 11th, etc) occur at the power input, surrounding devices will be disturbed and the power factor will be low as a result of reactive power. Installing a reactor at the AC Motor Drive's input effectively suppresses lower order harmonic currents.

AC reactor


Installed in series with the power supply and is effective in reducing low order current harmonics.

Features of an AC reactor include:

- Reduces the harmonic currents to the AC Motor Drive and increases the impedance of the power supply.
- Absorbs interferences generated by surrounding devices (such as surge voltages, currents, and mains surge voltages) and reduce their effect on the AC Motor Drive.
- Increases the power factor.

DC reactor

A DC-Reactor is installed between the rectifier and the DC-bus capacitor to suppress harmonic currents and to achieve a higher power factor.

20 Safety Torque off Function

20.1 The drive safety function failure rate

ltem	Definition	Standard	Performance
SFF	Safe Torque Off	IEC61508	Channel 1: 80.08 % Channel 2: 68.91 %
HFT (Type A subsystem)	Hardware Fault Tolerance	IEC61508	1
SIL	Safety Integrity Level	IEC61508	SIL 2
		IEC62061	SILCL 2
PFH	Average frequency of dangerous failure [h-1]	IEC61508	9.56×10 ⁻¹⁰
PFD _{av}	Probability of Dangerous Failure on Demand	IEC61508	4.18×10 ⁻⁶
Category	Category	ISO13849-1	Category 3
PL	Performance level	ISO13849-1	d
MTTF _d	Mean time to dangerous failure	ISO13849-1	High
DC	Diagnostic coverage	ISO13849-1	Low

Tab. 20-1: Features of the functional safety

20.2 Safety torque off terminal function description

The safety Torque Off function is to cut off the power supply to motor through the hardware, thereby the motor couldn't produce torque.

The safety Torque Off function is respectively by two independent hardware to control the motor current drive signal, and thus cut off the inverter power module output in order to achieve the status of safety stop.

Operation principle description as below table:

Signal	Channel	Photo-coupler status			
	STO1-SCM1	ON (High)	ON (High)	OFF (Low)	OFF (Low)
STO signal	STO2-SCM2	ON (High)	OFF (Low)	ON (Low)	OFF (Low)
Driver Output status		Ready	STL2 mode (Torque output off)	STL1 mode (torque output off)	STO mode (Torque output off)

Tab. 20-2: Terminal operation description

- STO means Safe Torque Off
- STL1–STL3 means Safety Torque Off hardware abnormal.
- STL3 means STO1–SCM1 and STO2–SCM2 internal circuit detected abnormal.
- STO1–SCM1 ON (High): means STO1–SCM1 has connect to a +24 V DC power supply.
- STO2–SCM2 ON (High): means STO2–SCM2 has connect to a +24 V power supply.
- STO1–SCM1 OFF (Low): means STO1–SCM1 hasn't connect to a +24 V DC power supply.
- STO2–SCM2 OFF (Low): means STO2–SCM2 hasn't connect to a +24 V DC power supply.

20.3 Wiring diagram

20.3.1 Internal STO circuit

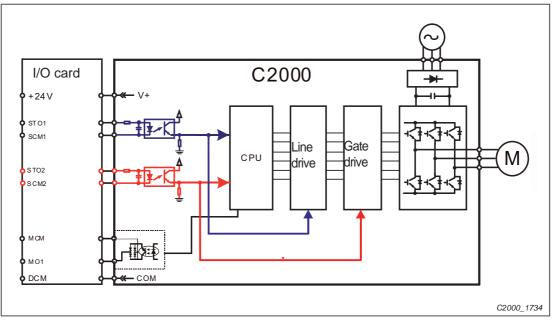


Fig. 20-1: Block diagram of the internal STO circuit

20.3.2 Factory wiring of the terminals STO1, STO2, SCM1 and SCM2

In the figure below, the factory setting for +24V-STO1-STO2 and SCM1-SCM2-DCM is short circuit:

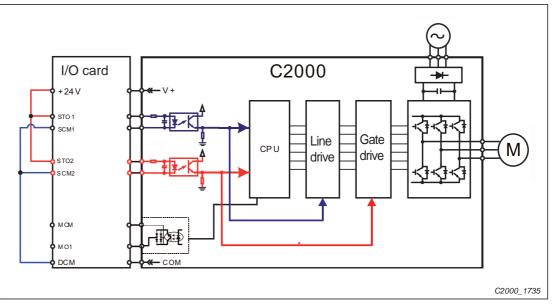
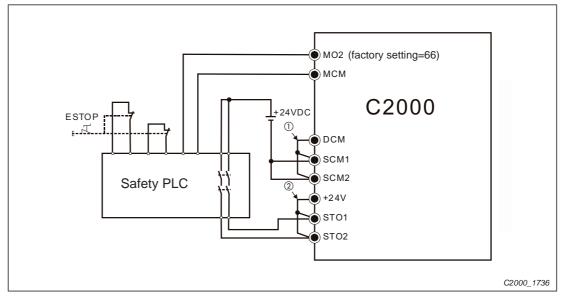
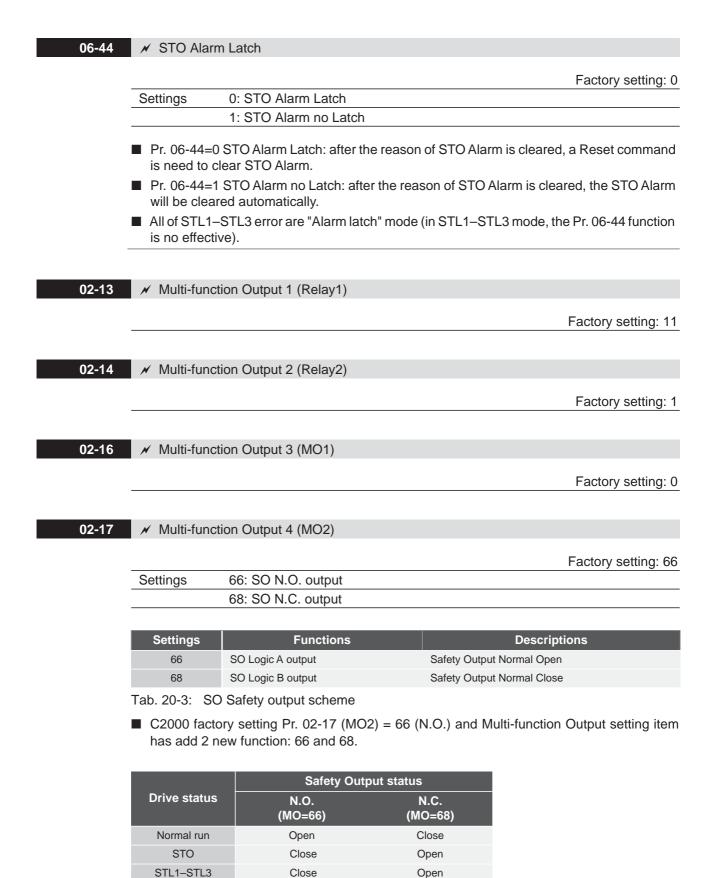


Fig. 20-2: Wiring of STO1/STO2 with +24V and SCM1/SCM2 with DCM

20.3.3 The control loop wiring diagram:

- ① Remove the shot-circuit of +24 V-STO1-STO2 and DCM-SCM1-SCM2.
- (2) The wiring as below diagram. The ESTOP switch must at Close status in normal situation and drive will be able to Run.
- ③ STO mode, switch ESTOP open. Drive output stop and keypad display STO.




Fig. 20-3: Security circuit with safety PLC

 $^{\textcircled{0}}$ factory short circuit of DCM-SCM1-SCM2. To use the Safety function, please remove this short circuit.

 $^{(2)}$ factory short circuit of +24 V-STO1-STO2. To use the Safety function please remove this short circuit.

20.4 Parameter

Tab. 20-4: MO2 output scheme

0-04	✓ Content	of Multi-function Display	
			Factory setting: 3
	Settings	45: Hardware version	
	00-04=45	Hardware version	

20.5 Operating sequence description

20.5.1 Normal operation status

As shown in Figure 3: When the STO1–SCM1 and STO2–SCM2=ON (no STO function is need), the drive will execute "Operating" or "Output Stop" according to RUN/STOP command (Fig. 20-4)

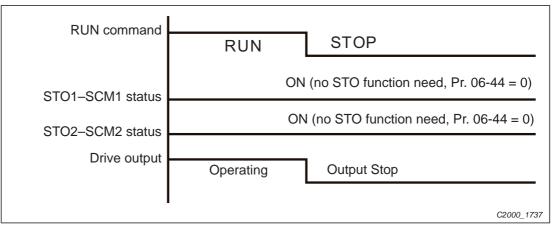


Fig. 20-4: Signal course at normal operation

20.5.2 STO · Pr. 06-44 = 0 · Pr. 02-35 = 0

As shown in Figure 4: When both of STO1–SCM1 and STO2–SCM2 channel has turn off during operating, the STO function enabling and the drive will stop output regardless of Run command is ON or OFF status.

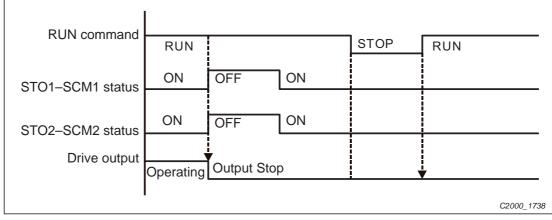


Fig. 20-5: Signal course when enabling STO1-SCM1 and STO2-SCM2

20.5.3 STO · Pr. 06-44 = 0 · Pr. 02-35 = 1

As shown in Figure 5: As same as the figure 4. But, because the Pr. 02-35 = 1, therefore, after the Reset command, if the operating command still exists, then the drive will immediately execute the run command again.

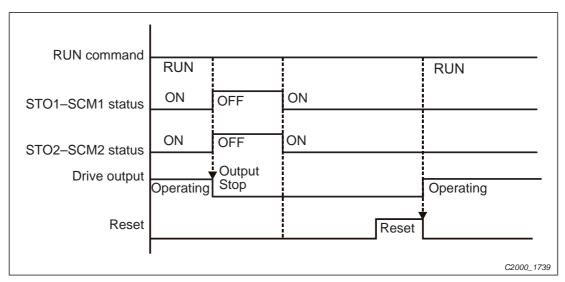
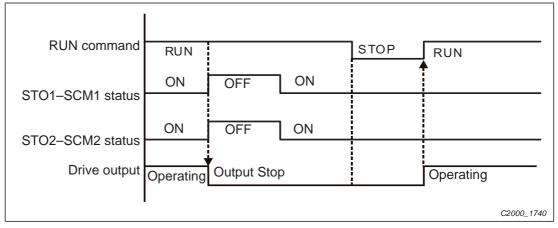
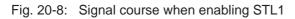



Fig. 20-6: Signal course when enabling STO1-SCM1, STO2-SCM2 with Pr. 02-35 = 1


20.5.4 STO · Pr. 06-44 = 1

20.5.5 STL1

RUN command				
NON COmmand	RUN		STOP	RUN
STO1–SCM1 status	ON	OFF ON		
STO2–SCM2 status	ON			
Drive output	Operating	Output Stop		
				C2000_1741

20.5.6 STL2

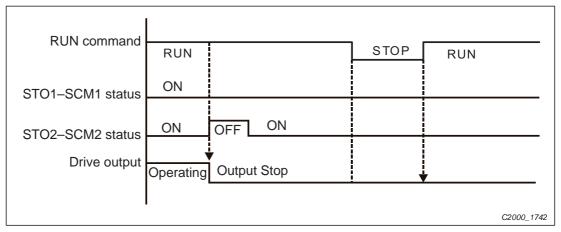


Fig. 20-9: Signal course when enabling STL2

20.6 New error code for STO function

06-17	Present Fault	Record
06-18	Second Most	Recent Fault Record
06-19	Third Most Re	ecent Fault Record
06-20	Fourth Most R	Recent Fault Record
06-21	Fifth Most Red	cent Fault Record
06-22	Sixth Most Re	cent Fault Record
	Settings	72: Channel 1 (STO1–SCM1)internal hardware error (Signal lost STO1)
		76: STO (Safety Torque Off)

Error code	Name	Description
76	STO	Safety Torque Off function active
72	STL1 (STO1–SCM1)	STO1–SCM1 internal hardware detect error
77	STL2 (STO2–SCM2)	STO2–SCM2 internal hardware detect error
78	STL3	STO1–SCM1 and STO2–SCM2 internal hardware detect error

77: Channel 2 (STO2–SCM2) internal hardware error (Signal lost STO2) 78: Channel 1 and Channel 2 internal hardware error (Signal lost STO3)

Tab. 20-5: Error codes

The Old/New control board and Old/New I/O card:

C2000	v1.12 firmware	v1.20 firmware
v1.12 control board + old I/O card(no STO function)	OK	ОК
v1.12 control board + new I/O card(with STO function)	Error	Error
v1.20 control board + old I/O card(no STO function)	Error	Error
v1.20 control board + new I/O card(with STO function)	Error	OK

Tab. 20-6: Possible combination of control boards and I/O cards

Index

Α

16.00
ACOS command 16-99
ADD command
ANB command
AND command
AND* command 16-123
AND# command
ANDF command
ANDP command
ANI command
ASIN command
ATAN command

в

Binary	6-101
Binary floating point number ASIN operation	16-98
BMOV command	16-70

С

CALL command 16-65
CANFLS command 16-129
CANopen
Master control applications 16-136
Read slave station data 16-125
Refresh special D corresponding 16-129
Write slave station data 16-129
CANRX command 16-125
CANTX command
CMP command 16-67
CNT command 16-53
COS 16-96
COSH command

D

DEC command 16-78
DEG command
Diameter 16-86
DIV command
DPOS command 16-126
Driver torque
Control mode via TORQ 16-127

Ε

EADD command	16-87
ECMP command	16-83
EDIV command	16-90
EMUL command	16-89
END command	16-59
ESQR command	16-93
ESUB command	16-88
EXP command	16-91
EZCP command	16-84

F

FAND* command 16-131
FEND command 16-66
FLD* command 16-130
FLT command 16-82
FOR* command 16-132
FPID command 16-106
FREQ command 16-107

G

GBIN command											 16-118
GRY command .				•	•	•					 16-117

I

ICOMR command	16-133
ICOMW command	
INC command	
INT command	16-94
INV command	16-59

L

LD command	16-46
LD* command 1	6-122
LD# command 1	6-119
LDF command	16-55
LDI command	16-46
LDP command	16-55
LN command	16-92

Μ

MC command
MCR command
MI8
Frequency calculation
High-speed count function
MODBUS
Command code
Communication addresses
MODRW command
Remote IO control applications 16-162
MODRW command
MOV command
MPP command
MPS command
MRD
MUL command

Ν

NOP	 	 16-59

0

OR command
OR* command
OR# command
ORB command
ORF command
ORI command
ORP command
OUT command

Ρ

PLC Function
ACOS command
Activate
ADD command
AND command 16-47, 16-49
AND* command
AND# command
ANDF command
ANDP command
ANI command16-47
ASIN command
ATAN commamd
Binary floating point number
ACOS operation
Binary floating point number
ATAN operation
Binary floating point number
COS operation
Binary floating point number
COSH operation

Binary floating point number SIN operation	16-95
Binary floating point number	
SINH operation	16-101
Binary floating point number	. 10 101
TAN operation	16 07
	10-97
Binary floating point number	16 102
TANH operation	16 70
BMOV	10-/0
Calendar functions	
CALL command	16-65
CANFLS command	
CANRX command	
CMP command	16-67
COS command	16-96
COSH command	. 16-102
Count function using MI8	. 16-160
Counter	16-32
DEC command	
DEG command	
DIV command	
DPOS command	16-176
EADD command	16-87
ECMP command	
EDIV command	
EMUL command	
END command	
Error codes	. 10-135
ESQR command	
ESUB command	
EXP command	
EZCP command	
FAND* command	
FEND command	
FLD* command	
FLT command	
FOR* command	
FPID command	
FREQ command	. 16-107
Functions of auxiliary relays	16-31
GBIN command	. 16-118
GRY command	
ICOMR command	. 16-133
ICOMW command	. 16-133
INC command	
Inputs	
INT command	
Introduction to special register functions	
Introduction to special register functions	
INV command	
LD command	
LD* command	
LD# command	
LDF command	
	10-00

LDI command
LDP command
LN command
MC command
MCR command
MI8 frequency calculation
MODRW command
MOV command
MPP command
MPS command
MRD command
MUL command
NOP command
Notes before PLC use
Numbering systems 16-29
OR command
OR* command 16-124
OR# command
ORB command
ORF command
ORI command
ORP command
OUT command
Outputs 16-29
PLF command 16-58
PLS command
Pointer
Program scanning
RAD command
ROL command
ROR command
RPR command
RST command
SET command
SIN command 16-95
SINH command
SRET command
SUB command
TADD command
TAN command
TANH command
TCMP command
Timer
TMR command
TORQ command
TRD command
TSUB command
TZCP command
WPR command
ZCP command
ZRST command
PLC ladder diagram
Basic structure
Program download
Symbols16-17

PLF command	 16-58
PLS command	 16-58

R

. 16-85 . 16-80 . 16-79
16-104
16-156
16-158
16-157
. 16-52

S

SET command 16-51
SIN command 16-95
SINH command 16-101
SRET command 16-65
SUB command 16-74

т

TADD command	16-114
TAN command	. 16-97
TANH command	16-103
TCMP command	16-112
TMR command	. 16-52
TORQ command	16-127
TRD command	16-116
TSUB command	16-115
TZCP command	16-113

W

WPLSoft	
Editing windows	16-8
Installation	16-6
Overview	16-1
Start	16-7
WPR command 16	-104

Ζ

ZCP command	16-68
ZRST command	16-81

Revisions

	Delta C2000 series frequency inverter user's manual		
Ver	sion	Changes / Additions / Corrections	
Ver	sion 07/2015	Delta C2000 series frequency inverter user's manual Changes / Additions / Corrections First edition	

Industrial Automation Headquarters

Delta Electronics, Inc. Taoyuan Technology Center 18 Xinglong Road, Taoyuan District, Taoyuan City 33068, Taiwan (R.O.C.) TEL: 886-3-362-6301 / FAX: 886-3-371-6301

Asia

Delta Electronics (Jiangsu) Ltd. Wujiang Plant 3 1688 Jiangxing East Road, Wujiang Economic Development Zone Wujiang City, Jiang Su Province, People's Republic of China (Post code: 215200) TEL: 86-512-6340-3008 / FAX: 86-769-6340-7290

Delta Greentech (China) Co., Ltd.

238 Min-Xia Road, Pudong District, ShangHai, P.R.C. Post code : 201209 TEL: 86-21-58635678 / FAX: 86-21-58630003

Delta Electronics (Japan), Inc.

Tokyo Office 2-1-14 Minato-ku Shibadaimon, Tokyo 105-0012, Japan TEL: 81-3-5733-1111 / FAX: 81-3-5733-1211

Delta Electronics (Korea), Inc. 1511, Byucksan Digital Valley 6-cha, Gasan-dong, Geumcheon-gu, Seoul, Korea, 153-704

TEL: 82-2-515-5303 / FAX: 82-2-515-5302

Delta Electronics Int'l (S) Pte Ltd

4 Kaki Bukit Ave 1, #05-05, Singapore 417939 TEL: 65-6747-5155 / FAX: 65-6744-9228

Delta Electronics (India) Pvt. Ltd.

Plot No 43 Sector 35, HSIIDC Gurgaon, PIN 122001, Haryana, India TEL : 91-124-4874900 / FAX : 91-124-4874945

Americas

Delta Products Corporation (USA)

Raleigh Office P.O. Box 12173,5101 Davis Drive, Research Triangle Park, NC 27709, U.S.A. TEL: 1-919-767-3800 / FAX: 1-919-767-8080

Delta Greentech (Brasil) S.A

Sao Paulo Office Rua Itapeva, 26 - 3° andar Edificio Itapeva One-Bela Vista 01332-000-São Paulo-SP-Brazil TEL: +55 11 3568-3855 / FAX: +55 11 3568-3865

Europe

Deltronics (The Netherlands) B.V. Eindhoven Office De Witbogt 20, 5652 AG Eindhoven, The Netherlands TEL: 31-40-2592850 / FAX: 31-40-2592851

*We reserve the right to change the information in this catalogue without prior notice.

