

Трубопроводная арматура

СОДЕРЖАНИЕ

Угловые кла	паны с пневмоприводом	2
	Особенности угловых клапанов VALMA	3
	Угловой клапан с пневмоприводом ASV-T (с резьбовым присоединением)	4
	Угловой клапан с пневмоприводом ASV-W (с приварным присоединением)	5
Позиционер	для клапанов с пневмоприводом	6
	Особенности позиционеров VALMA	7
	Позиционер для клапанов с пневмоприводом	10
	Угловой клапан с пневмоприводом и позиционером ASV-POS	11
Шаровые кр	аны	12
	Особенности шаровых кранов VALMA	13
	Шаровой кран двухсоставной с резьбовым присоединением BAV-2P-T	14
	Шаровой кран трехсоставной с резьбовым присоединением BAV-3P-T	15
	Шаровой кран трехсоставной с фланцевым присоединением BAV-3P-F	16
	Шаровой кран на высокое давление BAV-HP	17
Пневмоприв	оды	18
	Особенности пневмоприводов VALMA	19
***	Пневмопривод двустороннего действия PNA-DA	20
9.	Пневмопривод одностороннего действия PNA-SA	21
	Габаритные и присоединительные размеры пневмоприводов	22
	Аксессуары для пневмоприводов	((23))/
	Блок концевых выключателей LSB-2M	24
ON	Поворотный электро-пневматический позиционер ЕРР	25
	Электронный регулятор давления EPR	26
	Распределительные клапаны PIV	27
	Габаритные размеры пневмораспределителей PIV	28
Электропри	воды	30
43	Особенности электроприводов VALMA	31
	Электропривод поворотный ELA-DT	32
3	Примеры применений электроприводов ELA-DT	33

УГЛОВЫЕ КЛАПАНЫ С ПНЕВМОПРИВОДОМ

модельный ряд

ASV Тип изделия

угловой клапан с пневмоприводом (angle seat valve)

.

Тип присоединения

резьбовое тип резьбы G (threaded)

W приварное DIN 11850 серия 2 (welded)

010

Номинальный диаметр (DN)

010...050

AL050

Корпус пневмопривода

Материал

٩L	алюминий
SS	нерж. сталь AISI 316

Диаметр

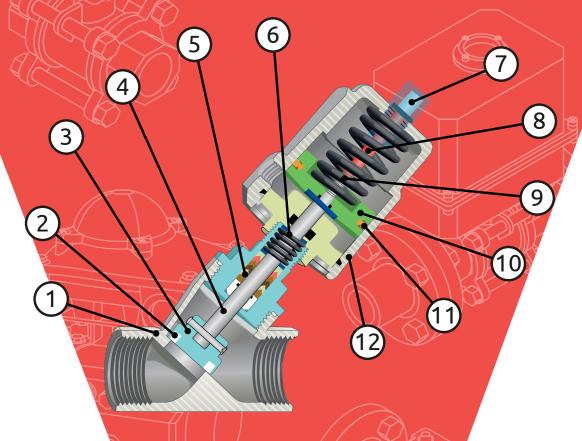
050	50 мм
063	63 мм
080	80 мм

Подача

рабочей среды
- вход над диском

U вход под диском

- запорный


POS-V1A регулирующий (позиционер LPOS-S-V1A)

Тип

клапана

POS-V1B регулирующий (позиционер LPOS-S-V1B)

КОНСТРУКЦИЯ УГЛОВЫХ КЛАПАНОВ СПНЕВМОПРИВОДОМ

Номер	Наименование детали								
1	Сорпус клапана								
2	/плотнения диска								
3	Диск								
4	Шток								
5	/плотнения штока								
6	Пружина уплотнения штока								

Номер	Наименование детали						
7	ндикатор положения						
8	Uток индикатора						
9	Пружина поршня						
10	Поршень						
11	/плотнительное кольцо поршня						
12	Корпус пневмопривода						

ОСОБЕННОСТИ УГЛОВЫХ КЛАПАНОВ VALMA

Эффективная конструкция

Угловая (наклонная) конструкция корпуса клапана имеет небольшое гидравлическое сопротивление как по сравнению с соленоидными клапанами, так и по сравнению с клапанами с перпендикулярным расположением привода. Следовательно, такие клапаны имеют больший коэффициент расхода, а потери давления в гидросистеме, построенной на их основе, будут меныше.

Безопасное состояние

Угловые клапаны VALMA серии ASV оборудованы мощной пружиной, обеспечивающей закрытие клапана. Наличие встроенной пружины позволяет быть уверенным в закрытии клапана даже при отсутствии давления сжатого воздуха в пневмомагистрали, например при возникновении нештатных ситуаций.

Визуальная индикация

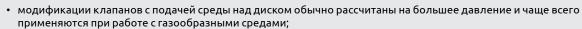
Каждый клапан имеет встроенный визуальный индикатор, позволяющий легко определить состояние клапана (открыт или закрыт) во время осмотра оборудования.

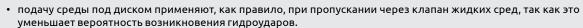
Химически стойкие материалы

Корпус и седло клапана выполнены из нержавеющей стали AISI 316, а уплотнение диска из PTFE. Это позволяет использовать данные клапаны даже в условиях агрессивной окружающей среды.

Разные варианты присоединения

Клапаны серии ASV имеют два варианта присоединения к трубопроводу (приварное и резьбовое). Резьбовое присоединение характеризуется удобством монтажа и демонтажа клапанов, в то время как приварное обладает повышенной надежностью и универсальностью (могут быть приварены любые ответные части).

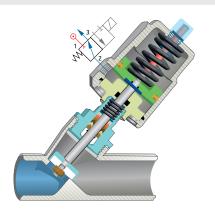

Запорное и регулирующее использование

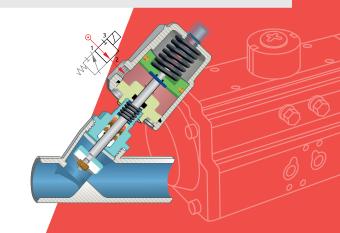

Угловые клапаны могут быть укомплектованы позиционером, который позволяет управлять степенью открытия клапана. Таким образом, клапан становится запорнорегулирующим. Управление процентом открытия клапана может осуществляться сигналами 4...20 мА, 0...20 мА, 0...10 В или по цифровому интерфейсу RS-485 Modbus-RTU.

Разные направления подачи рабочей среды

В зависимости от модификации углового клапана подвод рабочей среды может осуществляться в разных направлениях – над диском и под диском:

В некоторых случаях, допускается подача среды и над диском и под диском, но рабочие давления в этих режимах будут различными. Перед использованием клапанов в таких условиях проконсультируйтесь с изготовителем, дистрибьютором или их представителями.

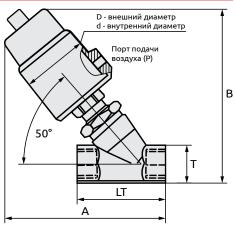

Принцип действия


Угловые клапаны с пневмоприводом относятся к клапанам одностороннего действия. Это обозначает что срабатывание клапана (открытие для НЗ клапанов, закрытие для НО клапанов) осуществляется под давлением сжатого воздуха, подаваемого в пневмопривод, а возврат в исходное положение — за счет энергии пружины, сжатой при срабатывании клапана.

В исходном состоянии клапан закрыт. Под воздействием пружины, встроенной в пневмопривод, диск с уплотнением прижимается к седлу и препятствует прохождению рабочей среды через клапан.

Для возврата в исходное состояние достаточно сбросить воздух из пневмопривода в атмосферу. Это приведёт к тому, что поршень (а вместе с ним и шток с диском) вернется в исходное положение под действием усилия встроенной пружины.

УГЛОВОЙ КЛАПАН С ПНЕВМОПРИВОДОМ

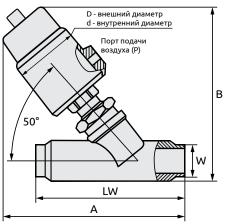


G 3/8" ... G 2" DN10 ... DN50

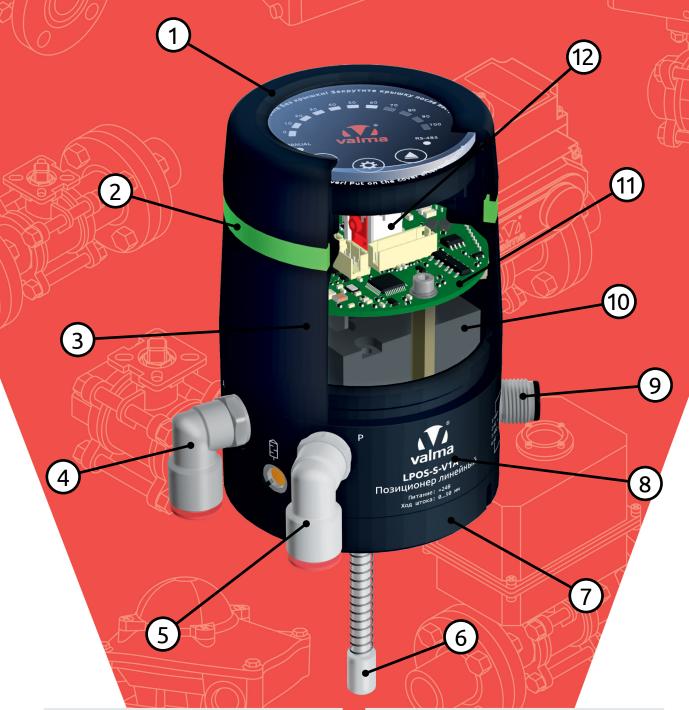
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ								
Серия	ASV-T	ASV-W						
Общие характеристики								
Исходное положение	Нормально з	акрытый (Н3)						
Тип присоединения	Резьба трубная ці	илиндрическая (G)						
Температура окр. среды	-10	+60 °C						
	Рабочая среда							
Тип рабочей среды Воздух, вода, пар, масло и другие жидкости и газы, согимые с материалами и уплотнениями корпуса клап								
Температура рабочей среды -10+180 °C								
Вязкость рабочей среды	< 600 cСт (мм²/c)							
Давление рабочей среды	До 16 бар (в зависимости от модели)							
	Управляющая среда							
Тип среды	Сжатый	і́ воздух						
Температура управляющей среды	-20	+80 °C						
Давление управляющей среды	610) бар						
Скорость срабатывания	Около 1 с							
Мате	риалы основных деталей							
Корпус и седло клапана	Нержавеющая	я сталь AISI 316						
Корпус пневмопривода	Алюминиє	евый сплав						
Шток и диск клапана	Нержавеющая	я сталь AISI 316						
Уплотнения штока и диска	Уплотнения штока и диска PTFE							
Поршень пневмопривода	Алюминиевый сплав							
Уплотнение поршня	лотнение поршня FKM							
Визуальный индикатор	Поликарθ	бонат (РС)						

			K	Kv Рабочее давление, бар				Kv Рабочее давление, бар Габаритныне					разм		
Артикул	Размер резьбы	DN	л/мин	м³/ч	мин		од иском	Вход под диском	Α	В	Т	LT	D	d	Р
				_		Р _{упр} =6 бар	Р _{упр} =10 бар	макс							
ASV-T-010-AL050	G 3/8"	10	62	3,7	0	16	16	8	138	150	27	69	61	50	1/8''
ASV-T-015-AL050	G 1/2"	15	70	4,2	0	16	16	8	138	155	27	69	61	50	1/8''
ASV-T-020-AL050	G 3/4"	20	150	9	0	16	16	8	142	145	32	75	61	50	1/8''
ASV-T-025-AL063	G 1"	25	310	18,5	0	12	16	_	175	190	38	91	76	63	1/8''
ASV-T-032-AL063	G 1 1/4"	32	610	36,5	0	7	16	_	190	200	50	118	76	63	1/8''
ASV-T-040-AL063	G 1 1/2"	40	700	42	0	5	14	_	190	200	55	118	76	63	1/8''
ASV-T-050-AL080	G 2"	50	910	54,6	0	10	16	_	235	250	70	137	98	80	1/4''
ASV-T-025-AL063-U	G 1"	25	310	18,5	0	-	_	8	175	190	38	91	76	63	1/8''
ASV-T-032-AL080-U	G 1 1/4"	32	610	36,5	0	-	_	8	210	225	50	118	98	80	1/4''
ASV-T-040-AL080-U	G 1 1/2"	40	700	42	0	_	_	8	210	225	55	118	98	80	1/4''
ASV-T-050-AL080-U	G 2"	50	910	54,6	0	_	_	6	235	250	70	137	98	80	1/4''

УГЛОВОЙ КЛАПАН С ПНЕВМОПРИВОДОМ



Приварка DIN11850s2 DN10 ... DN50


ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ							
Серия	ASV-T	ASV-W					
Общие характеристики							
Исходное положение	Нормально з	акрытый (НЗ)					
Тип присоединения Приварка DIN 11850 серия 2							
Температура окр. среды	-10+	-60 °C					
Рабочая среда							
Тип рабочей среды	угие жидкости и газы, совме- отнениями корпуса клапана						
Температура рабочей среды -10+180 °C							
Вязкость рабочей среды	< 600 cСт (мм²/c)						
Давление рабочей среды	имости от модели)						
	Управляющая среда						
Тип среды	Сжатый	воздух					
Температура управляющей среды	-20	-80 °C					
Давление управляющей среды	610) бар					
Скорость срабатывания	Окол	ю 1 с					
Мате	риалы основных деталей						
Корпус и седло клапана	Нержавеющая	ı сталь AISI 316					
Корпус пневмопривода	Нержавеющая	сталь AISI 304					
Шток и диск клапана	Нержавеющая	ı сталь AISI 316					
Уплотнения штока и диска	PTFE						
Поршень пневмопривода	Алюминиевый сплав						
Уплотнение поршня	FKM						
Визуальный индикатор	Поликарбонат (РС)						

Kv			Рабочее давление, бар				Габаритныне размеры, мм								
Артикул	DN	л/мин	м³/ч	мин		од иском	Вход под диском	Α	В	W	LW	D	d	Р	
					Р _{упр} =6 бар	Р _{упр} =10 бар	макс								
ASV-W-010-SS050	10	62	3,7	0	16	16	8	138	150	13	70	61	50	1/8''	
ASV-W-015-SS050	15	70	4,2	0	16	16	8	138	155	19	102	61	50	1/8''	
ASV-W-020-SS050	20	150	9	0	16	16	8	142	145	23	109	61	50	1/8''	
ASV-W-025-SS063	25	310	18,5	0	12	16	_	175	190	29	112	76	63	1/8''	
ASV-W-032-SS063	32	610	36,5	0	7	16	_	190	200	35	137	76	63	1/8''	
ASV-W-040-SS063	40	700	42	0	5	14	_	190	200	41	147	76	63	1/8''	
ASV-W-050-SS080	50	910	54,6	0	10	16	_	235	250	53	162	98	80	1/4''	
ASV-W-025-SS063-U	25	310	18,5	0	_	-	8	175	190	29	112	76	63	1/8''	
ASV-W-032-SS080-U	32	610	36,5	0	_	_	8	210	225	35	137	98	80	1/4''	
ASV-W-040-SS080-U	40	700	42	0	_	-	8	210	225	41	147	98	80	1/4''	
ASV-W-050-SS080-U	50	910	54,6	0	_	_	6	235	250	53	162	98	80	1/4''	

ПОЗИЦИОНЕР ДЛЯ КЛАПАНОВ С ПНЕВМОПРИВОДОМ

Номер	Наименование детали							
1	Крышка с защитным стеклом							
2	Многоцветное кольцо индикации							
3	Корпус							
4	Выходной пневматический порт							
5	Порт подачи сжатого воздуха							
6	Шток							

Номер	Наименование детали					
7	онтажная гайка					
8	Ларкировка					
9	Электрические разъемы					
10	Миниклапаны					
11	Плата управления					
12	Датчик обратной связи по положению					

СДЕЛЯНО ВРОССИИ

Проектирование позиционера VALMA осуществлено командой опытных российских разработчиков. Все этапы разработки от конструирования механических деталей до построения электронных схем, разводки печатных плат и разработки алгоритмов управления произведены на территории Российской Федерации. Изготовление позиционера осуществляется на российском предприятии с соблюдением требований государственных стандартов.

ОСОБЕННОСТИ ПОЗИЦИОНЕРОВ VALMA

Понятная и наглядная индикация

На лицевой панели позиционера расположен набор светодиодов, отображающих текущий процент открытия клапана. Корпус позиционера опоясывает многоцветное кольцо индикации, позволяющее быстро и безошибочно определить текущий режим работы. Кольцо индикации хорошо видно слюбой стороны, а использование различных цветов для разных режимов работы позволяет оценить работу оборудования даже при беглом взгляде на устройства, расположенные в том числе в труднодоступных местах.

Высокая точность работы

Позиционер является высокоточным устройством. Погрешность измерения сигналов на аналоговом входе не превышает $\pm 0,25$ %, а погрешность измерения сигнала обратной связи по положению менее $\pm 0,5$ %. При этом повторяемость измерений степени открытия присоединенного регулирующего клапана составляет 10 мкм.

Высокое быстродействие

Период обработки входных сигналов, расчета и формирования управляющих воздействий подстраивается под присоединенный клапан и составляет от 0,25 мс до нескольких десятков миллисекунд. Это позволяет обеспечить высокую точность позиционирования и стабильность поддержания степени открытия клапанов со временем полного хода от долей секунды до 30 с.

Настраиваемый аналоговый вход

Аналоговый вход каждого позиционера поддерживает унифицированные сигналы тока (4...20 мА, 0...20 мА) и напряжения (0...10 В). Выбор типа сигнала осуществляется по интерфейсу RS-485 Modbus-RTU. Пользователь может самостоятельно настроить любой рабочий диапазон внутри данных типов сигналов (например, 1...5 В). Позиционеры поддерживают как прямое преобразование (минимальный уровень сигнала на входе – клапан полностью закрыт (0%), максимальный – клапан полностью открыт (100%)), так и обратное преобразование (минимальный уровень сигнала на входе – клапан полностью открыт (100%), максимальный – полностью закрыт (0%)).

Цифровой интерфейс

Позиционер VALMA имеет цифровой интерфейс RS-485 Modbus-RTU. С помощью данного интерфейса может осуществляться как настройка позиционера, так и оперативное управление. Все параметры позиционера доступны по интерфейсу RS-485 Modbus-RTU.

Ручное управление

Позиционер может быть переведен в режим ручного управления с помощью кнопок на лицевой панели. Это позволяет привести регулирующий клапан в требуемое положение в процессе пусконаладочных работ или при сбоях управляющего оборудования. При этом лицевая панель защищена завинчивающейся крышкой для предотвращения случайных нажатий и повышения степени защиты оболочки (IP).

Совместимость с различными клапанами

Позиционер VALMA может быть установлен на клапаны различных изготовителей. Крепление позиционера на регулирующем клапане осуществляется с помощью съемного адаптера. В комплект поставки входит адаптер для монтажа позиционера на клапаны VALMA серии ASV. Адаптеры для монтажа позиционера на клапаны других производителей заказываются отдельно.

Металлический корпус

Позиционер имеет прочный металлический корпус, устойчивый к механическим воздействиям. Поверхность корпуса обработана термохимическим методом анодного оксидирования, благодаря чему формируется покрытие, защищающее металл от негативных воздействий окружающей среды.

Удобное подключение

Подключение электрических сигналов к позиционеру осуществляется с помощью стандартных разъемов М12 с ключом типа А. Использование таких разъемов уменьшает время монтажа и обеспечивает высокую степень защиты позиционера от воздействия влаги и пыли из окружающей среды. Ответные части электрических разъемов, а также фитинги для подключения пневмотрубки входят в комплект поставки позиционера.

Безопасное состояние при авариях

Позиционер имеет широкие возможности диагностики как внутренних подсистем, так и входных электрических сигналов. Действия позиционера при обнаружении различных ошибок настраиваются (например, при обрыве сигнала на аналоговом входе пользователь может настроить полное закрытие или открытие клапана, приведение клапана к заданному проценту открытия). Это позволяет настроить безопасное состояние, в которое будет приведен клапан в аварийных режимах работы.

ОСОБЕННОСТИ ПОЗИЦИОНЕРОВ VALMA

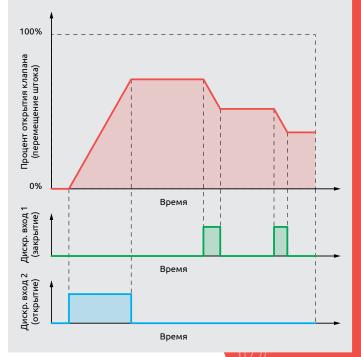
Расширенные возможности линеаризации

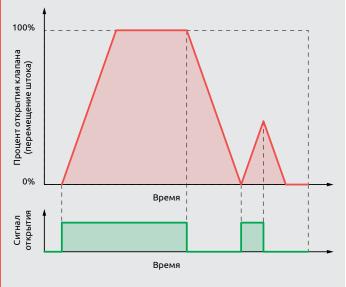
Различные регулирующие клапаны имеют разную зависимость расхода рабочей среды через этот клапан от степени открытия. Такая зависимость называется расходной характеристикой клапана. Расходные характеристики регулирующих клапанов часто известны заранее. Однако, после монтажа клапана в гидравлическую систему расходная характеристика системы в целом (зависимость расхода от степени открытия клапана) не совпадает с расходной характеристикой клапана. Это объясняется тем что на расход в системе влияет не только расходная характеристика клапана, но и гидравлическое сопротивление регулируемого участка гидросистемы.

Системы автоматического регулирования, как правило, рассчитаны на линейную зависимость между управляющими сигналами и степенью воздействия на объект управления. Это приводит к ухудшению качества регулирования при нелинейной зависимости расхода в гидросистеме от выходного сигнала системы управления. Для компенсации данной нелинейности в позиционере присутствует функция линеаризации.

Функция линеаризации позиционера позволяет привести к линейной зависимости как расходную характеристику непосредственно регулирующего клапана, так и расходную характеристику системы в целом, в которой используется данный клапан. Доступна линеаризация как со стандартными логарифмическими или равнопроцентными кривыми линеаризации с настраиваемым коэффициентом наклона, так и линеаризация по полностью настраиваемой пользователем зависимости.

Дополнительно позиционер имеет специальный режим линеаризации по результатам экспериментальных данных. Данный режим позволяет провести максимально точную линеаризацию зависимости расхода рабочей среды от величины входного сигнала на позиционер на любой конкретно взятой установке. Данный режим линеаризации учитывает особенности гидравлического сопротивления нагрузки и его влияние на общий расход через установку. При использовании режима линеаризации по экспериментальным данным пользователю не требуется проводить сложные гидравлические расчеты. Достаточно измерить расход при разных величинах управляющего сигнала, поступающего на позиционер и внести эти данные в память устройства.




Работа в режиме КЗР

Модификация позиционера LPOS-S-V1A может работать как клапаны запорно-регулирующие (КЗР) с трехпозиционным управлением ("больше/меньше/стоп"). При этом время полного хода клапана настраивается по интерфейсу RS-485 Modbus-RTU и может составлять от минимально возможного физического времени хода присоединенного клапана до 2 000 секунд.

Функция плавного открытия/закрытия

Модификация позиционера LPOS-S-V1A может работать в двухпозиционном режиме (полное открытие или закрытие клапана по дискретному сигналу от системы управления) с настраиваемым временем открытия и закрытия клапана от минимально возможного физического времени хода присоединенного клапана до 2 000 секунд.

ОСОБЕННОСТИ ПОЗИЦИОНЕРОВ VALMA

4...20 MA 0...20 MA 0...10 B

Аналоговый выход (АО)

Модификация позиционера LPOS-S-V1A имеет аналоговый выход. Аналоговый выход позиционера позволяет отслеживать текущее состояние регулирующего клапана другими устройствами контура автоматического управления (например, ПЛК или SCADA-системой). В качестве параметра, контролируемого аналоговым выходом могут выступать следующие величины:

- обратная связь по положению (фактическая степень открытия клапана, до или после линеаризации);
- текущая уставка (требуемая степень открытия клапана, до или после линеаризации);
- фактическое рассогласование (разность между требуемой и фактической степенью открытия);
- значение с аналогового входа позиционера;
- значение, задаваемое по RS-485 Modbus-RTU.

Аналоговый выход позиционера может генерировать сигналы следующих типов: 4...20 мА, 0...20 мА, 0...10 В. Выбор типа сигнала осуществляется по интерфейсу RS-485 Modbus-RTU. Пользователь может самостоятельно настроить любой рабочий диапазон внутри данных типов сигналов (например, 1...5 В). Позиционеры поддерживают как прямое (0 -> 100%), так и обратное (100 -> 0%) преобразование.

PNP NPN

Дискретные входы (DI)

Модификация позиционера LPOS-S-V1A имеет 2 дискретных входа (DI). Каждому дискретному входу может быть назначена одна из следующих функций:

- полное закрытие или полное открытие клапана (например, в качестве реакции на аварийный сигнал от ПЛК);
- вывод клапана в состояние нижнего или верхнего ограничение хода (соответствует минимальной и максимальной степени открытия, требуемой для данного технологического процесса);
- приведение клапана к заранее заданной степени открытия;
- приоритетное переключение на аналоговый вход в качестве источника задания уставки;
- работа в режиме КЗР по сигналам дискретных входов (трехпозиционное управление, "больше/меньше/стоп").

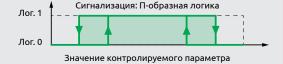
Дискретные входы позиционера могут работать с напряжением от 12 В до 28 В и поддерживают как схемы подключения с общим минусом (PNP), так и схемы подключения с общим плюсом (NPN).

DO PNP NPN

Дискретные выходы (DO)

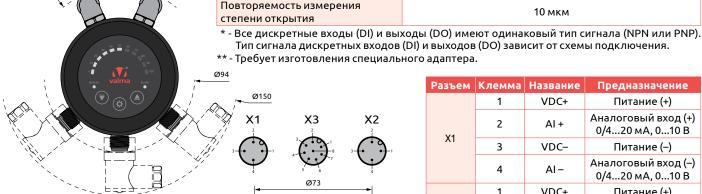
Модификация позиционера LPOS-S-V1A имеет 2 дискретных выхода (DO). Каждому дискретному выходу может быть назначена одна из следующих функций:

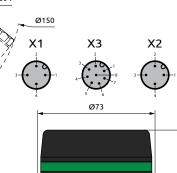
- один из 4-х типов сигнализации (меньше порога, больше порога, П-образная логика, U-образная логика);
- отслеживание режима работы (автоматический, ручной, автонастройка, положение по DI, аварийный);
- управление по сигналу от дискретного входа;
- задание значения по RS-485 Modbus-RTU.

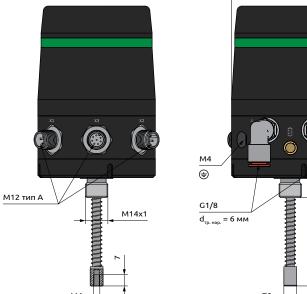

При этом в качестве контролируемого параметра для сигнализации может быть выбран любой из следующих параметров:

- обратная связь по положению (фактическая степень открытия клапана, до или после линеаризации);
- текущая уставка (требуемая степень открытия клапана, до или после линеаризации);
- фактическое рассогласование (разность между требуемой и фактической степенью открытия);
- значение с аналогового входа позиционера.

Дискретные выходы позиционера могут работать с напряжением от 12 В до 28 В и поддерживают как схемы подключения с общим минусом (PNP), так и схемы подключения с общим плюсом (NPN).



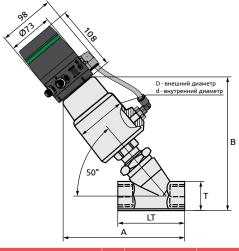

ПОЗИЦИОНЕР ДЛЯ КЛАПАНОВ С ПНЕВМОПРИВОДОМ

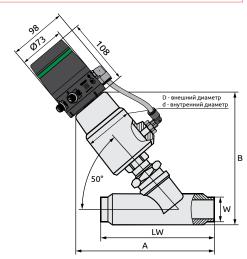


TEVILIALE CIVIE VADA VTEDIACTIANA							
Артикул	IЧЕСКИЕ ХАРАКТЕРИСТИКИ LPOS-S-V1A	LPOS-S-V1B					
	трические характеристики	LI 03 3 V ID					
Напряжение питания (VDC)	· · · · · · · · · · · · · · · · · · ·	± 10 %					
Потребляемая мощность	Не бол	ее 5 Вт					
Аналоговый вход	420 мА, 0	20 мА, 010 В					
Точность аналогового входа	±0,2	25 %					
Цифровой интерфейс	RS-485, M	odbus-RTU					
Аналоговый выход (АО)	420 мА, 020 мА, 010 В	_					
Точность аналогового выхода	±0,25 %	_					
Дискретные входы (DI)	2 шт. NPN/PNP*	_					
Дискретные выходы (DO)	2 шт. NPN/PNP*	_					
Пневи	матические характеристики						
Рабочее давление	010	010 бар					
Пропускная способность	20 норм.л/мин (при 6 барах)						
Пневматическое подключение	G 1/8", фитинги для трубки диаметром 6 мм в комплекте						
C	общие характеристики						
Рабочая температура окр. среды	– 10	+ 60°C					
Совместимые клапаны Клапаны VALMA с пневмоприводом серии ASV Нормально-закрытые клапаны других производ с ходом штока до 45 мм и временем полного хо							
Точность измерения степени открытия клапана	±0,5%						
Повторяемость измерения степени открытия	10 мкм						

макс. Ø123

Разъем	Клемма	Название	Предназначение				
	1	VDC+	Питание (+)				
X1	2	AI+	Аналоговый вход (+) 0/420 мА, 010 В				
۸۱	3	VDC-	Питание (–)				
	4	AI –	Аналоговый вход (–) 0/420 мА, 010 В				
	1	VDC+	Питание (+)				
V2	2	RS(A)	RS-485 (A/+)				
X2	3	VDC-	Питание (–)				
	4	RS(B)	RS-485 (B/ -)				
	1	DO±	Дискр. выход (питание) 0/1228 В				
	2	AO +	Аналоговый выход (+) 0/420 мА, 010 В				
	3	DIO∓	Дискр. входы/выходы («общий»)				
X3	4	AO –	Аналоговый выход (–) 0/420 мА, 010 В				
۸۵	5	DO1	Дискретный выход 1 PNP/NPN (0/1228 B)				
	6	DO2	Дискретный выход 2 PNP/NPN (0/1228 B)				
	7	DI1	Дискретный вход 1 PNP/NPN (0/1228 B)				
	8	DI2	Дискретный вход 2 PNP/NPN (0/1228 B)				
\(\begin{array}{c} \\ \end{array} \end{array} \)			Заземление				


УГЛОВОЙ КЛАПАН С ПНЕВМО-ПРИВОДОМ И ПОЗИЦИОНЕРОМ



ТЕХНИ	ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ								
Серия	ASV-T	ASV-W							
Общие характеристики									
Исходное положение	Нормально закрытый (НЗ)								
Тип присоединения	Резьба трубная цилиндрическая (G)	Приварка DIN 11850 серия 2							
Напряжение питания	=24	4 B							
Сигнал управления	420 мА, 02	20 мА, 010 В							
Температура окр. среды	-10+	60 °C							
	Рабочая среда								
Тип рабочей среды	Воздух, вода, пар, масло и другие жидкости и газы, совместимые с материалами и уплотнениями корпуса клапана								
Температура рабочей среды -10+180 °C									
Вязкость рабочей среды	< 600 cСт (мм²/c)								
Давление рабочей среды	До 10 бар (в зависимости от модели)								
	Управляющая среда								
Тип среды	Сжатый	воздух							
Температура управляющей среды	-10+	60 °C							
Давление управляющей среды	До 10) бар							
Время полного хода	0,5	5 c							
Мате	риалы основных деталей								
Корпус и седло клапана	Нержавеющая	сталь AISI 316							
Корпус пневмопривода	Алюминиевый сплав	Нерж. сталь AISI 304							
Шток и диск клапана	Нержавеющая сталь AISI 316								
Уплотнения штока и диска	PTFE								
Корпус позиционера Алюминиевый сплав									

Артикул клапана с резьбовым	Размер		DN	Kv	,		очее іие, бар		Габ	арит	ныне	рази	еры,	мм	
присоединением	резьбы	присоединением		л/мин	м³/ч	мин	макс	Α	В	T	LT	W	LW	D	d
ASV-T-015-SS050-POS-V1*	G 1/2"	ASV-W-015-SS050-POS-V1*	15	70	4,2	0	10	138	155	27	69	19	102	61	50
ASV-T-020-SS050-POS-V1*	G 3/4"	ASV-W-020-SS050-POS-V1*	20	150	9	0	10	142	145	32	75	23	109	61	50
ASV-T-025-AL063-POS-V1*	G 1"	ASV-W-025-SS063-POS-V1*	25	308	18,5	0	10**	175	190	38	91	29	112	76	63
ASV-T-032-AL063-POS-V1*	G 1 1/4"	ASV-W-032-SS063-POS-V1*	32	608	36,5	0	7**	190	200	50	118	35	137	76	63
ASV-T-025-AL063-U-POS-V1*	G 1"	ASV-W-025-SS063-U-POS-V1*	25	308	18,5	0	8***	175	190	38	91	29	112	76	63
ASV-T-032-AL080-U-POS-V1*	G 1 1/4"	ASV-W-032-SS080-U-POS-V1*	32	608	36,5	0	8***	210	225	50	118	35	137	98	80
ASV-T-040-AL080-U-POS-V1*	G 1 1/2"	ASV-W-040-SS080-U-POS-V1*	40	700	42	0	8***	210	225	55	118	41	147	98	80
ASV-T-050-AL080-U-POS-V1*	G 2"	ASV-W-050-SS080-U-POS-V1*	50	910	54,6	0	6***	235	250	70	137	53	162	98	80

^{* -} V1A или V1B - в зависимости от требуемого исполнения позиционера. ** - подача рабочей среды над диском. *** - подача рабочей среды под диском.

ШАРОВЫЕ КРАНЫ

модельный ряд

Тип изделия шаровой кран (ball valve)

BAV

ZP

Конструкция

2Р двухсоставная (two pieces)

3Р трехсоставная (three pieces)

HP высокое давление (high pressure)

Тип
присоединения
Т резьбовое
(threaded)
F фланцевое
(flanged)

015 Номинальный диаметр (DN) 015...080

ОСОБЕННОСТИ ШАРОВЫХ КРАНОВ VALMA

Высокая герметичность

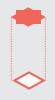
Шаровые краны VALMA относятся к категории кранов с плавающим шаром. Это обозначает что шар может совершать незначительные перемещение вдоль оси крана под давлением потока среды. Таким образом, по мере увеличения давления среды, шар прижимается к уплотнению с большим усилием, обеспечивая герметичность крана. Незначительный износ уплотнений может быть скомпенсирован движением шара, что повышает общий ресурс крана.

Совместимость с различными приводами

Шаровые краны VALMA совместимы с неполноповоротными приводами вращательного действия, выполненными в соответствии со стандартами ISO 5211 и ГОСТ 34287-2017. Это позволяет использовать шаровые краны VALMA не только совместно с оригинальными пневмо- и электроприводами VALMA, но и с аналогичными изделиями других производителей

Крутящий момент привода и крана

Открытие и закрытие крана осуществляется поворотом шара. Крутящий момент, требуемый для поворота шара зависит от многих факторов, но основными являются номинальный диаметр (DN) и перепад давления (ΔP) на шаровом кране. Максимальный крутящий момент, который может потребоваться для открытия или закрытия шарового крана в нормальных условиях работы указывается в технических характеристиках.


Крутящий момент привода, устанавливаемого на шаровой кран, должен быть не меньше крутящего момента шарового крана, указанного в характеристиках. Рекомендуется выбирать привод таким образом, чтобы его крутящий момент превышал крутящий момент шарового крана

- на 25% в общем случае;
- на 40% если рабочей средой является грязная или вязкая жидкость;
- на 80% если рабочая среда является сыпучей (для таких случаев рекомендуется использовать поворотный затвор).

Крепление приводов на краны

Фланцы для крепления приводов на шаровые краны VALMA выполнены в соответствии стипами присоединений F03 – F100 по ISO 5211 (ГОСТ 34287-2017). Данные типы присоединений определяют размер и расположение отверстий для монтажа привода на шаровой кран. Большинство моделей кранов и приводов имеет несколько типов присоединения. Для правильной установки привода на шаровой кран хотя бы один из типов присоединения должен совпадать.

Вал с диагональной квадратной головкой

Шаровые краны VALMA имеют вал с диагональной квадратной головкой. Приводы, устанавливаемые на эти краны должны поддерживать данный тип присоединения. Характеристический размер ступицы привода должен быть не меньше размера вала шарового крана. Если размер ступицы привода и вала шарового крана совпадают, то они совмещаются без использования дополнительных деталей. Если ступица привода больше вала шарового крана, между ними устанавливают специальный переходник bav-av-adapter.

Варианты компоновки шаровых кранов VALMA

Запорный шаровой кран с пневмоприводом одноили двухстороннего действия

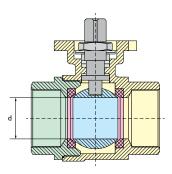
Шаровые краны с пневмоприводом применяются в составе различного технологического оборудования совместно с системами автоматизированного управления. Наиболее значимыми отличительными особенностями шаровых кранов с пневмоприводом является высокая скорость работы (от десятых долей секунды до нескольких секунд) и возможность настройки времени открытия и закрытия кранов с помощью пневмодросселей. При необходимости отслеживания текущего положения шарового крана (открыт или закрыт) на пневмопривод может быть установлен блок концевых выключателей (БКВ).

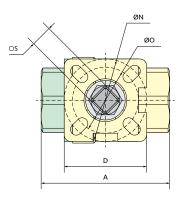
Регулирующий шаровой кран с пневмоприводом и позиционером

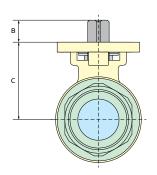
Шаровые краны с пневмоприводом и позиционером используются в задачах, требующих применения регулирующих шаровых кранов с высокой скоростью открытия и закрытия. Управление осуществляется электрическим сигналом 4...20 мА, поворот шара крана – сжатым воздухом.

Ручной шаровой кран

Шаровые краны с ручным управлением чаще всего используются для установки на линиях байпаса и в качестве дублирующей арматуры для перекрытия трубопроводов во время остановок оборудования и для проведения технического обслуживания.


Запорный или регулирующий шаровой кран с электроприводом


Шаровые краны с электроприводом могут быть использованы как в качестве запорной, так и в качестве регулирующей трубопроводной арматуры. Использование электропривода позволяет обеспечить высокую плавность хода и небольшую скорость открытия и закрытия крана, что позволяет избежать гидравлических ударов и резких изменений расхода в системе.



ШАРОВОЙ КРАН ДВУХСОСТАВНОЙ С РЕЗЬБОВЫМ ПРИСОЕДИНЕНИЕМ

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ						
Тип рабочей среды	Воздух, вода, пар, масло и другие жидкости и газы,					
	совместимые с материалами и уплотнениями корпуса крана					
Давление рабочей среды DN15DN50: 16 бар DN65DN80: 10 бар						
Температура рабочей среды -20+180 °C						
Стандарт фланца для привода	ISO 5211, ΓΟCT 34287-2017					
Температура окруж. среды	-20+65 °C					
	Материалы основных деталей					
Корпус клапана	Нержавеющая сталь AISI 304					
Шар	Нержавеющая сталь AISI 304					
Уплотнения шара	PTFE					

A D.T.W.V.F.	DN	Размер	Kv	,	Р	М	d	Α	В	C	D	ØO	ØN	□S
Артикул	DN	резьбы	л/мин	м³/ч	бар	Н•м	мм	мм	мм	мм	мм	мм	мм	мм
BAV-S304-2P-T-015	15	G 1/2"	333	20	16	6	12	59	10	35	42	36	42	9
BAV-S304-2P-T-020	20	G 3/4"	633	38	16	8	20	66	10	39	42	36	42	9
BAV-S304-2P-T-025	25	G 1"	1200	72	16	10	25	80	11	46	50	42	50	11
BAV-S304-2P-T-032	32	G 1 1/4"	1550	93	16	18	32	90	12	52	50	42	50	11
BAV-S304-2P-T-040	40	G 1 1/2"	2417	145	16	22	38	103	17	63	70	50	70	14
BAV-S304-2P-T-050	50	G 2"	3833	230	16	30	49	117	17	74	70	50	70	14
BAV-S304-2P-T-065	65	G 2 1/2"	6767	406	10	38	64	147	20	94	96	70	102	17
BAV-S304-2P-T-080	80	G 3"	9600	576	10	59	76	169	20	104	96	70	102	17

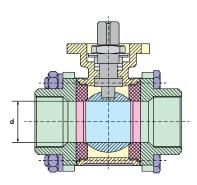
	ISO 52	11	Совместимое оборудование							
Артикул	ГОСТ 34	ГОСТ 34287 Пневмопривод Пневмопривод								
шарового крана	Тип	□s	двухстороннего действия	одностороннего действия	Электро- привод	Ручка				
BAV-S304-2P-T-015	F03/F04	9	PNA-DA-032	PNA-SA-052 ^{+A}	ELA-DT-30+A	handle-015-020				
BAV-S304-2P-T-020	F03/F04	9	PNA-DA-040 ^{+A}	PNA-SA-052 ^{+A}	ELA-DT-30+A	handle-015-020				
BAV-S304-2P-T-025	F04/F05	11	PNA-DA-052	PNA-SA-063 ^{+C}	ELA-DT-30	handle-025-032				
BAV-S304-2P-T-032	F04/F05	11	PNA-DA-052	PNA-SA-083 ^{+D}	ELA-DT-30	handle-025-032				
BAV-S304-2P-T-040	F05/F07	14	PNA-DA-063	PNA-SA-083 ^{+E}	ELA-DT-50	handle-040-050				
BAV-S304-2P-T-050	F05/F07	14	PNA-DA-063	PNA-SA-083 ^{+E}	ELA-DT-50	handle-040-050				
BAV-S304-2P-T-065	F07/F10	17	PNA-DA-083	PNA-SA-092	ELA-DT-100	handle-065-080				
BAV-S304-2P-T-080	F07/F10	17	PNA-DA-092	PNA-SA-105+G	ELA-DT-100	handle-065-080				

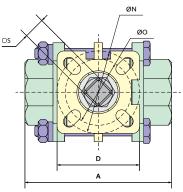
^{*}A - требуется адаптер bav-av-adapter-A

МОНТАЖНЫЕ КОМПЛЕКТЫ

Монтажные комплекты для установки приводов на шаровой кран входят в комплект поставки. Однако, при необходимости они могут быть заказы отдельно.

Шаровой кран	Монтажный комплект	Шаровой кран	Монтажный комплект						
Резьбовые шаровые краны BAV-T									
BAV-S304-2P-T-015	MountKit-BAV-PNA-M5x20	BAV-S316-3P-T-015	MountKit-BAV-PNA-M5x20						
BAV-S304-2P-T-020	MountKit-BAV-PNA-M5x20	BAV-S316-3P-T-020	MountKit-BAV-PNA-M5x20						
BAV-S304-2P-T-025	MountKit-BAV-PNA-M6x30	BAV-S316-3P-T-025	MountKit-BAV-PNA-M6x25						
BAV-S304-2P-T-032	MountKit-BAV-PNA-M6x30	BAV-S316-3P-T-032	MountKit-BAV-PNA-M6x25						
BAV-S304-2P-T-040	MountKit-BAV-PNA-M8x35	BAV-S316-3P-T-040	MountKit-BAV-PNA-M8x35						
BAV-S304-2P-T-050	MountKit-BAV-PNA-M8x35	BAV-S316-3P-T-050	MountKit-BAV-PNA-M8x35						
BAV-S304-2P-T-065	MountKit-BAV-PNA-M8x40	BAV-S316-3P-T-065	MountKit-BAV-PNA-M8x40						
BAV-S304-2P-T-080	MountKit-BAV-PNA-M8x40	BAV-S316-3P-T-080	MountKit-BAV-PNA-M8x40						
	Фланцевые шаро	вые краны BAV-F							
BAV-S304-3P-F-025	MountKit-BAV-PNA-M6x25	BAV-S304-3P-F-050	MountKit-BAV-PNA-M8x35						
BAV-S304-3P-F-032	MountKit-BAV-PNA-M6x25	BAV-S304-3P-F-065	MountKit-BAV-PNA-M8x40						
BAV-S304-3P-F-040	MountKit-BAV-PNA-M8x35	BAV-S304-3P-F-080	MountKit-BAV-PNA-M8x40						


 $^{^{+}E}$ - требуется адаптер bav-av-adapter-E $^{+G}$ - требуется адаптер bav-av-adapter-G


⁺C - требуется адаптер bav av -adapter-C +D - требуется адаптер bav-av-adapter-D

ШАРОВОЙ КРАН ТРЕХСОСТАВНОЙ С РЕЗЬБОВЫМ ПРИСОЕДИНЕНИЕМ

Т	ЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ				
Тип рабочей среды Воздух, вода, пар, масло и другие жидкости и газы, совместимые с материалами и уплотнениями корпуса крана					
Давление рабочей среды DN15DN50: 16 бар DN65: 10 бар					
Температура рабочей среды -20+180°C					
Стандарт фланца для привода	ISO 5211, ΓΟCT 34287-2017				
Температура окруж. среды	-20+65 °C				
	Материалы основных деталей				
Корпус клапана	Нержавеющая сталь AISI 316				
Шар	Нержавеющая сталь AISI 316				
Уплотнения шара PTFE					

Трехсоставная конструкция обеспечивает лёгкую сборку и разборку шарового крана. Она позволяет монтировать кран на трубопровод без использования сгонов или соединений с накидной гайкой. В дальнейшем, для проведения технического обслуживания (например, при очистке крана или при замене уплотнений), достаточно раскрутить болты, стягивающие боковые части крана, и извлечь среднюю часть. При этом боковые части корпуса остаются закреплены на трубопроводе, поэтому повторная герметизация резьбы не требуется.

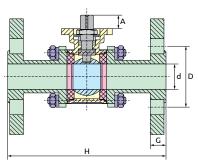
A =	DN	Размер	Kv		Р	М	d	Α	В	С	D	ØO	ØN	□S
Артикул	DN	резьбы	л/мин	м³/ч	бар	Н•м	мм	мм	мм	мм	мм	мм	мм	мм
BAV-S316-3P-T-015	15	G 1/2"	333	20	16	6	12	75	10	39	42	36	42	9
BAV-S316-3P-T-020	20	G 3/4"	633	38	16	8	20	80	10	44	42	36	42	9
BAV-S316-3P-T-025	25	G 1"	1200	72	16	10	25	90	11	52	50	42	50	11
BAV-S316-3P-T-032	32	G 1 1/4"	1550	93	16	18	32	110	12	56	50	42	50	11
BAV-S316-3P-T-040	40	G 1 1/2"	2417	145	16	22	38	120	17	65	70	50	70	14
BAV-S316-3P-T-050	50	G 2"	3833	230	16	30	49	140	17	75	70	50	70	14
BAV-S316-3P-T-065	65	G 2 1/2"	6767	406	10	38	64	177	20	106	95	70	102	17

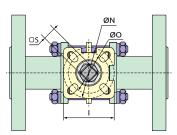
	ISO 52	11	Совместимое оборудование												
Артикул шарового крана	FOCT 34287		ГОСТ 34287		ГОСТ 34287		ГОСТ 34287		Till Colling to the			Пневмопривод	Электро-		
шарового крана	Тип	□s	двухстороннего действия	двухстороннего одностороннего действия		Ручка									
BAV-S316-3P-T-015	F03/F04	9	PNA-DA-032	PNA-SA-052 ^{+A}	ELA-DT-30 ^{+A}	handle-015-020									
BAV-S316-3P-T-020	F03/F04	9	PNA-DA-040 ^{+A}	PNA-SA-052 ^{+A}	ELA-DT-30+A	handle-015-020									
BAV-S316-3P-T-025	F04/F05	11	PNA-DA-052	PNA-SA-063 ^{+C}	ELA-DT-30	handle-025-032									
BAV-S316-3P-T-032	F04/F05	11	PNA-DA-052	PNA-SA-083 ^{+D}	ELA-DT-30	handle-025-032									
BAV-S316-3P-T-040	F05/F07	14	PNA-DA-063	PNA-SA-083 ^{+E}	ELA-DT-50	handle-040-050									
BAV-S316-3P-T-050	F05/F07	14	PNA-DA-063	PNA-SA-083 ^{+E}	ELA-DT-50	handle-040-050									
BAV-S316-3P-T-065	F07/F10	17	PNA-DA-083	PNA-SA-092	ELA-DT-100	handle-065-080									

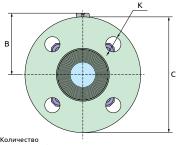
⁺A - требуется адаптер bav-av-adapter-A

КОМПЛЕКТЫ УПЛОТНЕНИЙ И ШАРЫ ДЛЯ ЗАМЕНЫ

Шаровой кран	Уплотнения РТFE (до +180°C)	Уплотнения PPL (до +220°C)	Шар AISI 316						
	Резьбовые шаровые краны BAV-T								
BAV-S316-3P-T-015	bav-skit-ptfe-3p-t-015	bav-skit-ppl-3p-t-015	ball-s316-t-015						
BAV-S316-3P-T-020	bav-skit-ptfe-3p-t-020	bav-skit-ppl-3p-t-020	ball-s316-t-020						
BAV-S316-3P-T-025	bav-skit-ptfe-3p-t-025	bav-skit-ppl-3p-t-025	ball-s316-t-025						
BAV-S316-3P-T-032	bav-skit-ptfe-3p-t-032	bav-skit-ppl-3p-t-032	ball-s316-t-032						
BAV-S316-3P-T-040	bav-skit-ptfe-3p-t-040	bav-skit-ppl-3p-t-040	ball-s316-t-040						
BAV-S316-3P-T-050	bav-skit-ptfe-3p-t-050	bav-skit-ppl-3p-t-050	ball-s316-t-050						
	Фланцевые шаровь	ые краны BAV-F							
BAV-S304-3P-F-025	bav-skit-ptfe-3p-f-025	_	ball-s316-t-025						
BAV-S304-3P-F-032	bav-skit-ptfe-3p-f-032	_	ball-s316-t-032						
BAV-S304-3P-F-040	bav-skit-ptfe-3p-f-040	_	ball-s316-t-040						
BAV-S304-3P-F-050	bav-skit-ptfe-3p-f-050	_	ball-s316-t-050						


⁺D - требуется адаптер bav-av-adapter-D


⁺C - требуется адаптер bav-av-adapter-C +E - требуется адаптер bav-av-adapter-E


BAV 5P

ШАРОВОЙ КРАН ТРЕХСОСТАВНОЙ С ФЛАНЦЕВЫМ ПРИСОЕДИНЕНИЕМ

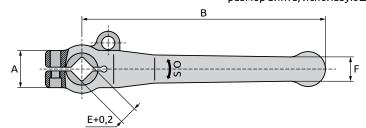
Количество отверстий на фланцах: DN 25...DN 65: 4 шт., DN 80: 8 шт.

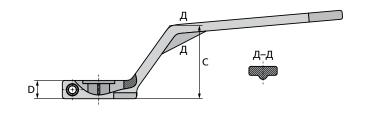
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ						
Тип рабочей среды	Воздух, вода, пар, масло и другие жидкости и газы, совместимые с материалами и уплотнениями корпуса крана					
Давление рабочей среды	DN25DN50: 16 6ap DN65DN80: 10 6ap					
Температура рабочей среды -20+180 °C						
Стандарт фланца для привода	ISO 5211, FOCT 34287-2017					
Стандарт фланца для трубопровода	GB (совместим со стандартом DIN)					
Температура окруж. среды	-20+65 °C					
	Материалы основных деталей					
Корпус клапана	Нержавеющая сталь AISI 304					
Шар	Нержавеющая сталь AISI 304					
Уплотнения шара	PTFE					

A	DN	Kv	,	Р	М	d	Α	В	С	D	G	н	1	K	ØO	ØN	□s
Артикул	DN	л/мин	м³/ч	бар	Н•м	мм	мм	мм	мм	мм	мм	мм	мм	мм	мм	мм	мм
BAV-S304-3P-F-025	25	1200	72	16	10	25	14	87	115	85	11	156	50	14	42	50	11
BAV-S304-3P-F-032	32	1550	93	16	18	32	14	90	132	100	13	176	50	18	42	50	11
BAV-S304-3P-F-040	40	2417	145	16	22	38	17	100	145	110	13	195	70	18	50	70	14
BAV-S304-3P-F-050	50	3833	230	16	30	49	17	108	160	125	14	230	70	18	50	70	14
BAV-S304-3P-F-065	65	6767	406	10	38	64	20	140	178	145	15	290	95	18	70	102	17
BAV-S304-3P-F-080	80	9600	576	10	59	80	20	150	198	160	18	300	95	18	70	102	17

	ISO 52	11		Совместимое оборудование										
Артикул шарового крана	Артикул ГОСТ 34287		Пневмопривод двухстороннего	Пневмопривод одностороннего	Электро-	Ручка								
	Тип	□S	действия	действия	привод	. ,								
BAV-S304-3P-F-025	F04/F05	11	PNA-DA-052	PNA-SA-063+C	ELA-DT-30	handle-025-032								
BAV-S304-3P-F-032	F04/F05	11	PNA-DA-052	PNA-SA-083 ^{+D}	ELA-DT-30	handle-025-032								
BAV-S304-3P-F-040	F05/F07	14	PNA-DA-063	PNA-SA-083 ^{+E}	ELA-DT-50	handle-040-050								
BAV-S304-3P-F-050	F05/F07	14	PNA-DA-063	PNA-SA-083 ^{+E}	ELA-DT-50	handle-040-050								
BAV-S304-3P-F-065	F07/F10	17	PNA-DA-083	PNA-SA-092	ELA-DT-100	handle-065-080								
BAV-S304-3P-F-080	F07/F10	17	PNA-DA-092	PNA-SA-105+G	ELA-DT-100	handle-065-080								

 $^{^{\}scriptscriptstyle +C}$ - требуется адаптер bav-av-adapter-C


РУЧКИ ДЛЯ ШАРОВЫХ КРАНОВ



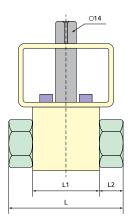
Артикул	DN*	А, мм	В, мм	С, мм	D, мм	Е, мм	F , мм	Винт**
handle-015-020	1520	18,5	125	36,7	9	9	12	M5x15
handle-025-032	2532	22	160	40	11,5	11	17	M5x15
handle-040-050	4050	26	190	42	13	14	18	M6x15
handle-065-080	6580	37	240	56	15	17	22	M8x15

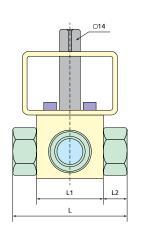
^{* -} указан DN совместимых клапанов VALMA серии BAV.

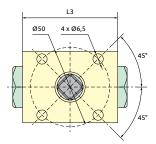
^{** -} размер винта, использующегося для фиксации

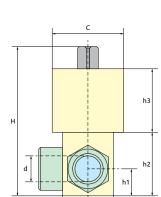
⁺E - требуется адаптер bav-av-adapter-E

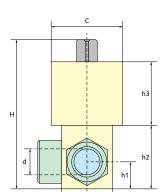
⁺D - требуется адаптер bav-av-adapter-D

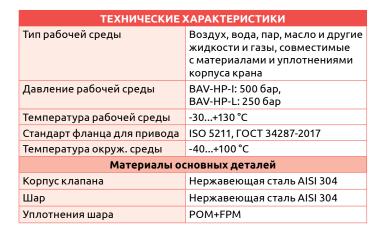

⁺G - требуется адаптер bav-av-adapter-G


ШАРОВОЙ КРАН НА ВЫСОКОЕ ДАВЛЕНИЕ



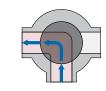

L3


4 x Ø6,5



d

h3



Шаровые краны на высокое давление выполняются в двух модификациях: BAV-HP-I – стандартное исполнение;

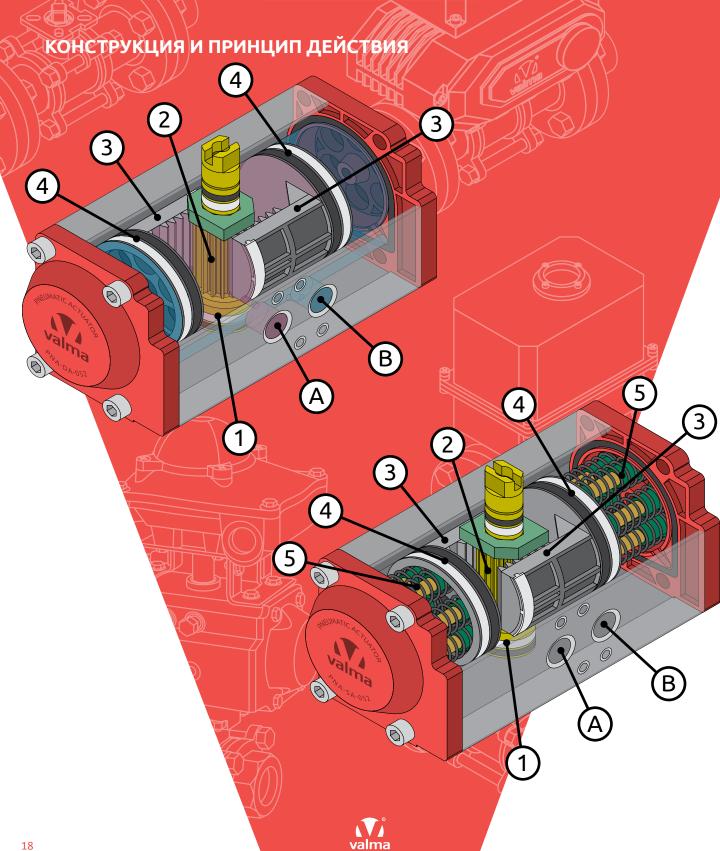
BAV-HP-L-трехходовое исполнение с L-шаром.

Трехходовые краны BAV-HP-L имеют шар L-типа, отверстие в котором выполнено под углом 90°. Таким образом, при повороте шара на 90° он соединяет два из трёх портов трехходового шарового крана. Данная особенность позволяет использовать шаровые краны BAV-HP-L для перенаправления потока рабочей среды из одного входного порта в один из двух выходных портов.

Annua	DN	Р	Danuar 201 6 1				
Артикул	DN	бар	Размер резьбы				
BAV-S304-HP-T-010-I	10	500	G 3/8"				
BAV-S304-HP-T-015-I	15	500	G 1/2"				
BAV-S304-HP-T-010-L	10	250	G 3/8"				
BAV-S304-HP-T-015-L	15	250	G 1/2"				

A =	В	С	d	Е	н	h1	h2	h3	L	L1	L2	L3
Артикул	мм	мм	мм	мм	мм	мм	мм	мм	мм	мм	мм	мм
BAV-S304-HP-T-010-I	32	46	10	-	96	17	40	40	72	42	14	60
BAV-S304-HP-T-015-I	37	46	13	-	115	19	47	50	83	47	17	70
BAV-S304-HP-T-010-L	32	46	10	36	96	17	40	40	72	42	14	60
BAV-S304-HP-T-015-L	37	46	13	40	115	19	47	50	83	47	17	70

	ISO 52		Совместимое оборудование					
Артикул	ГОСТ 34	287	Пневмо-	D				
	Тип	□S	привод	Ручка				
BAV-S304-HP-T-010-I	F05	14	PNA-DA-063	handle-015-020				
BAV-S304-HP-T-015-I	F05	14	PNA-DA-063	handle-015-020				
BAV-S304-HP-T-010-L	F05	14	PNA-DA-063	handle-025-032				
BAV-S304-HP-T-015-L	F05	14	PNA-DA-063	handle-025-032				


ПНЕВМОПРИВОДЫ

модельный ряд

PNA Тип изделия пневматический привод (pneumatic actuator)

	DA							
-	Принцип действия							
DA	двухстороннего действия (double acting)							
SA	одностороннего действия (single acting)							

032 Диаметр поршней 032...160

ОСОБЕННОСТИ ПНЕВМОПРИВОДОВ VALMA

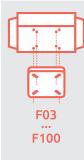
Крутящий момент привода и крана

В линейке пневомприводов VALMA присутствуют модели с величиной крутящего момента от 4 до 1000 H·м. Величина крутящего момента зависит от типа привода (одно- или двухстороннего действия), диаметра поршней и давления сжатого воздуха.

Крутящий момент развиваемый пневмоприводом должен быть не меньше крутящего момента, требуемого для поворота вала исполнительного механизма. При подборе пневмопривода для шаровых кранов рекомендуется выбирать привод таким образом, чтобы его крутящий момент превышал крутящий момент шарового крана

- на 25% в общем случае;
- на 40% если рабочей средой является грязная или вязкая жидкость;
- на 80% если рабочая среда является сыпучей

(для таких случаев рекомендуется использовать поворотный затвор).


Совместимость с различными кранами

Пневматические приводы VALMA совместимы с шаровыми кранами, дисковыми затворами и другими неполноповоротными исполнительными механизмами, выполненными в соответствии со стандартами ISO 5211 и ГОСТ 34287-2017. Это позволяет использовать пневмоприводы VALMA не только совместно с оригинальной трубопроводной арматурой, но и с аналогичными изделиями других производителей.

Совместимость с БКВ и позиционерами

Хвостовик вала-шестерни, расположенный в верхней части пневмоприводов VALMA, выполнен в соответствии со стандартом VDI/VDE 3845. Это позволяет устанавливать на пневмопривод дополнительные устройства, требующие отслеживания текущего угла поворота вала (процента открытия присоединённой трубопроводной арматуры), например позиционеры или блоки концевых выключателей (БКВ).

Крепление приводов на краны

Фланцы для крепления приводов VALMA на исполнительные механизмы выполнены в соответствии с типами присоединений F03 – F100 по ISO 5211 (ГОСТ 34287-2017). Данные типы присоединений определяют размер и расположение отверстий для монтажа привода. Большинство приводов имеет несколько типов присоединения. Для правильной установки привода на исполнительный механизм хотя бы один из типов присоединения должен совпадать.

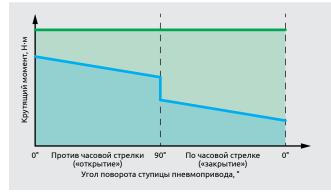
Универсальное присоединение

Пневмоприводы VALMA имеют ступицу, совместимую с трубопроводной арматурой как с диагональной, так и с параллельной квадратной головкой. Характеристический размер ступицы привода должен быть не меньше размера вала шарового крана или другого исполнительного механизма. Если размер ступицы привода и вала шарового крана совпадают, то они совмещаются без использования дополнительных деталей. Если ступица привода больше вала шарового крана, между ними устанавливают специальный переходник bav-av-adapter.

Конструкция и принцип действия

Пневмоприводы VALMA серии PNA относятся к категории поворотных пневматических приводов с конструкцией шестерня-рейка.

Внутри корпуса пневмопривода расположены поршни 4, с зубчатыми рейками 3. В собранном пневмоприводе данные рейки находятся в постоянном зацеплении с валом-шестерней 2, на котором расположена ступица 1, передающая крутящий момент на присоединённую к пневмоприводу арматуру


Поршни разделяют пространство внутри корпуса пневмопривода на две герметичные области, одна из которых соединена с левым портом A, другая – с правым портом B.

При сбросе воздуха из порта A и подаче воздуха в порт B под действием давления сжатого воздуха поршни сдвигаются к центру, что приводит к повороту вала-шестерни по часовой стрелке.

Пневмоприводы одностороннего действия (PNA-SA) дополнительно содержат два блока пружин 5, расположенных между поршнями и крышками корпуса. Эти пружины обеспечивают возврат поршней, вала-шестерни и ступицы привода в исходное состояние после сброса воздуха из области, соединённой с портом А (подача сжатого воздуха в порт В не требуется).

При подаче воздуха в порт А под действием давления пневмосистемы поршни раздвигаются в разные стороны и сжимают пружины, что приводит к повороту вала-шестерни против часовой стрелки.

При сбросе воздуха из порта А под действием силы сжатых пружин поршни сдвигаются к центру, что приводит к повороту вала-шестерни по часовой стрелке.

За счет наличия пружин пневмоприводы одностороннего действия, способны обеспечить возврат арматуры в исходное состояние даже при отсутствии давления сжатого воздуха. Однако, это приводит к уменьшению крутящего момента на ступице привода, т. к. часть энергии воздуха расходуется на сжатие пружин. Наличие пружин также приводит к тому, что крутящий момент привода зависит от угла поворота ступицы и различен при поворотах по и против часовой стрелки.

Крутящий момент пневмопривода двустороннего действия Крутящий момент пневмопривода одностороннего действия

ПНЕВМОПРИВОД ДВУСТОРОННЕГО ДЕЙСТВИЯ

Визуальный индикатор положения вала привода

Вал под визуальным индикатором совместим с позиционерами и блоками концевых выключателей

Привод имеет монтажные отверстия для распределителей стандарта NAMUR

Порты подвода воздуха имеют резьбу, совместимую со стандартными фитингами

Ступица вала привода рассчитана на присоединение арматуры с параллельной или диагональной квадратной головкой

ТЕХНИЧ	ЕСКИЕ ХАРАКТЕРИСТИКИ
Тип управляющей среды	Воздух (сухой и чистый)
Давление управляющей среды	38 бар
Температура управляющей среды	-20+80 °C
Присоединение управляющей среды	PNA-DA-032040: NAMUR, G 1/8 PNA-DA-052160: NAMUR, G 1/4
Температура окружающей среды	-40+65 °C
Исходное положение	Привод может быть установлен в любое исходное положение
Стандарт присоединения к трубопроводной арматуре	ISO 5211, DIN 3337, FOCT 34287-2017
Матер	иалы основных деталей
Корпус пневмопривода	Алюминиевый сплав твердо анодированный
Торцевая заглушка пневмопривода	Литой алюминий с порошковым напылением
Уплотнения пневмопривода	PTFE и HNBR
Поршни пневмопривода	Литой алюминий
Вал-шестерня	Стальной сплав

Модель	Крутящий	момент (Н•і	м) при давл	ении управл	іяющего во	здуха (бар)
пневмопривода	3	4	5	6	7	8
PNA-DA-032	4,2	6	7,5	9	10	11,5
PNA-DA-040	6,56	9,83	11,72	14,06	15,63	17,97
PNA-DA-052	12,48	16,64	20,8	24,96	29,12	33,28
PNA-DA-063	21,96	29,28	36,6	43,92	51,24	58,56
PNA-DA-083	44,5	59,4	74,2	89,1	103,9	118,8
PNA-DA-092	68,2	91,1	113,7	136,4	159,2	181,9
PNA-DA-105	101,82	136,76	169,7	203,64	237,58	271,52
PNA-DA-125	174,9	233,2	291,5	349,8	408,1	466,4
PNA-DA-140	263,22	350,96	438,7	526,44	614,18	701,92
PNA-DA-160	401,1	534,8	668,5	802,2	935,9	1069,6

Модель пневмопривода	V _{пр. х.} , л	V _{обр. х.} , л	T _{пр. х.} , с*	Т _{обр. х} , с*	Q , норм. л/мин при Р _{упр.} 5,5 бар
PNA-DA-032	0,035	0,045	0,10±0,05	0,10±0,05	156
PNA-DA-040	0,062	0,082	0,10±0,05	0,10±0,05	280,8
PNA-DA-052	0,09	0,12	0,10±0,05	0,10±0,05	409,5
PNA-DA-063	0,14	0,20	0,20±0,05	0,15±0,05	378,9
PNA-DA-083	0,29	0,41	0,35±0,05	0,40±0,05	364
PNA-DA-092	0,49	0,71	0,45±0,10	0,55±0,10	468
PNA-DA-105	0,70	0,99	0,85±0,15	0,80±0,15	399,45
PNA-DA-125	1,40	1,60	1,50±0,30	1,50±0,30	390
PNA-DA-140	1,70	2,40	2,10±0,30	1,90±0,30	399,8
PNA-DA-160	2,60	3,70	2,70±0,40	2,60±0,40	463,6

скорость срабатывания пневмопривода указана при давлении управляющей среды 5,5 бар и без учета сопротивления, оказываемого на него поворотным механизмом клапана и рабочей средой, протекающей через клапан.

Для расчета расхода воздуха при значении давления управляющей среды, отличном от того, которое использовано для расчетов в таблице, используют следующую формулу:

$$Q = \left(V_{np.x.} + V_{oбp.x.}\right) \cdot (P+1) \cdot \frac{60}{T_{np.x.} + T_{oбp.x.}},$$

где: Q - расход управляющей среды (норм. л/мин)

 $\widetilde{V}_{yp,x}$ - объем камеры привода прямого хода (поворот вала против часовой стрелки) (л); $V_{yp,x}^{yp,x}$ - объем камеры привода обратного хода (поворот вала по часовой стрелке) (л):

- объем камеры привода обратного хода (поворот вала по часовой стрелке) (л);

P - давление управляющей среды (бар);

 $T_{np.x}$ - время полного поворота вала при прямом ходе (c); $T_{oбp.x}$ - время полного поворота вала при обратном ходе (c).

ПНЕВМОПРИВОД ОДНОСТОРОННЕГО ДЕЙСТВИЯ

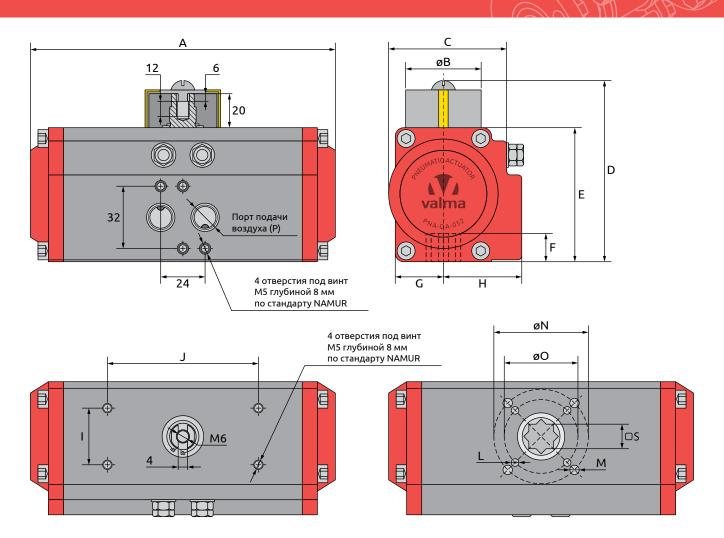
Модель	Кол-во	Крутящий момент (H•м) ол-во при давлении управляющего воздуха (бар)												
пневмопривода	пружин	4	4		5		5	7		Закрытие				
		0°	90°	0°	90°	0°	90°	0°	90°	0°	90°			
PNA-SA-032	2	-	-	4,76	0,92	6,26	2,42	7,26	3,42	2,74	6,58			
PNA-SA-040	2	-	-	7,59	1,18	9,93	3,52	11,5	5,09	4,13	10,54			
PNA-SA-052	10	8,74	4,24	12,9	8,4	17,06	12,56	-	-	7,9	12,4			
PNA-SA-063	10	15,3	7,7	22,6	15	29,9	22,3	37,2	29,6	14	21,6			
PNA-SA-083	10	31,6	17,2	46,8	32,4	62	47,6	77,1	62,7	29	43,4			
PNA-SA-092	10	47,1	26,1	69,7	48,7	92,4	71,4	115,2	94,2	44	65			
PNA-SA-105	10	70,4	37,2	103,3	70,1	137,3	104	171,2	138	66,4	99,6			

Модель пневмопривода	V _{пр. х.} , л	T _{np. x.} , c*	Q , норм. л/мин при Р _{упр.} 5,5 бар		
PNA-SA-032	0,035	0,10±0,05	156		
PNA-SA-040	0,062	0,10±0,05	280,8		
PNA-SA-052	0,09	0,25±0,05	409,5		
PNA-SA-063	0,14	0,20±0,05	378,9		
PNA-SA-083	0,29	0,25±0,05	364		
PNA-SA-092	0,49	0,50±0,10	468		
PNA-SA-105	0,70	0,80±0,15	399,45		

скорость срабатывания пневмопривода указана при давлении управляющей среды 5 бар для приводов PNA-SA-032...040 и 4 бара для приводов PNA-SA-052...105, без учета сопротивления, оказываемого на него поворотным механизмом клапана и рабочей средой, протекающей через клапан.

Для расчета расхода воздуха при значении давления управляющей среды, отличном от того, которое использовано для расчетов в таблице, используют следующую формулу:

$$Q = V_{np.x.} \cdot (P+1) \cdot \frac{60}{T_{np.x.}},$$


где: Q - расход управляющей среды (норм. л/мин)

 $\widetilde{V}_{_{np,x}}$ - объем камеры привода прямого хода (поворот вала против часовой стрелки) (л); P - давление управляющей среды (бар);

 $T_{no.x.}$ - время полного поворота вала при прямом ходе (c);

PNA DA SA

DA ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ **SA** РАЗМЕРЫ ПНЕВМОПРИВОДОВ

Модель	ISO 52 (FOCT 34		P						Габар	итны	е рази	иерь	I, MN					
пневмопривода	Тип	□S		Α	øΒ	С	D	E	F	G	Н	I	J	K	L	М	øN	øΟ
PNA-DA-032	F03	9	G 1/8"	112	40	51	71	45	12	22,5	24	25	50	9	M5x8			36
PNA-SA-032	F03	9	U 1/6	112	40	31	71	43	12	22,3	24	23	30	9	IVIDXO	-	-	30
PNA-DA-040	F03/F05	11	G 1/4"	124	40	83	86	59,5	14	36,4	28,5	30	80	11	M5x8	M6x9	50	36
PNA-SA-040	FU3/FU3	11	G 1/4	124	40	63	80	39,3	14	30,4	20,3	30	80	'''	IVIDXO	MOX9	30	30
PNA-DA-052	F03/F05	11	G 1/4"	163,5	40	65	98	72	14	26	42	30	80	11	M5x8	M6x9	50	36
PNA-SA-052	F03/F03	11	U 1/4	103,3	40	03	96	12	14	20	42	30	80	''	MOXO	MOXE	30	30
PNA-DA-063	E0E/E07	14	G 1/4"	181	40	71	113	87,6	18	33	47	30	80	14	M6x9	M8x10	70	50
PNA-SA-063	F05/F07	14	G 1/4	101	40	7 1	113	87,0	10	33	41	30	80	14	MOX9	1410 X 10	70	30
PNA-DA-083	F05/F07	17	G 1/4"	213	40	91,6	134,5	108,9	21	40	56,5	30	80	17	M6x9	M8x12	70	50
PNA-SA-083	FU3/FU1	17	G 1/4	213	40	91,0	134,3	106,9	21	40	30,3	30	80	17	MOX9	1410 X 1 Z	70	30
PNA-DA-092	F05/F07	17	G 1/4"	258	40	98,3	143	117	21	44	59	30	80	17	M6x10	M8x12	70	50
PNA-SA-092	FUSFUI	17	U 1/4	236	40	30,3	143	117	۷1	44	39	30	80	17	MOXIO	MOXIZ	70	30
PNA-DA-105	F07/F10	22	G 1/4"	287	40	109,5	158,5	133	24,5	52	64	30	80	22	M8x12	M10x15	102	70
PNA-SA-105	F01/F10	22	G 1/4	201	40	109,3	136,3	133	24,3	32	04	30	80	22	MOXIZ	MIIUXIS	102	70
PNA-DA-125	F07/F10	22	G 1/4"	342,5	50	127,2	180,5	154,4	29	59,7	74	30	80	22	M8x12	M10x15	102	70
PNA-SA-125	FU1/F10	22	G 1/4	342,3	30	121,2	160,5	134,4	29	39,1	74	30	80	22	MOXIZ	MITUXIS	102	70
PNA-DA-140	F10/F12	27	G 1/4"	411	50	138	200	173,7	32	65	77	30	80	27	M10x15	M12x20	125	102
PNA-SA-140	FIU/FIZ	21	U 1/4	411	30	130	200	115,1	32	65	11	30	80	21	1VI IUX 13	1V112X2U	123	102
PNA-DA-160	E10/E12	27	C 1/4"	488	60	158,3	224	198	24 F	72.0	067	30	80	27	M10x15	M12x20	125	102
PNA-SA-160	F10/F12	21	G 1/4"	400	60	138,3	224	138	34,5	73,8	86,7	30	60	21	MIIUXIS	MIZXZU	123	102

АКСЕССУАРЫ ДЛЯ ПНЕВМОПРИВОДОВ

КОМПЛЕКТЫ УПЛОТНЕНИЙ ДЛЯ ЗАМЕНЫ

Пневмопривод двустороннего действия	Пневмопривод одностороннего действия	Комплект уплотнений из HNBR
PNA-DA-032	PNA-SA-032	pna-skit-hnbr-032
PNA-DA-040	PNA-SA-040	pna-skit-hnbr-040
PNA-DA-052	PNA-SA-052	pna-skit-hnbr-052
PNA-DA-063	PNA-SA-063	pna-skit-hnbr-063
PNA-DA-083	PNA-SA-083	pna-skit-hnbr-083

МОНТАЖНЫЕ КОМПЛЕКТЫ

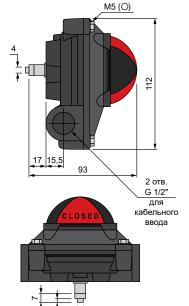
Монтажные комплекты для установки приводов на шаровой кран входят в комплект поставки. Однако, при необходимости они могут быть заказы отдельно.

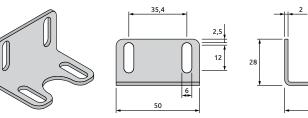
Пневмопривод двустороннего действия	Пневмопривод одностороннего действия	Монтажный комплект			
PNA-DA-032	PNA-SA-032	MountKit-BAV-PNA-M5x20			
PNA-DA-040	PNA-SA-040	MountKit-BAV-PNA-M5x20			
PNA-DA-040	PNA-3A-040	MountKit-BAV-PNA-M6x25			
PNA-DA-052	PNA-SA-052	MountKit-BAV-PNA-M5x20			
FNA-DA-032	FIVA-SA-032	MountKit-BAV-PNA-M6x25			
PNA-DA-063	PNA-SA-063	MountKit-BAV-PNA-M6x25			
FINA-DA-003	FIVA-SA-005	MountKit-BAV-PNA-M8x35			
PNA-DA-083	PNA-SA-083	MountKit-BAV-PNA-M6x30			
FINA-DA-003	FIVA-SA-005	MountKit-BAV-PNA-M8x40			
PNA-DA-092	PNA-SA-092	MountKit-BAV-PNA-M6x30			
FINA-DA-032	FIVA-SA-032	MountKit-BAV-PNA-M8x40			
PNA-DA-105	PNA-SA-105	MountKit-BAV-PNA-M8x40			
FINA-DA-103	FIVA-SA-105	MountKit-BAV-PNA-M10x40			
PNA-DA-125	PNA-SA-125	MountKit-BAV-PNA-M8x40			
FINA-DA-123	FIVA-3A-123	MountKit-BAV-PNA-M10x40			
PNA-DA-140	PNA-SA-140	MountKit-BAV-PNA-M10x40			
TITA DA-140	1 NA 3A-140	MountKit-BAV-PNA-M12x45			
PNA-DA-160	PNA-SA-160	MountKit-BAV-PNA-M10x4			
FNA-DA-100	FINA-SA-100	MountKit-BAV-PNA-M12x45			

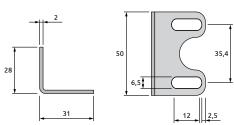
2М БЛОК

КОНЦЕВЫХ ВЫКЛЮЧАТЕЛЕЙ

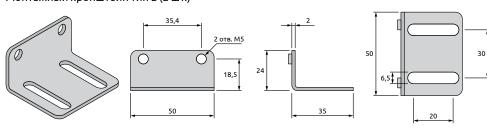
Блоки концевых выключателей (БКВ) серии LSB устанавливаются на пневматические приводы VALMA вместо стандартного визуального индикатора.




БКВ имеет два встроенных микропереключателя сконтактами типа SPDT, рассчитанными на напряжение до 250 В. Данные микропереключатели срабатывают в конечных положениях вала пневмопривода, соответствующих открытому и закрытому положениям присоединенной к приводу арматуры (например, шарового крана или дискового затвора). Благодаря использованию БКВ становится возможным передавать информацию о положении трубопроводной арматуры (открыто/закрыто) в автоматизированные системы управления, что позволяет повысить надежность системы в целом и упрощает проведение диагностики при обнаружении неисправностей.

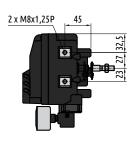

В верхней части блока концевых выключателей расположена двухцветная полусфера визуального индикатора. Если присоединённая трубопроводная арматура закрыта, то видна только красная часть полусферы с надписью CLOSED; если открыта – только желтая с надписью OPEN. Данный визуальный индикатор хорошо виден издалека, чем упрощает осмотр оборудования, а цветовое различие открытого и закрытого положения уменьшает вероятность ошибочного восприятия информации.

Кронштейны для монтажа, поставляемые в комплекте


Монтажный кронштейн тип 1 (2 шт.)

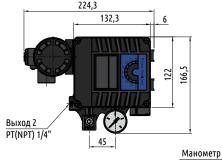
ПОВОРОТНЫЙ ЭЛЕКТРО-ПНЕВМАТИЧЕСКИЙ ПОЗИЦИОНЕР

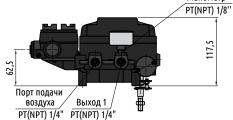
	ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
Управляющий сигнал	420 мА
Напряжение питания	EPP-R-DA, EPP-R-DA+SW: питание от токовой петли 420 мА EPP-R-DA+FB: =24B (для работы сигнала обратной связи)
Рабочее давление	1,47 бар
Присоединение воздуха	G 1/4"
Потребление воздуха	3 л/мин (при 1,4 бар)
Угол полного поворота	090°
Степень защиты	IP66
Температура окр. среды	-20+70 °C

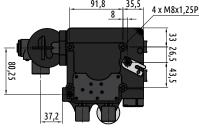

Поворотный позиционер VALMA серии EPP предназначен для управления четвертьоборотными пневматическими приводами.

Установка позиционера на пневмопривод позволяет проворачивать его выходной вал на произвольный угол от 0° до 90°, в то время как без позиционера доступны только два фиксированных положения: 0° и 90°. Это обозначает, что после установки позиционера присоединенная к приводу трубопроводная арматура (например, шаровой кран) сможет работать как регулирующая со степенью открытия от 0% до 100%.

Управление требуемым углом поворота вала привода (степенью открытия присоединенной арматуры) осуществляется сигналом 4..20 мА.


В электро-пневматических позиционерах VALMA серии EPP используется механизм сопло-заслонка, благодаря которому из канала управления исключены какие-либо электронные компоненты. Таким образом, данный позиционер практически невосприимчив к воздействию внешних электромагнитных полей.



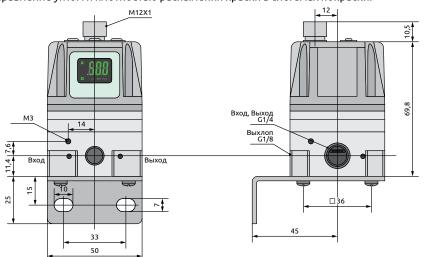


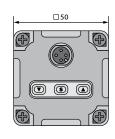
33,5 25,5 4 25,5 4 Рычаг обратной связи NAMUR

Артикул	Управляющий сигнал	Тип рычага обратной связи	Опции
EPP-R-DA	420 мА	M6x40L	отсутствует
EPP-R-DA+SW (N)	420 мА	NAMUR	встроенные концевые выключатели
EPP-R-DA+FB (N)	420 мА	NAMUR	сигнал контроля текущего положения 420 мА

ЭЛЕКТРОННЫЙ РЕГУЛЯТОР ДАВЛЕНИЯ

TEXHUYECKUE	ХАРАКТЕРИСТИКИ
Артикул	EPR1-1-G14-4200
Пневматически	е характеристики
Рабочая среда	Сжатый воздух
Давление на входе	12 бар
Давление на выходе	0,051 бар
Пневматическое подключение	Резьбовое соединение G 1/4
Электрически	е характеристики
Напряжение питания	= 24 B ± 10%
Входной сигнал	420 мА (входное сопротивление 250 Ом)
Выходной сигнал	420 мА (сопротивление нагрузки до 250 Ом)
Потребляемая мощность	Не более 3 Вт
Электрическое подключение	Разъем M12, 4-pin, ключ типа A
Общие хар	оактеристики при при при при при при при при при при
Точность поддержания давления	Линейность: 1 % Гистерезис: 0,5 % Повторяемость: 0,5 %
Точность сигнала обратной связи (420 мА)	6 %
Температура окружающей среды	0+50 °C
Степень защиты	IP 65


Электропневмопреобразователи VALMA серии EPR являются электронными регуляторами давления и используется в составе пневматической части автоматизированных систем управления для поддержания заданного давления сжатого воздуха после себя. Задание требуемого давления осуществляется с помощью пропорционального электрического сигнала 4...20 мА. Таким образом, EPR «преобразовывает» пропорциональный электрический сигнал в пневматический сигнал (давление).


Особенности электропневмопреобразователя:

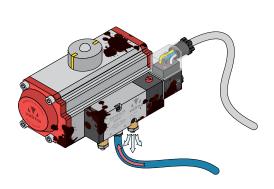
- сигнал управления: 4...20 мА;
- давление на выходе настраивается в пределах 0...1 бар: 0...100 кПа, 20...100 кПа и т. д.;
- индикация текущего давления;
- 🔻 все настройки осуществляются кнопками с лицевой панели, дополнительные устройства или программное обеспечение не требуются.

Наиболее часто электропневмопреобразователи используются для решения следующих задач:

- пропорциональное управление регулирующим клапаном с мембранным исполнительным механизмом (МИМ);
- регулирование усилия прижима в пневматических прессах;
- настройка усилия зажима заготовок;
- корректировка силы прижима роликов и натяжения ленты на транспортёрах;
- управление углом и плотностью распыления краски в системах покраски.

	ПОДКЛЮЧЕНИЕ ЭЛЕКТРОННОГО РЕГУЛЯТОРА ДАВЛЕНИЯ СЕРИИ EPR											
Разт	ьем		H	Тазначение								
1-IN	-IN Входной порт регулятора, подключается к магистрали сжатого воздуха (резьбовое соединение G 1/4)											
2-0	UT	Выходной порт регулятора, подключается к исполн	нител	ьному механизму (резьбовое соединение G 1/4)								
3-E	XH	Выхлопной порт, через него осуществляется сброс	возд	уха из регулятора в атмосферу (резьбовое соеди	нение G 1/8)							
1412	1 Питание (клемма +) +24 B		2	Аналоговый вход (уставка, клемма +)	420 мА							
M12	3	Питание (клемма GND) GND	4	Аналоговый выход (обратная связь, клемма +)	420 мА							

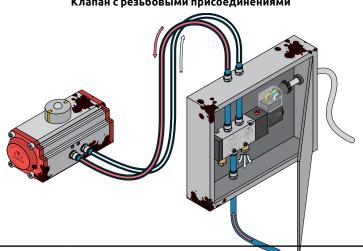
РАСПРЕДЕЛИТЕЛЬНЫЕ КЛАПАНЫ



клапаны Распределительные VALMA серии PIV предназначены для управления пневмоприводами, пневмоцилиндрами и другими пневматическими исполнительными механизмами. Клапаны данной серии имеют модификации с электромагнитным (катушка), либо пневматическим управлением.

	ТЕХНИЧ	ЕСКИЕ ХАР	АКТЕРИСТИ І	КИ								
Типоразмер	G 1/8", G 1/4", G 3/8", G 1/2"											
Рабочее давление			1,5 8 6	ар								
Рабочая температура			-5 +50	°C								
Время отклика	лика 50 мс, частота срабатывания до 5 раз в секунду											
Степень защиты	тепень защиты IP 65											
Напряжение катушки*			=24 В или ~	220 B								
Электрическое подключение**	с пј			(3 pin, size 22) тодиодом инди	кации							
		Модельны	йряд									
Выходные порты	NAMUR	Pe	езьба трубная	я цилиндрическ	ая (G)							
Электроуправление¹	PIV-N-A	PIV-S-A	PIV-S-B	PIV-S-C	PIV-S-D							
Пневмоуправление	_	PIV-S-AP	PIV-S-BP	PIV-S-CP	PIV-S-DP							
Пневмофункция												

- * Напряжение катушки указывается через точку, например PIV-N-A-14.24DC;
- ** Только для клапанов с электроуправлением.


Клапан с присоединением NAMUR

Энергоэффективность

Клапаны с присоединением NAMUR устанавливаются непосредственно на пневмопривод, без промежуточных пневматических трубок. Это уменьшает общее количество сжатого воздуха, требуемого для каждого срабатывания привода. Таким образом суммарное потребление воздуха уменьшается, а система в целом становится более энергоэффективной.

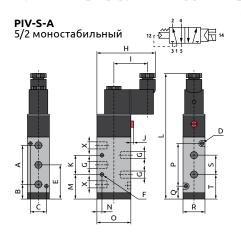
Клапан с резьбовыми присоединениями

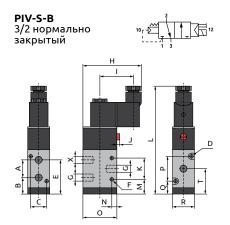
Клапаны с резьбовым присоединением подключаются к пневматическим приводам с помощью пневмотрубок. Это приводит к уменьшению скорости срабатывания пневмопривода (поскольку увеличивается пневматическое сопротивление линии связывающей распределитель с приводом) и вызывает перерасход сжатого воздуха, так как при каждом срабатывании привода сжатым воздухом заполняются не только его внутренние камеры, но и весь объем соединительных пневматических трубок. Во время следующего цикла работы (открытие или закрытие) сжатый воздух из соединительных трубок выбрасывается в атмосферу.

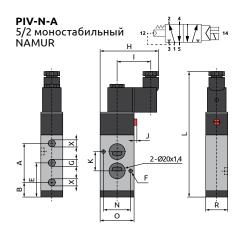
Пример. Шаровой кран BAV-S316-3P-T-025 (DN 25) с пневмоприводом PNA-DA-052, расположенный на расстоянии 10 м от распределительного клапана PIV-S (суммарная длина двух соединительных трубок 20 м), при использовании пневмотрубки диаметром 8х6 мм на каждый полный цикл (открытие+закрытие) будет потреблять в 3,7 раза больше сжатого воздуха по сравнению с решением, которое использует клапан с NAMUR присоединением PIV-N.

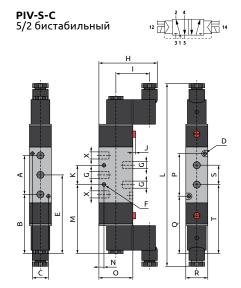
Защита от агрессивного воздействия окружающей среды

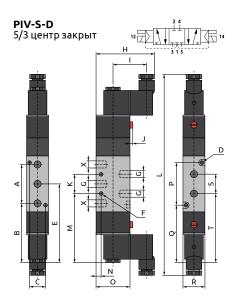
Клапаны с присоединением NAMUR устанавливаются на пневмопривод, поэтому они находятся в непосредственной близости от технологических трубопроводов, где могут быть подвергнуты негативному воздействию агрессивной окружающей среды.


Распределительные клапаны с резьбовым присоединением с помощью пневмотрубок могут быть вынесены от пневмопривода (или иного исполнительного механизма) и смонтированы в защищенном месте. Это не только уменьшает воздействие агрессивной внешней среды и повышает срок службы распределительных клапанов, но и позволяет уменьшить количество прокладываемых кабелей.

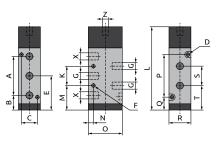




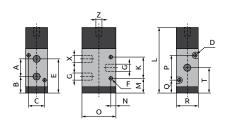

ГАБАРИТНЫЕ РАЗМЕРЫ ПНЕВМОРАСПРЕДЕЛИТЕЛЕЙ


КЛАПАНЫ С ЭЛЕКТРОУПРАВЛЕНИЕМ

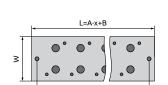
										Габа	ритн	ые раз	вмерь	I, MM								
MC	одель	Α	В	С	ØD	Е	ØF	G	X	Н		J	K	L	М	N	0	P	Q	R	S	T
_	1/8"	36	13,5	17	3,2	31,5	4,3	1/8"	1/8"	66,5	40	3	20	132	21,5	7	35	38	12,5	22	18	22,5
Y-S-	1/4"	45	17,5	20	4,3	40	4,3	1/4"	1/4"	69	40	2,4	24	150	28	6,5	40	50	15	27	22	29
PIV-S	3/8"	45	17,5	20	4,3	40	4,3	3/8"	1/4"	69	40	2,4	24	150	28	6,5	40	50	15	27	24	28
_	1/2"	63	25,5	27	4,3	57	5,5	1/2"	1/2"	74	40	2,4	28	183	43	7,5	50	72	21	34	36	39
~	1/8"	18	21	17	3,2	39	3,3	1/8"	1/8"	66,5	40	3	25	127	15	8	35	33	12,5	22	_	31
S-B	1/4"	24	20,5	20	4,3	44,5	4,3	1/4"	1/4"	69	40	2,4	30	135	17,5	10,5	40	35	15	27	-	32,5
PI -	3/8"	24	20,5	20	4,3	44,5	4,3	3/8"	3/8"	69	40	2,4	30	135	17,5	10,5	40	35	15	27	_	32,5
_	1/2"	31,5	25,5	27	4,3	57	4,3	1/2"	1/2"	74	40	2,4	51	152	15,5	13,5	50	40,5	21	34	-	41,5
	1/8"	36	67	17	3,2	85	4,3	1/8"	1/8"	66,5	40	3	20	200	75	7	35	38	66	22	18	76
S-C	1/4"	45	72	20	4,3	94,4	4,3	1/4"	1/4"	69	40	2,4	24	214	82,4	6,5	40	50	69,4	27	22	83,4
PIV-S-	3/8"	45	72	20	4,3	94,4	4,3	3/8"	1/4"	69	40	2,4	24	219	82,4	6,5	40	50	69,4	27	24	82,4
_	1/2"	63	79,5	27	4,3	111	5,5	1/2"	1/2"	74	40	2,4	28	252	97	7,5	50	108	75	34	36	93
	1/8"	36	67	17	3,2	85	4,3	1/8"	1/8"	66,5	40	3	20	219	75	7	35	38	66	22	18	76
J-S	1/4"	45	72	20	4,3	94,4	4,3	1/4"	1/4"	69	40	2,4	24	238	82,4	6,5	40	50	69,4	27	22	83,4
O-S-NIc	3/8"	45	72	20	4,3	94,4	4,3	3/8"	1/4"	69	40	2,4	24	238	82,4	6,5	40	50	69,4	27	24	82,4
	1/2"	63	79,5	27	4,3	111	5,5	1/2"	1/2"	74	40	2,4	28	252	97	7,5	50	108	75	34	36	93
PIV-	N-A-14	45	17,5	-	-	40	5,5	1/4"	1/4"	69	40	2,4	24	160	_	32	40	-	_	27	-	_


ГАБАРИТНЫЕ РАЗМЕРЫ ПНЕВМОРАСПРЕДЕЛИТЕЛЕЙ

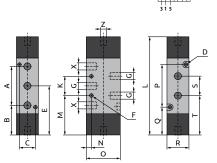
КЛАПАНЫ С ПНЕВМОУПРАВЛЕНИЕМ

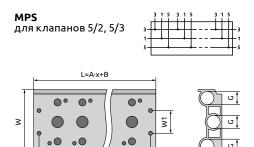

PIV-S-AP 5/2 моностабильный

PIV-S-BP 3/2 нормально закрытый



МОНТАЖНЫЕ ПЛИТЫ





Резьба совмести-	Габаритные размеры, мм										
мых клапанов	G	Α	В	С	W	W1					
1/8"	1/4"	23	23	11	59	21					
1/4", 3/8"	3/8"	28	28	14	73	26					
1/2"	1/2"	35	28	14	97	32					
	мых клапанов 1/8" 1/4", 3/8"	мых клапанов G 1/8" 1/4" 1/4", 3/8" 3/8"	мых клапанов G A 1/8" 1/4" 23 1/4", 3/8" 3/8" 28	мых клапанов G A B 1/8" 1/4" 23 23 1/4", 3/8" 3/8" 28 28	МЫХ КЛАПАНОВ G A B C 1/8" 1/4" 23 23 11 1/4", 3/8" 3/8" 28 28 14	МЫХ КЛАПАНОВ G A B C W 1/8" 1/4" 23 23 11 59 1/4", 3/8" 3/8" 28 28 14 73					

Мололи	Резьба совмести-	Габаритные размеры, мм									
Модель	мых клапанов	G	Α	В	С	W					
MPS-B-x-18	1/8"	1/4"	23	23	11	44,5					
MPS-B-x-14	1/4", 3/8"	3/8"	28	28	14	50					
MPS-B-x-12	1/2"	1/2"	35	28	14	62,5					

L1=A·x+C

х - количество посадочных мест для пневмораспределителей.

N									Габ	аритні	ые раз	меры,	мм							
MC	одель	Α	В	С	ØD	Е	ØF	G	X	Z	K	L	М	N	0	Р	Q	R	S	Т
<u> </u>	1/8"	36	13,5	17	3,2	31,5	4,3	1/8"	1/8"	1/8"	20	77,7	21,5	7	35	38	12,5	22	18	22,5
PIV-S-AP	1/4"	45	17,5	20	4,3	40	4,3	1/4"	1/4"	1/8"	24	95,5	28	6,5	40	50	15	27	22	29
<u> </u>	3/8"	45	17,5	20	4,3	40	4,3	3/8"	1/4"	1/8"	24	95,5	28	6,5	40	50	15	27	24	28
Δ.	1/2"	63	25,5	27	4,3	57	5,5	1/2"	1/2"	1/8"	28	128	43	7,5	50	72	21	34	36	39
Δ.	1/8"	22,5	16	17	3,2	38,5	3,3	1/8"	1/8"	1/8"	25	70	15	8	35	30	12,5	22	-	27,5
PIV-S-BP	1/4"	24	20,5	20	4,3	44,5	4,3	1/4"	1/4"	1/8"	30	80,5	17,5	10,5	40	35	15	27	-	32,5
<u> </u>	3/8"	24	20,5	20	4,3	44,5	4,3	3/8"	3/8"	1/8"	30	80,5	17,5	10,5	40	35	15	27	_	32,5
Δ.	1/2"	31,5	25,5	27	4,3	57	4,3	1/2"	1/2"	1/8"	51	94,5	15,5	13,5	50	40,5	21	34	-	41,5
Δ.	1/8"	36	28	17	3,2	46	4,3	1/8"	1/8"	1/8"	20	92	36	7	35	38	27	22	18	37
PIV-S-CP	1/4"	45	33	20	4,3	55,5	4,3	1/4"	1/4"	1/8"	24	111	43,5	6,5	40	50	30,5	27	22	44,5
≥ .	3/8"	45	33	20	4,3	55,5	4,3	3/8"	1/4"	1/8"	24	111	43,5	6,5	40	50	30,5	27	24	43,5
Δ.	1/2"	63	39,5	27	4,3	71	5,5	1/2"	1/2"	1/8"	28	142	57	7,5	50	72	35	34	36	53
Δ.	1/8"	36	28	17	3,2	46	4,3	1/8"	1/8"	1/8"	20	111	36	7	35	38	27	22	18	37
PIV-S-DP	1/4"	45	33	20	4,3	55,5	4,3	1/4"	1/4"	1/8"	24	130	43,5	6,5	40	50	30,5	27	22	44,5
≥ 2	3/8"	45	33	20	4,3	55,5	4,3	3/8"	1/4"	1/8"	24	130	43,5	6,5	40	50	30,5	27	24	43,5
Ф	1/2"	63	39,5	27	4,3	71	5,5	1/2"	1/2"	1/8"	28	142	57	7,5	50	72	35	34	36	53

ЭЛЕКТРОПРИВОДЫ

модельный ряд

Тип изделия электропривод поворотный

(electric actuator)

DT				
Метод управления				
DT	дискретный метод «Больше/Меньше/Стоп» (discrete type)			

30			
Крутящий момент			
30	30 Н∙м		
50	50 Н∙м		

230VAC				
Напряжение питания				
230VAC	переменный ток ~230 B, 50-60 Гц			
24VDC	постоянный ток =24 В			
	=24 B			

	M		
Материал корпуса			
М	алюминиевый сплав (metal)		
Р	пластик (plastic)		

ОСОБЕННОСТИ ЭЛЕКТРОПРИВОДОВ VALMA

Материалы корпуса

В линейке электроприводов VALMA присутствуют модели с пластиковым и металлическим корпусами.

Универсальность применения

Каждый электропривод возможно использовать и в качестве регулирующего (больше/меньше/стоп) и в качестве запорного (ON/OFF).

ISO 5211

Совместимость с различными кранами

Электрические приводы VALMA совместимы с шаровыми кранами, дисковыми затворами и другими неполноповоротными исполнительными механизмами, выполненными в соответствии со стандартами ISO 5211 и ГОСТ 34287-2017. Это позволяет использовать электроприводы VALMA не только совместно с оригинальной трубопроводной арматурой, но и с аналогичными изделиями других производителей.

F100

Крепление приводов на краны

Фланцы для крепления приводов VALMA на исполнительные механизмы выполнены в соответствии с типами присоединений F03 – F100 по ISO 5211 (ГОСТ 34287-2017). Данные типы присоединений определяют размер и расположение отверстий для монтажа привода. Большинство приводов имеет несколько типов присоединения. Для правильной установки привода на исполнительный механизм хотя бы один из типов присоединения должен совпадать.

Универсальное присоединение

Электроприводы VALMA имеют ступицу, совместимую с трубопроводной арматурой как с диагональной, так и с параллельной квадратной головкой. Характеристический размер ступицы привода должен быть не меньше размера вала шарового крана или другого исполнительного механизма. Если размер ступицы привода и вала шарового крана совпадают, то они совмещаются без использования дополнительных деталей. Если ступица привода больше вала шарового крана, между ними устанавливают специальный переходник bav-av-adapter.

Визуальная индикация

Электроприводы оснащены визуальным индикатором степени открытия по которому легко определить текущее состояние присоединённой арматуры.

Высокая износостойкость

Все шестерни редуктора изготовлены из металла и проходят специальную термообработку для увеличения времени бесперебойной работы.

Ручной дублер

Для всех моделей предусмотрен ручной дублер, позволяющий провернуть выходной вал привода без электропитания для открытия или закрытия присоединённой арматуры. Шестигранник, необходимый для поворота ручного дублера, входит в комплект поставки и надежно крепится на корпусе электропривода.

Концевые выключатели

Приводы имеют две группы встроенных концевых выключателей: одна для передачи сигнала обратной связи в систему управления, вторая — для автоматического отключения электромотора при достижении приводом крайних положений (полностью закрыт и полностью открыт).

Конструкция и принцип действия

Электроприводы VALMA серии ELA относятся к категории четвертьоборотных электроприводов. Это обозначает, что угол поворота выходного вала составляет 90°.

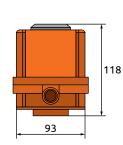
Внутри электропривода расположен электромотор 1, понижающий редуктор 2, выходной вал 3 с эксцентриками 4 и визуальным индикатором угла поворота 5, а также электронная плата управления 6 с концевыми выключателями 7.

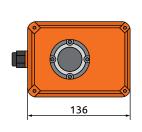
Подача сигнала на открытие приводит к тому, что плата управления запускает электромотор, вращение которого через редуктор передаётся на выходной вал привода. При достижении валом полностью открытого положения (90°) один из эксцентриков воздействует на один из концевых выключателей, срабатывание которого сигнализирует об открытии электропривода.

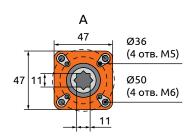
Сигнал с данного концевого выключателя может использоваться системой управления для снятия сигнала на открытие и остановки электропривода. Если этого не произошло, то выходной вал продолжает вращение и через 1...2° срабатывает второй (защитный) концевой выключатель, который отключает электромотор, предотвращая его перегрузку.

Закрытие электропривода происходит аналогичным образом.

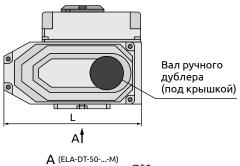
DT ЭЛЕКТРОПРИВОД ПОВОРОТНЫЙ

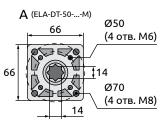


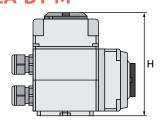


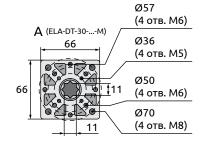

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ				
Артикул	ELA-DT-30-230VAC-P ELA-DT-30-24VDC-P	ELA-DT-30-230VAC-M ELA-DT-30-24VDC-M	ELA-DT-50-230VAC-M ELA-DT-50-24VDC-M	
Угол поворота		90°		
Крутящий момент	30 Н∙м	30 Н∙м	50 Н∙м	
Время полного хода	15 c	15 c	30 c	
Стандарт присоединения к исполнительному механизму	ISO 5211, FOCT 34287-2017			
Типоразмер присоединения	F03/F05 - 11 мм	F03/F05/F07 - 11 мм	F05/F07 - 14 мм	
	С параллельной или диагональной квадратной головкой			
Напряжение питания	~230 В, 50-60 Гц или =24 В			
Потребляемая мощность	20 Вт	8 Вт	15 Вт	
Способ управления	Трёхпозиционное (больше/меньше/стоп)			
Концевые выключатели	2 HO (открыто, закрыто), макс. 250 B, 10 A			
Автоотключение в крайних положениях	Да			
Ручной дублёр	Однооборотный	Многооборотный	Многооборотный	
	Приводится в действие шестигранником (в комплекте)			
Визуальный индикатор	Стрелочный, со шкалой угла поворота вала			
Материал корпуса	Пластик	Алюминиевый сплав	Алюминиевый сплав	
Кабельный ввод	1 шт., под кабель ø 610 мм	2 шт., под кабель ø 610 мм	2 шт., под кабель ø 610 мм	
Степень защиты корпуса	IP 67			
Температура окр. среды	-20+70 °C			
Влажность окр. среды	Макс. 90%, без образования конденсата			
Устойчивость к вибрациям	Х Ү Z 10g, 0,234 Гц, 30 мин			

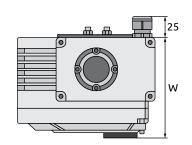
ГАБАРИТНЫЕ РАЗМЕРЫ ELA-DT-P



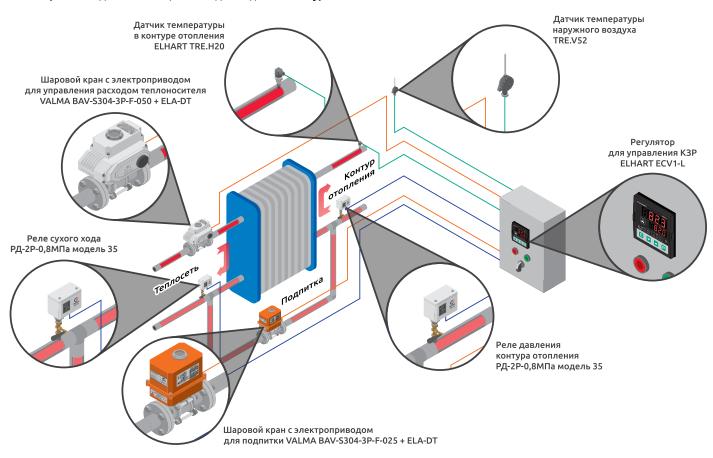




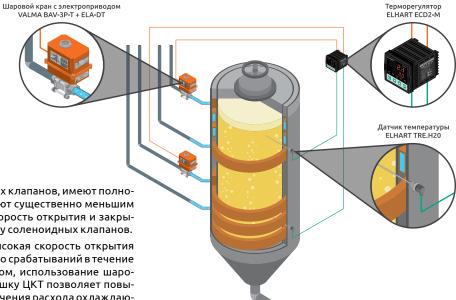



ГАБАРИТНЫЕ РАЗМЕРЫ ELA-DT-M

	ELA-DT-30M	ELA-DT-50M
L	143	166
Н	124	124
W	116	120

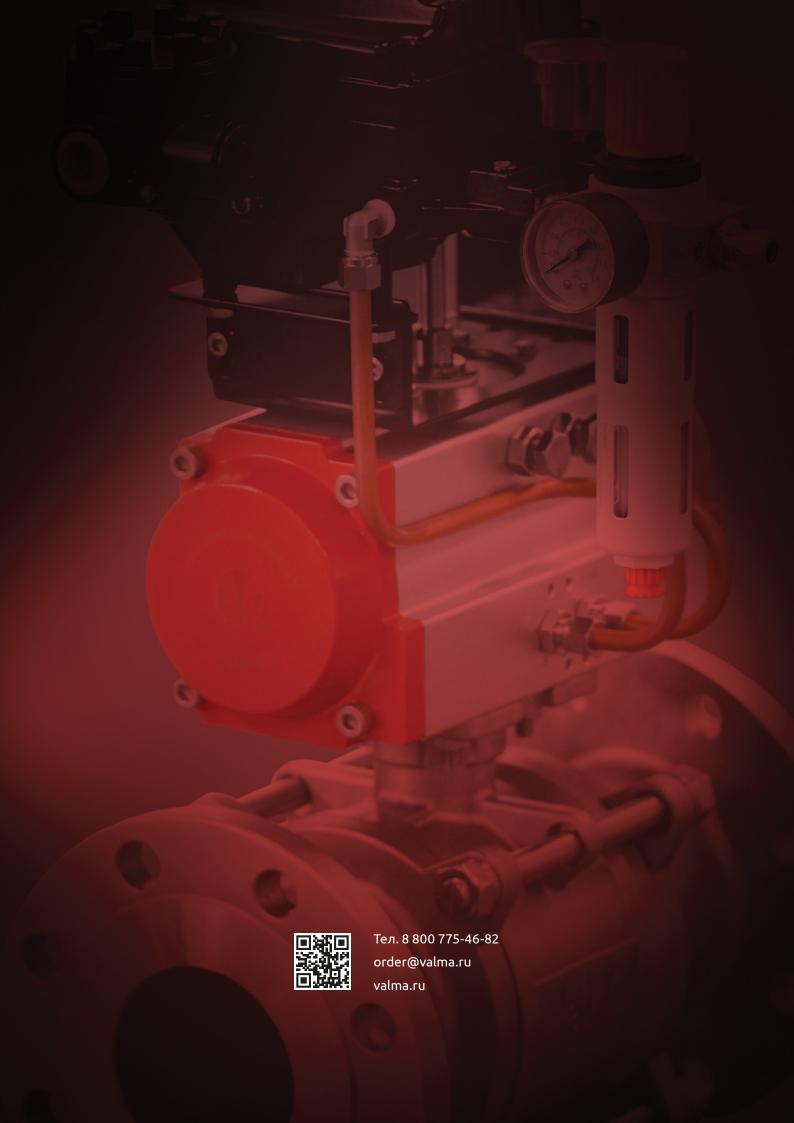


ПРИМЕРЫ ПРИМЕНЕНИЙ ЭЛЕКТРОПРИВОДОВ


Регулирование расхода теплоносителя в системе отопления

Электроприводы VALMA серии ELA совместно с шаровыми кранами серии BAV могут быть использованы в составе индивидуальных тепловых пунктов (ИТП). Клапаны с электроприводом применяются для регулирования расхода теплоносителя в системах отопления и горячего водоснабжения, а также для подпитки контура отопления.

Поддержание температуры продукта в ЦКТ


Шаровые краны VALMA и электроприводы могут быть использованы для поддержания температуры продукта в цилиндро-конических танках (ЦКТ). В данном применении, как правило, не требуется точного регулирования расхода хладоносителя, поэтому шаровые краны с электроприводом работают не в регулирующем, а в запорном режиме. Однако, достаточно часто, ЦКТ имеет два контура охлаждения, требующие независимого поддержания температуры. Для реализации управления двумя контурами охлаждения удобно использовать приборы ELHART ECD2.

Шаровые краны, в отличие от соленоидных клапанов, имеют полнопроходную конструкцию, поэтому они обладают существенно меньшим гидравлическим сопротивлением. Однако, скорость открытия и закрытия шаровых кранов значительно меньше чем у соленоидных клапанов.

При поддержании температуры в ЦКТ высокая скорость открытия и закрытия клапанов не требуется, а количество срабатываний в течение суток относительно небольшое. Таким образом, использование шаровых кранов для подачи хладоносителя в рубашку ЦКТ позволяет повысить эффективность охлаждения за счет увеличения расхода охлаждающей жидкости (по сравнению с соленоидными клапанами).

